

Lump solutions to a generalized Hietarinta-type equation via symbolic computation

Sumayah BATWA¹, Wen-Xiu MA^{2,1,3,4}

1 Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

2 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

3 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

4 School of Mathematics, South China University of Technology, Guangzhou 510640, China

© Higher Education Press 2020

Abstract Lump solutions are one of important solutions to partial differential equations, both linear and nonlinear. This paper aims to show that a Hietarinta-type fourth-order nonlinear term can create lump solutions with second-order linear dispersive terms. The key is a Hirota bilinear form. Lump solutions are constructed via symbolic computations with Maple, and specific reductions of the resulting lump solutions are made. Two illustrative examples of the generalized Hietarinta-type nonlinear equations and their lumps are presented, together with three-dimensional plots and density plots of the lump solutions.

Keywords Soliton equation, lump solution, symbolic computation, Hirota derivative, dispersion relation

MSC 35Q51, 35Q53, 37K40

1 Introduction

Soliton solutions to integrable equations are analytic and usually exponentially localized in space and time [1,46]. The Hirota bilinear method [3,15] is among the most effective approaches to soliton solutions. Suppose that P is a polynomial in x , y , and t . Then a Hirota bilinear differential equation in (2+1)-dimensions can be defined by

$$P(D_x, D_y, D_t)f \cdot f = 0,$$

where D_x , D_y , and D_t are Hirota's bilinear derivatives [15]. An associated partial differential equation (PDE) with a dependent variable u is often

Received March 1, 2019; accepted June 3, 2020

Corresponding authors: Wen-Xiu MA, Sumayah BATWA

E-mail: mawx@cas.usf.edu, sbatwa@kau.edu.sa

determined by some logarithmic transformation of

$$u = 2(\log f)_x, \quad u = 2(\log f)_{xx}.$$

Within the Hirota bilinear formulation, an N -soliton solution (see, e.g., [14]) is presented via

$$f = \sum_{\mu=0,1} \exp \left(\sum_{i=1}^N \mu_i \xi_i + \sum_{i < j} \mu_i \mu_j a_{ij} \right),$$

where $\sum_{\mu=0,1}$ is the sum over all possibilities for $\mu_1, \mu_2, \dots, \mu_N$ taking either 0 or 1, and the wave variables and the phase shifts are given by

$$\xi_i = k_i x + l_i y - \omega_i t + \xi_{i,0}, \quad 1 \leq i \leq N,$$

and

$$e^{a_{ij}} = -\frac{P(k_i - k_j, l_i - l_j, \omega_j - \omega_i)}{P(k_i + k_j, l_i + l_j, \omega_j + \omega_i)}, \quad 1 \leq i < j \leq N,$$

respectively. Here, the wave numbers k_i, l_i and the frequencies ω_i , $1 \leq i \leq N$, need to satisfy the associated dispersion relations

$$P(k_i, l_i, -\omega_i) = 0, \quad 1 \leq i \leq N,$$

but the phases shifts $\xi_{i,0}$, $1 \leq i \leq N$, are arbitrary constants.

It has been shown recently that lump solutions to integrable equations are remarkably varied, which can describe diverse wave phenomena. Lumps are rational solutions, which are analytic and localized in all directions in space (see, e.g., [42,43,51]), and they can also be derived from computing long wave limits of soliton equations (see, e.g., [49]). The KPI equation has abundant lump solutions (see, e.g., [27]), and its special lump solutions are constructed from its soliton solutions [44]. Other integrable equations which possess lump solutions contain the three-dimensional three-wave resonant interaction [18], the Davey-Stewartson II equation [49], the Ishimori-I equation [17], the BKP equation [11,59], and the KP equation with a self-consistent source [63]. Furthermore, nonintegrable equations can possess lump solutions, among which are a few generalized KP, BKP, KP-Boussinesq, Sawada-Kotera, Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko equations in $(2+1)$ -dimensions [6,7,24,31,37,39,65]. The crucial step in finding lump solutions is to construct positive quadratic function solutions to Hirota bilinear equations [42]. Then based on positive quadratic function solutions, the logarithmic transformations yield lump solutions to nonlinear PDEs.

In this paper, we would like to discuss a generalized Hietarinta-type fourth-order equation in $(2+1)$ -dimensional dispersive waves and determine its diverse lump solutions. The key is a Hirota bilinear form in the solution process (see, e.g., [26,42,43]). The considered Hietarinta-type nonlinear equation contains two fourth-order nonlinear terms and five second-order linear terms. Lump solutions will be determined via symbolic computation with Maple. Two

illustrative examples of the considered model equation will be made, together with specific lump solutions and their three-dimensional plots and density plots. Concluding remarks will be given finally in the last section.

2 A generalized Hietarinta-type equation

We would like to consider a generalized Hietarinta-type equation:

$$\begin{aligned} P(u) = & \alpha_1(6u_xu_{xx} + u_{xxxx}) + \alpha_2(3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt}) \\ & + \gamma_1u_{yt} + \gamma_2u_{xx} + \gamma_3u_{xt} + \gamma_4u_{xy} + \gamma_5u_{yy} \\ = & 0, \end{aligned} \quad (2.1)$$

where $v_x = u$, and the constants α_1 , α_2 , and γ_i , $1 \leq i \leq 5$, are generally arbitrary. The coefficient α_2 corresponds to a Hietarinta-type nonlinear term studied in [13]. We will see that this nonlinear term creates the complexity of presenting lump solutions, and the corresponding constant term in the solution of the associated Hirota bilinear equation is very complicated.

It is straightforward to check that through the logarithmic transformations

$$u = 2(\log f)_x, \quad v = 2\log f, \quad (2.2)$$

the above generalized Hietarinta-type nonlinear equation (2.1) is linked with the following Hirota bilinear equation:

$$\begin{aligned} B(f) = & (\alpha_1D_x^4 + \alpha_2D_xD_t^3 + \gamma_1D_yD_t + \gamma_2D_x^2 \\ & + \gamma_3D_xD_t + \gamma_4D_xD_y + \gamma_5D_y^2)f \cdot f \\ = & 0, \end{aligned} \quad (2.3)$$

where D_x , D_y , and D_t are three Hirota bilinear derivatives. In fact, the connection between the nonlinear and bilinear equations reads

$$P(u) = \left(\frac{B(f)}{f^2} \right)_x,$$

when u , v , and f are determined by (2.2). The generalized Hietarinta-type equation (2.3) contains two types of fourth-order derivative terms and five second-order derivative terms. We will show that there exist abundant lump solutions to the generalized Hietarinta-type equation (2.3).

If we take

$$\alpha_1 = \gamma_1 = \gamma_2 = 0,$$

then the generalized Hietarinta-type equation (2.1) presents a reduced nonlinear equation:

$$\alpha_2(3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt}) + \gamma_3u_{xt} + \gamma_4u_{xy} + \gamma_5u_{yy} = 0,$$

which possesses a Hirota bilinear form

$$(\alpha_2 D_x D_t^3 + \gamma_3 D_x D_t + \gamma_4 D_x D_y + \gamma_5 D_y^2) f \cdot f = 0,$$

under (2.2), and an explicit lump solution in one case of this equation will be presented later.

If we take

$$\gamma_4 = \gamma_5 = 0,$$

then the generalized Hietarinta-type equation (2.1) gives another reduced nonlinear equation:

$$\alpha_1(6u_x u_{xx} + u_{xxxx}) + \alpha_2(3u_t u_{tt} + 3u_{xt} v_{tt} + u_{xttt}) + \gamma_1 u_{yt} + \gamma_2 u_{xx} + \gamma_3 u_{xt} = 0,$$

whose Hirota bilinear form is given by

$$(\alpha_1 D_x^4 + \alpha_2 D_x D_t^3 + \gamma_1 D_y D_t + \gamma_2 D_x^2 + \gamma_3 D_x D_t) f \cdot f = 0,$$

under (2.2). An example of lump solutions in one case of this equation will be presented later as well.

3 Lump solutions via symbolic computation

In this section, we would like to compute lump solutions to the generalized Hietarinta-type fourth-order nonlinear equation (2.1) via symbolic computations with Maple.

Using a general ansatz on lump solutions in (2+1)-dimensions [27], we start to determine positive quadratic solutions

$$f = (a_1 x + a_2 y + a_3 t + a_4)^2 + (a_5 x + a_6 y + a_7 t + a_8)^2 + a_9, \quad (3.1)$$

to the corresponding Hirota bilinear equation (2.3). The task is to conduct symbolic computations to determine the involved constant parameters a_i , $1 \leq i \leq 9$.

A direct computation with a Maple code can determine a set of solutions for the parameters:

$$\begin{aligned} a_3 &= -\frac{b_1}{(a_2 \gamma_1 + a_1 \gamma_3)^2 + (a_6 \gamma_1 + a_5 \gamma_3)^2}, \\ a_7 &= -\frac{b_2}{(a_2 \gamma_1 + a_1 \gamma_3)^2 + (a_6 \gamma_1 + a_5 \gamma_3)^2}, \\ a_9 &= \frac{\alpha_1 b_3 + \alpha_2 (b_{4,1} + b_{4,2} + b_{4,3})}{q}, \end{aligned} \quad (3.2)$$

and all other a_i 's are arbitrary. The involved seven constants of b_i , $b_{4,i}$, $1 \leq i \leq 3$, and q are given by

$$\begin{aligned} b_1 &= [(a_1^2 a_2 + 2 a_1 a_5 a_6 - a_2 a_5^2) \gamma_2 + a_1 (a_2^2 + a_6^2) \gamma_4 + a_2 (a_2^2 + a_6^2) \gamma_5] \gamma_1 \\ &\quad + [a_1 (a_1^2 + a_5^2) \gamma_2 + a_2 (a_1^2 + a_5^2) \gamma_4 + (a_1 a_2^2 + 2 a_2 a_5 a_6 - a_1 a_6^2) \gamma_5] \gamma_3, \end{aligned}$$

$$\begin{aligned}
b_2 &= [(-a_1^2 a_6 + 2 a_1 a_2 a_5 + a_5^2 a_6) \gamma_2 + a_5 (a_2^2 + a_6^2) \gamma_4 + a_6 (a_2^2 + a_6^2) \gamma_5] \gamma_1 \\
&\quad + [a_5 (a_1^2 + a_5^2) \gamma_2 + a_6 (a_1^2 + a_5^2) \gamma_4 + (-a_2^2 a_5 + 2 a_1 a_2 a_6 + a_5 a_6^2) \gamma_5] \gamma_3, \\
b_3 &= -3(a_1^2 + a_5^2)^4 \gamma_3^4 - 12(a_1^2 + a_5^2)^3 (a_1 a_2 + a_5 a_6) \gamma_1 \gamma_3^3 - 6(a_1^2 + a_5^2)^2 p_1 \gamma_1^2 \gamma_3 \\
&\quad - 12(a_2^2 + a_6^2) (a_1^2 + a_5^2)^2 (a_1 a_2 + a_5 a_6) \gamma_1^3 \gamma_3 - 3(a_2^2 + a_6^2)^2 (a_1^2 + a_5^2)^2 \gamma_1^4, \\
b_{4,1} &= 3(a_2^2 + a_6^2)^2 p_2 \gamma_3 \gamma_5^3 + 3(a_2^2 + a_6^2)^3 (a_1 a_2 + a_5 a_6) \gamma_1 \gamma_5^3 \\
&\quad + 3(a_2^2 + a_6^2) (a_1 a_2 + a_5 a_6) p_3 \gamma_3 \gamma_4 \gamma_5^2 + 3(a_2^2 + a_6^2)^2 p_1 \gamma_1 \gamma_4 \gamma_5^2 \\
&\quad + p_4 \gamma_2 \gamma_3 \gamma_5^2 + 3(a_2^2 + a_6^2) (a_1 a_2 + a_5 a_6) p_3 \gamma_1 \gamma_2 \gamma_5^2, \\
b_{4,2} &= 3(a_2^2 + a_6^2) (a_1^2 + a_5^2) p_3 \gamma_3 \gamma_4^2 \gamma_5 + 9(a_2^2 + a_6^2)^2 (a_1^2 + a_5^2) \\
&\quad \cdot (a_1 a_2 + a_5 a_6) \gamma_1 \gamma_4^2 \gamma_5 + 6(a_1^2 + a_5^2) (a_1 a_2 + a_5 a_6) p_3 \gamma_2 \gamma_3 \gamma_4 \gamma_5 \\
&\quad + 6(a_2^2 + a_6^2) (a_1^2 + a_5^2) p_3 \gamma_1 \gamma_2 \gamma_4 \gamma_5 + 9(a_1^2 + a_5^2)^2 p_2 \gamma_2^2 \gamma_3 \gamma_5 \\
&\quad + 3(a_1^2 + a_5^2) (a_1 a_2 + a_5 a_6) p_3 \gamma_1 \gamma_2^2 \gamma_5, \\
b_{4,3} &= 3(a_2^2 + a_6^2) (a_1^2 + a_5^2)^2 (a_1 a_2 + a_5 a_6) \gamma_3 \gamma_4^3 + 3(a_2^2 + a_6^2)^2 (a_1^2 + a_5^2)^2 \gamma_1 \gamma_4^3 \\
&\quad + 3(a_1^2 + a_5^2)^2 p_1 \gamma_2 \gamma_3 \gamma_4^2 + 9(a_2^2 + a_6^2) (a_1^2 + a_5^2)^2 (a_1 a_2 + a_5 a_6) \gamma_1 \gamma_2 \gamma_4^2 \\
&\quad + 9(a_1^2 + a_5^2)^3 (a_1 a_2 + a_5 a_6) \gamma_2^2 \gamma_3 \gamma_4 + 3(a_1^2 + a_5^2)^2 p_1 \gamma_1 \gamma_2^2 \gamma_4 \\
&\quad + 3(a_1^2 + a_5^2)^4 \gamma_2^3 \gamma_3 + 3(a_1^2 + a_5^2)^3 (a_1 a_2 + a_5 a_6) \gamma_1 \gamma_2^3,
\end{aligned} \tag{3.3}$$

and

$$\begin{aligned}
q &= (a_1^2 + a_5^2) (a_1 a_6 - a_2 a_5)^2 \gamma_3^4 \gamma_5 + 2(a_1 a_2 + a_5 a_6) (a_1 a_6 - a_2 a_5)^2 \gamma_1 \gamma_3^3 \gamma_5 \\
&\quad + (a_2^2 + a_6^2) (a_1 a_6 - a_2 a_5)^2 \gamma_1^2 \gamma_3^2 \gamma_5 - (a_1^2 + a_5^2) (a_1 a_6 - a_2 a_5)^2 \gamma_1 \gamma_3^3 \gamma_4 \\
&\quad + p_5 \gamma_1^2 \gamma_3^2 \gamma_4 - (a_2^2 + a_6^2) (a_1 a_6 - a_2 a_5)^2 \gamma_1^3 \gamma_3 \gamma_4 \\
&\quad + (a_1^2 + a_5^2) (a_1 a_6 - a_2 a_5)^2 \gamma_1^2 \gamma_2 \gamma_3^2 + 2(a_1 a_2 + a_5 a_6) (a_1 a_6 - a_2 a_5)^2 \gamma_1^3 \gamma_2 \gamma_3 \\
&\quad + (a_2^2 + a_6^2) (a_1 a_6 - a_2 a_5)^2 \gamma_1^4 \gamma_2,
\end{aligned} \tag{3.4}$$

where for brevity, we define five polynomials p_i , $1 \leq i \leq 5$, as follows:

$$\begin{aligned}
p_1 &= 3a_1^2 a_2^2 + a_1^2 a_6^2 + 4a_1 a_2 a_5 a_6 + a_2^2 a_5^2 + 3a_5^2 a_6^2, \\
p_2 &= (a_1 a_2 - a_1 a_6 + a_2 a_5 + a_5 a_6) (a_1 a_2 + a_1 a_6 - a_2 a_5 + a_5 a_6), \\
p_3 &= 3a_1^2 a_2^2 - a_1^2 a_6^2 + 8a_1 a_2 a_5 a_6 - a_2^2 a_5^2 + 3a_5^2 a_6^2, \\
p_4 &= 9a_1^4 a_2^4 - 6a_1^4 a_2^2 a_6^2 + 9a_1^4 a_6^4 + 48a_1^3 a_2^3 a_5 a_6 - 48a_1^3 a_2 a_5 a_6^3 \\
&\quad - 6a_1^2 a_2^4 a_5^2 + 132a_1^2 a_2^2 a_5^2 a_6^2 - 6a_1^2 a_5^2 a_6^4 - 48a_1 a_2^3 a_5^3 a_6 \\
&\quad + 48a_1 a_2 a_5^3 a_6^3 + 9a_2^4 a_5^4 - 6a_2^2 a_5^2 a_6^2 + 9a_5^4 a_6^4, \\
p_5 &= -2a_1^3 a_2 a_6^2 + 4a_1^2 a_2^2 a_5 a_6 - 2a_1^2 a_5 a_6^3 - 2a_1 a_2^3 a_5^2 + 4a_1 a_2 a_5^2 a_6^2 - 2a_2^2 a_5^3 a_6.
\end{aligned} \tag{3.5}$$

The constant $b_{4,1}$ consists of terms involving γ_5^3 and γ_5^2 ; the constant $b_{4,2}$, γ_5 ; and the constant $b_{4,3}$, γ_5^0 . The above solutions for a_3 and a_7 represent abundant

dispersion relations in $(2+1)$ -dimensional dispersive waves, and the solution for a_9 exhibits a very complicated coefficient in quadratic solutions f to Hirota bilinear equations, special reductions of which will be made in the next section.

We point out that all the above expressions for the wave frequencies and the constant term in (3.2)–(3.5) have been presented through direct simplifications with Maple. To generate lump solutions, besides $a_9 > 0$ to guarantee the analyticity of rational solutions, we require only one basic condition:

$$a_1 a_6 - a_2 a_5 \neq 0,$$

which implies the localization of rational solutions in all spatial directions.

4 Specific reductions

4.1 Case of $\gamma_1 = \gamma_2 = 0$

We consider the case of

$$\gamma_1 = \gamma_2 = 0, \quad \gamma_3 = \gamma_4 = \gamma_5 = 1.$$

The corresponding generalized Hietarinta-type nonlinear equation and bilinear equation read

$$\alpha_1(6u_x u_{xx} + u_{xxxx}) + \alpha_2(3u_t u_{tt} + 3u_{xt} v_{tt} + u_{xttt})u_{xt} + u_{xy} + u_{yy} = 0,$$

where $v_x = u$, and

$$(\alpha_1 D_x^4 + \alpha_2 D_x D_t^3 + D_x D_t + D_x D_y + D_y^2) f \cdot f = 0,$$

respectively. The reduced frequencies and constant coefficient are

$$\begin{aligned} a_3 &= -\frac{a_1^2 a_2 + a_1 a_2^2 - a_1 a_6^2 + a_2 a_5^2 + 2a_2 a_5 a_6}{a_1^2 + a_5^2}, \\ a_7 &= -\frac{a_1^2 a_6 - a_2^2 a_5 + a_5^2 a_6 + a_5 a_6^2 + 2a_1 a_2 a_6}{a_1^2 + a_5^2}, \\ a_9 &= -\frac{3(a_1^2 + a_5^2)^4 \alpha_1 - b_4 \alpha_2}{(a_1^2 + a_5^2)(a_1 a_6 - a_2 a_5)^2}, \end{aligned}$$

where

$$\begin{aligned} b_4 &= 3(a_2^2 + a_6^2)[(a_1 + a_2)^2 + (a_5 + a_6)^2][a_1^3 a_2 + (a_2^2 + a_5 a_6 - a_6^2) a_1^2 \\ &\quad + a_2 a_5 (a_5 + 4a_6) a_1 - a_5^2 (a_2^2 - a_5 a_6 - a_6^2)]. \end{aligned}$$

4.2 Case of $\gamma_1 = \gamma_4 = 0$

We consider the case of

$$\gamma_1 = \gamma_4 = 0, \quad \gamma_2 = \gamma_3 = \gamma_5 = 1.$$

The corresponding generalized Hietarinta-type nonlinear equation and bilinear equation read

$$\alpha_1(6u_xu_{xx} + u_{xxxx}) + \alpha_2(3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt})u_{xx} + u_{xt} + u_{yy} = 0,$$

where $v_x = u$, and

$$(\alpha_1 D_x^4 + \alpha_2 D_x D_t^3 + D_x^2 + D_x D_t + D_y^2) f \cdot f = 0,$$

respectively. The reduced frequencies and constant coefficient are

$$\begin{aligned} a_3 &= -\frac{a_1^3 + a_1 a_2^2 + a_1 a_6^2 - a_1 a_6^2 + 2a_2 a_5 a_6}{a_1^2 + a_5^2}, \\ a_7 &= -\frac{a_1^2 a_5 - a_2^2 a_5 + a_5^3 + a_5 a_6^2 + 2a_1 a_2 a_6}{a_1^2 + a_5^2}, \\ a_9 &= -\frac{3(a_1^2 + a_5^2)^4 \alpha_1 - b_4 \alpha_2}{(a_1^2 + a_5^2)(a_1 a_6 - a_2 a_5)^2}, \end{aligned}$$

where

$$\begin{aligned} b_4 &= 3[a_1^4 + (a_2^2 + 2a_5^2 - a_6^2)a_1^2 + 4a_2 a_5 a_6 a_1 - a_5^2(a_2^2 - a_5^2 - a_6^2)] \\ &\quad \cdot [(a_1 - a_6)^2 + (a_2 + a_5)^2][(a_1 + a_6)^2 + (a_2 - a_5)^2]. \end{aligned}$$

4.3 Case of $\gamma_2 = \gamma_4 = 0$

We consider the case of

$$\gamma_2 = \gamma_4 = 0, \quad \gamma_1 = \gamma_3 = \gamma_5 = 1.$$

The corresponding generalized Hietarinta-type nonlinear equation and bilinear equation read

$$\alpha_1(6u_xu_{xx} + u_{xxxx}) + \alpha_2(3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt})u_{yt} + u_{xt} + u_{yy} = 0,$$

where $v_x = u$, and

$$(\alpha_1 D_x^4 + \alpha_2 D_x D_t^3 + D_y D_t + D_x D_t + D_y^2) f \cdot f = 0,$$

respectively. The reduced frequencies and constant coefficient are

$$\begin{aligned} a_3 &= -\frac{a_1 a_2^2 - a_1 a_6^2 + a_2^3 + 2a_2 a_5 a_6 + a_2 a_6^2}{(a_1 + a_2)^2 + (a_5 + a_6)^2}, \\ a_7 &= -\frac{2a_1 a_2 a_6 - a_2^2 a_5 + a_2^2 a_6 + a_5 a_6^2 + a_6^3}{(a_1 + a_2)^2 + (a_5 + a_6)^2}, \\ a_9 &= \frac{b_3 \alpha_1 + b_4 \alpha_2}{[(a_1 + a_2)^2 + (a_5 + a_6)^2](a_1 a_6 - a_2 a_5)^2}, \end{aligned}$$

where

$$\begin{aligned}
b_3 = & -3a_1^8 - 12a_1^7a_2 - 18\left(a_2^2 + \frac{2}{3}a_5^2 + \frac{2}{3}a_5a_6 + \frac{1}{3}a_6^2\right)a_1^6 \\
& - 12a_2(a_2^2 + 3a_5^2 + 2a_5a_6 + a_6^2)a_1^5 - 3[6a_5^4 + 12a_5^3a_6 + (14a_2^2 + 10a_6^2)a_5^2 \\
& + (4a_6a_2^2 + 4a_6^3)a_5 + (a_2^2 + a_6^2)^2]a_1^4 - 24a_5^2\left(a_2^2 + \frac{3}{2}a_5^2 + 2a_5a_6 + a_6^2\right)a_2a_1^3 \\
& - [12a_5^6 + 36a_6a_5^5 + (30a_2^2 + 42a_6^2)a_5^4 + 24a_6(a_2^2 + a_6^2)a_5^3 \\
& + 6(a_2^2 + a_6^2)^2a_5^2]a_1^2 - 3[4a_5^6 + 8a_6a_5^5 + 4(a_2^2 + a_6^2)a_5^4]a_2a_1 \\
& - 3a_5[a_5^7 + 4a_6a_5^6 + 2(a_2^2 + 3a_6^2)a_5^5 + 4a_6(a_2^2 + a_6^2)a_5^4 + (a_2^2 + a_6^2)^2a_5^3], \\
b_4 = & 3(a_2^2 - a_6^2)(a_2^2 + a_6^2)^2a_1^2 + 3[4a_6(a_2^2 + a_6^2)^2a_5 + (a_2^2 + a_6^2)^3]a_2a_1 \\
& - 3a_5[(a_2^2 - a_6^2)(a_2^2 + a_6^2)^2a_5 - a_6(a_2^2 + a_6^2)^3].
\end{aligned}$$

4.4 Case of $\gamma_2 = \gamma_5 = 0$

We consider the case of

$$\gamma_2 = \gamma_5 = 0, \quad \gamma_1 = \gamma_3 = \gamma_4 = 1.$$

The corresponding generalized Hietarinta-type nonlinear equation and bilinear equation read

$$\alpha_1(6u_xu_{xx} + u_{xxxx}) + \alpha_2(3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt})u_{yt} + u_{xt} + u_{xy} = 0,$$

where $v_x = u$, and

$$(\alpha_1D_x^4 + \alpha_2D_xD_t^3 + D_yD_t + D_xD_t + D_xD_y)f \cdot f = 0,$$

respectively. The reduced frequencies and constant coefficient are

$$\begin{aligned}
a_3 = & -\frac{(a_1^2 + a_5^2)a_2 + (a_2^2 + a_6^2)a_1}{(a_1 + a_2)^2 + (a_5 + a_6)^2}, \\
a_7 = & -\frac{(a_1^2 + a_5^2)a_6 + (a_2^2 + a_6^2)a_5}{(a_1 + a_2)^2 + (a_5 + a_6)^2},
\end{aligned}$$

$$\begin{aligned}
a_9 = & 3\{[(a_1 + a_2)^2 + (a_5 + a_6)^2]^2\alpha_1 - (a_2^2 + a_6^2)[(a_1 + a_2)a_2 + (a_5 + a_6)a_6]\alpha_2\} \\
& \cdot (a_1^2 + a_5^2)^2\{[(a_1 + a_2)^2 + (a_5 + a_6)^2](a_1a_6 - a_2a_5)^2\}^{-1}.
\end{aligned}$$

4.5 Case of $\gamma_3 = \gamma_4 = 0$

We consider the case of

$$\gamma_3 = \gamma_4 = 0, \quad \gamma_1 = \gamma_2 = \gamma_5 = 1.$$

The corresponding generalized Hietarinta-type nonlinear equation and bilinear equation read

$$\alpha_1(6u_xu_{xx} + u_{xxxx}) + \alpha_2(3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt})u_{yt} + u_{xx} + u_{yy} = 0,$$

where $v_x = u$, and

$$(\alpha_1 D_x^4 + \alpha_2 D_x D_t^3 + D_y D_t + D_x^2 + D_y^2) f \cdot f = 0,$$

respectively. The reduced frequencies and constant coefficient are

$$\begin{aligned} a_3 &= -\frac{a_2^3 + a_1^2 a_2 - a_2 a_5^2 + a_2 a_6^2 + 2a_1 a_5 a_6}{a_2^2 + a_6^2}, \\ a_7 &= -\frac{a_6^3 - a_1^2 a_6 + a_2^2 a_6 + a_5^2 a_6 + 2a_1 a_2 a_5}{a_2^2 + a_6^2}, \\ a_9 &= -\frac{3(a_1^2 + a_5^2)^2 (a_2^2 + a_6^2)^2 \alpha_1 - b_4 \alpha_2}{(a_2^2 + a_6^2)(a_1 a_6 - a_2 a_5)^2}, \end{aligned}$$

where

$$\begin{aligned} b_4 &= 3(a_1 a_2 + a_5 a_6)[(a_1 + a_6)^2 + (a_2 - a_5)^2] \\ &\quad \cdot [(a_1 - a_6)^2 + (a_2 + a_5)^2] (a_1^2 + a_2^2 + a_5^2 + a_6^2). \end{aligned}$$

4.6 Case of $\gamma_3 = \gamma_5 = 0$

We consider the case of

$$\gamma_3 = \gamma_5 = 0, \quad \gamma_1 = \gamma_2 = \gamma_4 = 1.$$

The corresponding generalized Hietarinta-type nonlinear equation and bilinear equation read

$$\alpha_1(6u_x u_{xx} + u_{xxxx}) + \alpha_2(3u_t u_{tt} + 3u_{xt} v_{tt} + u_{xtt})u_{yt} + u_{xx} + u_{xy} = 0,$$

where $v_x = u$, and

$$(\alpha_1 D_x^4 + \alpha_2 D_x D_t^3 + D_y D_t + D_x^2 + D_x D_y) f \cdot f = 0,$$

respectively. The reduced frequencies and constant coefficient are

$$\begin{aligned} a_3 &= -\frac{(a_1^2 - a_5^2)a_2 + (a_2^2 + a_6^2)a_1 + 2a_1 a_5 a_6}{a_2^2 + a_6^2}, \\ a_7 &= -\frac{(a_5^2 - a_1^2)a_6 + (a_2^2 + a_6^2)a_5 + 2a_1 a_2 a_5}{a_2^2 + a_6^2}, \\ a_9 &= -\frac{3(a_1^2 + a_5^2)^2 (a_2^2 + a_6^2)^2 \alpha_1 - b_4 \alpha_2}{(a_2^2 + a_6^2)(a_1 a_6 - a_2 a_5)^2}, \end{aligned}$$

where

$$b_4 = 3[(a_1 + a_2)^2 + (a_5 + a_6)^2][(a_1 + a_2)a_2 + (a_5 + a_6)a_6](a_1^2 + a_5^2)^2.$$

4.7 Case of $\gamma_4 = \gamma_5 = 0$

We consider the case of

$$\gamma_4 = \gamma_5 = 0, \quad \gamma_1 = \gamma_2 = \gamma_3 = 1.$$

The corresponding generalized Hietarinta-type nonlinear equation and bilinear equation read

$$\alpha_1(6u_xu_{xx} + u_{xxxx}) + \alpha_2(3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt})u_{yt} + u_{xx} + u_{xt} = 0,$$

where $v_x = u$, and

$$(\alpha_1 D_x^4 + \alpha_2 D_x D_t^3 + D_y D_t + D_x^2 + D_x D_t) f \cdot f = 0,$$

respectively. The reduced frequencies and constant coefficient are

$$a_3 = -\frac{(a_1 + a_2)a_1^2 + (a_1 - a_2)a_5^2 + 2a_1 a_5 a_6}{(a_1 + a_2)^2 + (a_5 + a_6)^2},$$

$$a_7 = -\frac{(a_5 + a_6)a_5^2 + (a_5 - a_6)a_1^2 + 2a_1 a_2 a_5}{(a_1 + a_2)^2 + (a_5 + a_6)^2},$$

$$a_9 = -3\{[(a_1 + a_2)^2 + (a_5 + a_6)^2]^2 \alpha_1 - (a_1^2 + a_5^2)[a_1(a_1 + a_2) + a_5(a_5 + a_6)]\alpha_2\} (a_1^2 + a_5^2)^2 \{[(a_1 + a_2)^2 + (a_5 + a_6)^2](a_1 a_6 - a_2 a_5)^2\}^{-1}.$$

5 Two illustrative examples

Let us first choose

$$\alpha_1 = \gamma_1 = \gamma_2 = 0, \quad \alpha_2 = \gamma_3 = \gamma_4 = \gamma_5 = 1,$$

which leads to a specific generalized Hietarinta-type nonlinear equation

$$3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xttt} + u_{xt} + u_{xy} + u_{yy} = 0, \quad (5.1)$$

where $v_x = u$. This has a Hirota bilinear form

$$(D_x D_t^3 + D_x D_t + D_x D_y + D_y^2) f \cdot f = 0,$$

under the logarithmic transformations in (2.2).

Based on the previous computation in Subsection 4.1, we know that there are lump solutions if we guarantee

$$a_1^3 a_2 + a_5^3 a_6 + (a_1^2 - a_5^2)(a_2^2 - a_6^2) + a_1(a_1 a_6 + a_2 a_5 + 4a_2 a_6)a_5 > 0,$$

so that $a_9 > 0$.

Upon further taking

$$a_1 = 3, \quad a_2 = 2, \quad a_4 = a_6 = 1, \quad a_5 = -1, \quad a_8 = -3,$$

the transformations in (2.2) with (3.1) present a pair of lump solutions to the first specific generalized Hietarinta-type nonlinear equation (5.1):

$$u_1 = \frac{4(-5t + 10x + 5y + 6)}{(-\frac{5}{2}t + 3x + 2y + 1)^2 + (-\frac{5}{2}t - x + y - 3)^2 + 75}.$$

Three three-dimensional plots and density plots of the lump solution u_1 at three different times are made by using Maple in Figure 1.

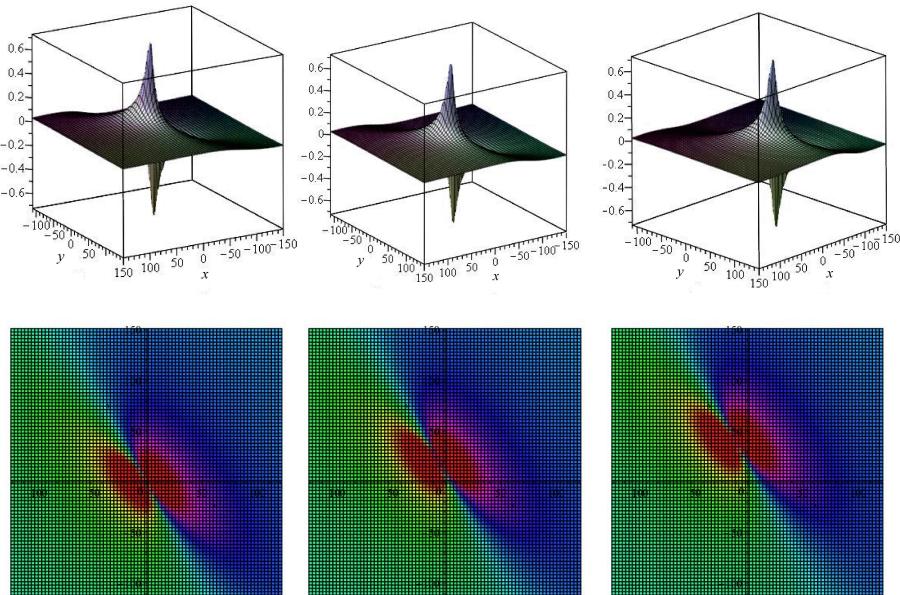


Fig. 1 Profiles of u_1 when $t = 0, 10, 20$: 3d plots (top) and density plots (bottom)

Let us second choose

$$\gamma_4 = \gamma_5 = 0, \quad \alpha_1 = \alpha_2 = \gamma_1 = \gamma_2 = \gamma_3 = 1,$$

which leads to another specific generalized Hietarinta-type nonlinear equation

$$u_{xxxx} + 6u_xu_{xx} + 3u_tu_{tt} + 3u_{xt}v_{tt} + u_{xtt} + u_{yt} + u_{xx} + u_{xt} = 0, \quad (5.2)$$

where $v_x = u$. This has a Hirota bilinear form

$$(D_x^4 + D_xD_t^3 + D_yD_t + D_x^2 + D_xD_t)f \cdot f = 0,$$

under the logarithmic transformations in (2.2).

Based on the previous computation in Subsection 4.7, we know that there are lump solutions if we guarantee

$$[(a_1 + a_2)^2 + (a_5 + a_6)^2]^2 - (a_1^2 + a_5^2)[a_1(a_1 + a_2) + a_5(a_5 + a_6)] < 0,$$

so that $a_9 > 0$.

Upon further taking

$$a_1 = -3, \quad a_2 = 2, \quad a_4 = -2, \quad a_5 = -1, \quad a_6 = 1, \quad a_8 = 6,$$

the transformations in (2.2) with (3.1) present a pair of lump solutions to the second specific generalized Hietarinta-type nonlinear equation (5.2):

$$u_2 = \frac{4(-30t + 10x - 7y)}{(8t - 3x + 2y - 2)^2 + (6t - x + y + 6)^2 + 8700}.$$

Similarly, three three-dimensional plots and density plots of the lump solution u_2 at three different times are made through Maple in Figure 2.

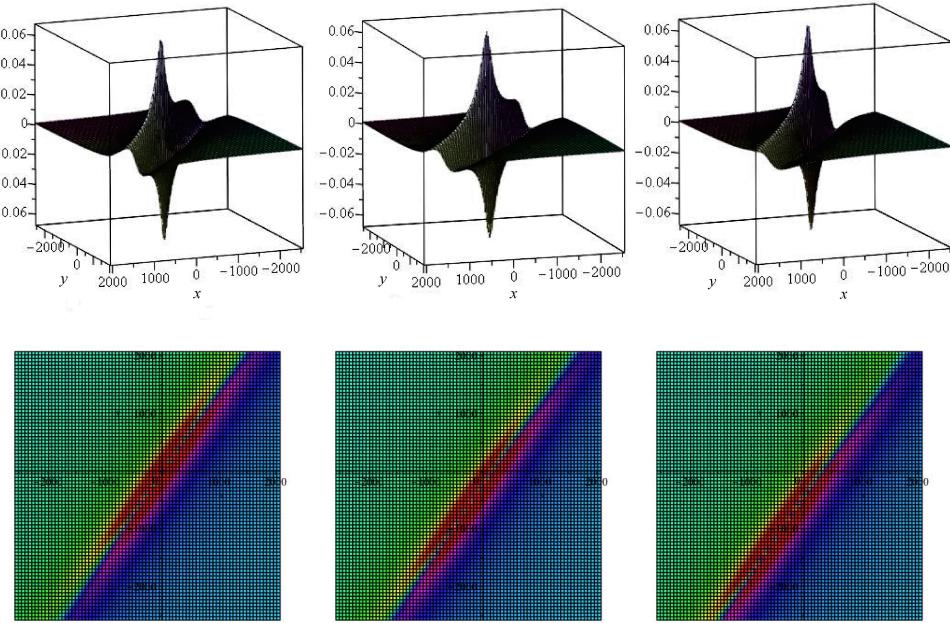


Fig. 2 Profiles of u_2 when $t = 0, 50, 100$: 3d plots (top) and density plots (bottom)

6 Concluding remarks

With Maple symbolic computation, we have shown that the Hietarinta-type fourth-order nonlinear term can create lump solutions, together with second-order dispersive terms. The resulting lump solutions were explicitly presented

in terms of the coefficients in the considered model equation. Our analysis provides another example of nonlinear partial differential equations in dispersive waves, which possess lump solutions. Specific reductions were also made and two illustrative examples were given, together with their 3d plots and density plots at three different times.

We point out that the adopted ansatz on lump solutions is increasingly being used in computations of exact solutions (see, e.g., [4,5,16,57]), and all such solutions obtained this way provide valuable insights into other solution methods in soliton theory, which include the Wronskian technique (see, e.g., [40,56]), Darboux transformations (see, e.g., [58,61,68]), the generalized bilinear approach (see, e.g., [25]), the multiple-wave expansion approach (see, e.g., [22,30]), the Riemann-Hilbert technique (see, e.g., [29]), symmetry reductions (see, e.g., [9,23,48,54]), and symmetry constraints (see, e.g., [20,21,38] for the continuous case and [8,35] for the discrete case).

We also mention that on one hand, various recent studies exhibit the striking richness of lump solutions to both linear PDEs [30,33,34], and nonlinear PDEs in $(2+1)$ -dimensions (see, e.g., [36,45,47,55,64,67], and [41] with higher-order rational dispersion relations) and $(3+1)$ -dimensions (see, e.g., [10,12,28,50,60,66]). Based on the Hirota bilinear form and the generalized bilinear forms, some more generic formulations have also been presented for lump solutions [2,42,43]. On the other hand, different classes of homoclinic and heteroclinic interaction solutions between lumps and other kinds of dispersive waves (see, e.g., [19,32,39,52,53,62]) have been generated for integrable equations in $(2+1)$ -dimensions.

Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11975145, 11972291), the National Science Foundation (DMS-1664561), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17KJB110020).

References

1. Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM, 1981
2. Batwa S, Ma W X. A study of lump-type and interaction solutions to a $(3+1)$ -dimensional Jimbo-Miwa-like equation. *Comput Math Appl*, 2018, 76: 1576–1582
3. Caudrey P J. Memories of Hirota's method: application to the reduced Maxwell-Bloch system in the early 1970s. *Philos Trans Roy Soc A*, 2011, 369: 1215–1227
4. Chen S J, Ma W X, Lü X. Bäcklund transformation, exact solutions and interaction behaviour of the $(3+1)$ -dimensional Hirota-Satsuma-Ito-like equation. *Commun Nonlinear Sci Numer Simul*, 2020, 83: 105135
5. Chen S J, Yin Y H, Ma W X, Lü X. Abundant exact solutions and interaction phenomena of the $(2+1)$ -dimensional YTSF equation. *Anal Math Phys*, 2019, 9: 2329–2344
6. Chen S T, Ma W X. Lumps solutions to a generalized Calogero-Bogoyavlenskii-Schiff equation. *Comput Math Appl*, 2018, 76: 1680–1685

7. Chen S T, Ma W X. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. *Front Math China*, 2018, 13: 525–534
8. Dong H H, Zhang Y, Zhang X E. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation. *Commun Nonlinear Sci Numer Simul*, 2016, 36: 354–365
9. Dorizzi B, Grammaticos B, Ramani A, Winternitz P. Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? *J Math Phys*, 1986, 27: 2848–2852
10. Gao L N, Zi Y Y, Yin Y H, Ma W X, Lü X. Bäcklund transformation, multiple wave solutions and lump solutions to a $(3+1)$ -dimensional nonlinear evolution equation. *Nonlinear Dynam*, 2017, 89(3): 2233–2240
11. Gilson C R, Nimmo J J C. Lump solutions of the BKP equation. *Phys Lett A*, 1990, 147: 472–476
12. Harun-Or-Roshid, Ali M Z. Lump solutions to a Jimbo-Miwa like equation. *arXiv*: 1611.04478
13. Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition I-KdV-type bilinear equations. *J Math Phys*, 1987, 28: 1732–1742
14. Hietarinta J. Introduction to the Hirota bilinear method. In: Kosmann-Schwarzbach Y, Grammaticos B, Tamizhmani K M, eds. *Integrability of Nonlinear Systems*. Berlin: Springer, 1997, 95–103
15. Hirota R. *The Direct Method in Soliton Theory*. New York: Cambridge Univ Press, 2004
16. Hua Y F, Guo B L, Ma W X, Lü X. Interaction behavior associated with a generalized $(2+1)$ -dimensional Hirota bilinear equation for nonlinear waves. *Appl Math Model*, 2019, 74: 184–198
17. Imai K. Dromion and lump solutions of the Ishimori-I equation. *Prog Theor Phys*, 1997, 98: 1013–1023
18. Kaup D J. The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. *J Math Phys*, 1981, 22: 1176–1181
19. Kofane T C, Fokou M, Mohamadou A, Yomba E. Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. *Eur Phys J Plus*, 2017, 132: 465
20. Konopelchenko B, Strampp W. The AKNS hierarchy as symmetry constraint of the KP hierarchy. *Inverse Problems*, 1991, 7: L17–L24
21. Li X Y, Zhao Q L. A new integrable symplectic map by the binary nonlinearization to the super AKNS system. *J Geom Phys*, 2017, 121: 123–137
22. Liu J G, Zhou L, He Y. Multiple soliton solutions for the new $(2+1)$ -dimensional Korteweg-de Vries equation by multiple exp-function method. *Appl Math Lett*, 2018, 80: 71–78
23. Liu M S, Li X Y, Zhao Q L. Exact solutions to Euler equation and Navier-Stokes equation. *Z Angew Math Phys*, 2019, 70: 43
24. Lü X, Chen S T, Ma W X. Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. *Nonlinear Dynam*, 2016, 86: 523–534
25. Lü X, Ma W X, Chen S T, Khalique C M. A note on rational solutions to a Hirota-Satsuma-like equation. *Appl Math Lett*, 2016, 58: 13–18
26. Lü X, Ma W X, Zhou Y, Khalique C M. Rational solutions to an extended Kadomtsev-Petviashvili like equation with symbolic computation. *Comput Math Appl*, 2016, 71: 1560–1567
27. Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. *Phys Lett A*, 2015, 379: 1975–1978
28. Ma W X. Lump-type solutions to the $(3+1)$ -dimensional Jimbo-Miwa equation. *Int J Nonlinear Sci Numer Simul*, 2016, 17: 355–359
29. Ma W X. Riemann-Hilbert problems and N -soliton solutions for a coupled mKdV system. *J Geom Phys*, 2018, 132: 45–54
30. Ma W X. Abundant lumps and their interaction solutions of $(3+1)$ -dimensional linear PDEs. *J Geom Phys*, 2018, 133: 10–16

31. Ma W X. A search for lump solutions to a combined fourth-order nonlinear PDE in (2 + 1)-dimensions. *J Appl Anal Comput*, 2019, 9: 1319–1332
32. Ma W X. Interaction solutions to Hirota-Satsuma-Ito equation in (2 + 1)-dimensions. *Front Math China*, 2019, 14: 619–629
33. Ma W X. Lump and interaction solutions of linear PDEs in (3 + 1)-dimensions. *East Asian J Appl Math*, 2019, 9: 185–194
34. Ma W X. Lump and interaction solutions to linear PDEs in (2 + 1)-dimensions via symbolic computation. *Modern Phys Lett B*, 2019, 33: 1950457
35. Ma W X, Geng X G. Bäcklund transformations of soliton systems from symmetry constraints. *CRM Proc Lecture Notes*, 2011, 29: 313–323
36. Ma W X, Li J, Khalique C M. A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2 + 1)-dimensions. *Complexity*, 2018, 2018: 9059858
37. Ma W X, Qin Z Y, Lü X. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. *Nonlinear Dynam*, 2016, 84: 923–931
38. Ma W X, Strampp W. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. *Phys Lett A*, 1994, 185: 277–286
39. Ma W X, Yong X L, Zhang H Q. Diversity of interaction solutions to the (2 + 1)-dimensional Ito equation. *Comput Math Appl*, 2018, 75: 289–295
40. Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. *Trans Amer Math Soc*, 2005, 357: 1753–1778
41. Ma W X, Zhang L Q. Lump solutions with higher-order rational dispersion relations. *Pramana-J Phys*, 2020, 94: 43
42. Ma W X, Zhou Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. *J Differential Equations*, 2018, 264: 2633–2659
43. Ma W X, Zhou Y, Dougherty R. Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. *Internat J Modern Phys B*, 2016, 30: 1640018
44. Manakov S V, Zakharov V E, Bordag L A, Matveev V B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. *Phys Lett A*, 1977, 63: 205–206
45. Manukure S, Zhou Y, Ma W X. Lump solutions to a (2 + 1)-dimensional extended KP equation. *Comput Math Appl*, 2018, 75: 2414–2419
46. Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E. *Theory of Solitons—The Inverse Scattering Method*. New York: Consultants Bureau, 1984
47. Ren B, Ma W X, Yu J. Characteristics and interactions of solitary and lump waves of a (2 + 1)-dimensional coupled nonlinear partial differential equation. *Nonlinear Dynam*, 2019, 96: 717–727
48. Ren Y W, Tao M S, Dong H H, Yang H W. Analytical research of (3 + 1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach. *Adv Difference Equ*, 2019, 2019: 13
49. Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. *J Math Phys*, 1979, 20: 1496–1503
50. Sun Y, Tian B, Xie X Y, Chai J, Yin H M. Rogue waves and lump solitons for a (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. *Waves Random Complex Media*, 2018, 28: 544–552
51. Tan W, Dai H P, Dai Z D, Zhong W Y. Emergence and space-time structure of lump solution to the (2 + 1)-dimensional generalized KP equation. *Pramana-J Phys*, 2017, 89: 77
52. Tang Y N, Tao S Q, Guan Q. Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. *Comput Math Appl*, 2016, 72: 2334–2342
53. Tang Y N, Tao S Q, Zhou M L, Guan Q. Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. *Nonlinear Dynam*, 2017, 89: 429–442

54. Wang D S, Yin Y B. Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach. *Comput Math Appl*, 2016, 71: 748–757
55. Wang H. Lump and interaction solutions to the $(2+1)$ -dimensional Burgers equation. *Appl Math Lett*, 2018, 85: 27–34
56. Wu J P, Geng X G. Novel Wronskian condition and new exact solutions to a $(3+1)$ -dimensional generalized KP equation. *Commun Theor Phys (Beijing)*, 2013, 60: 556–560
57. Xu H N, Ruan W R, Zhang Y, Lü X. Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. *Appl Math Lett*, 2020, 99: 105976
58. Xu X X. A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation. *Appl Math Comput*, 2015, 251: 275–283
59. Yang J Y, Ma W X. Lump solutions of the BKP equation by symbolic computation. *Internat J Modern Phys B*, 2016, 30: 1640028
60. Yang J Y, Ma W X. Abundant lump-type solutions of the Jimbo-Miwa equation in $(3+1)$ -dimensions. *Comput Math Appl*, 2017, 73: 220–225
61. Yang Q Q, Zhao Q L, Li X Y. Explicit solutions and conservation laws for a new integrable lattice hierarchy. *Complexity*, 2019, 2019: 5984356
62. Yin Y H, Ma W X, Liu J G, Lü X. Diversity of exact solutions to a $(3+1)$ -dimensional nonlinear evolution equation and its reduction. *Comput Math Appl*, 2018, 76: 1225–1283
63. Yong X L, Ma W X, Huang Y H, Liu Y. Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source. *Comput Math Appl*, 2018, 75: 3414–3419
64. Yu J P, Sun Y L. Study of lump solutions to dimensionally reduced generalized KP equations. *Nonlinear Dynam*, 2017, 87: 2755–2763
65. Zhang H Q, Ma W X. Lump solutions to the $(2+1)$ -dimensional Sawada-Kotera equation. *Nonlinear Dynam*, 2017, 87: 2305–2310
66. Zhang Y, Liu Y P, Tang X Y. M -lump solutions to a $(3+1)$ -dimensional nonlinear evolution equation. *Comput Math Appl*, 2018, 76: 592–601
67. Zhao Z L, He L C, Gao Y B. Rogue wave and multiple lump solutions of the $(2+1)$ -dimensional Benjamin-Ono equation in fluid mechanics. *Complexity*, 2019, 2019: 8249635
68. Zhong Y D, Zhao Q L, Li X Y. Explicit solutions to a coupled integrable lattice equation. *Appl Math Lett*, 2019, 98: 359–364