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Abstract Lump solutions are one of important solutions to partial differential
equations, both linear and nonlinear. This paper aims to show that a Hietarinta-
type fourth-order nonlinear term can create lump solutions with second-order
linear dispersive terms. The key is a Hirota bilinear form. Lump solutions
are constructed via symbolic computations with Maple, and specific reductions
of the resulting lump solutions are made. Two illustrative examples of the
generalized Hietarinta-type nonlinear equations and their lumps are presented,
together with three-dimensional plots and density plots of the lump solutions.
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1 Introduction

Soliton solutions to integrable equations are analytic and usually exponentially
localized in space and time [1,46]. The Hirota bilinear method [3,15] is
among the most effective approaches to soliton solutions. Suppose that P is a
polynomial in x, y, and t. Then a Hirota bilinear differential equation in (2+1)-
dimensions can be defined by

P (Dx, Dy, Dt)f · f = 0,

where Dx, Dy, and Dt are Hirota’s bilinear derivatives [15]. An associated
partial differential equation (PDE) with a dependent variable u is often
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determined by some logarithmic transformation of

u = 2(log f)x, u = 2(log f)xx.

Within the Hirota bilinear formulation, an N -soliton solution (see, e.g., [14]) is
presented via

f =
∑
µ=0,1

exp

( N∑
i=1

µiξi +
∑
i<j

µiµjaij

)
,

where
∑

µ=0,1 is the sum over all possibilities for µ1, µ2, . . . , µN taking either 0
or 1, and the wave variables and the phase shifts are given by

ξi = kix+ liy − ωit+ ξi,0, 1 6 i 6 N,

and

eaij = −P (ki − kj , li − lj , ωj − ωi)
P (ki + kj , li + lj , ωj + ωi)

, 1 6 i < j 6 N,

respectively. Here, the wave numbers ki, li and the frequencies ωi, 1 6 i 6 N,
need to satisfy the associated dispersion relations

P (ki, li,−ωi) = 0, 1 6 i 6 N,

but the phases shifts ξi,0, 1 6 i 6 N, are arbitrary constants.
It has been shown recently that lump solutions to integrable equations are

remarkably varied, which can describe diverse wave phenomena. Lumps are
rational solutions, which are analytic and localized in all directions in space
(see, e.g., [42,43,51]), and they can also be derived from computing long wave
limits of soliton equations (see, e.g., [49]). The KPI equation has abundant
lump solutions (see, e.g., [27]), and its special lump solutions are constructed
from its soliton solutions [44]. Other integrable equations which possess lump
solutions contain the three-dimensional three-wave resonant interaction [18],
the Davey-Stewartson II equation [49], the Ishimori-I equation [17], the BKP
equation [11,59], and the KP equation with a self-consistent source [63].
Furthermore, nonintegrable equations can possess lump solutions, among which
are a few generalized KP, BKP, KP-Boussinesq, Sawada-Kotera, Calogero-
Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko equations in (2 + 1)-
dimensions [6,7,24,31,37,39,65]. The crucial step in finding lump solutions is to
construct positive quadratic function solutions to Hirota bilinear equations [42].
Then based on positive quadratic function solutions, the logarithmic
transformations yield lump solutions to nonlinear PDEs.

In this paper, we would like to discuss a generalized Hietarinta-type fourth-
order equation in (2+1)-dimensional dispersive waves and determine its diverse
lump solutions. The key is a Hirota bilinear form in the solution process (see,
e.g., [26,42,43]). The considered Hietarinta-type nonlinear equation contains
two fourth-order nonlinear terms and five second-order linear terms. Lump
solutions will be determined via symbolic computation with Maple. Two
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illustrative examples of the considered model equation will be made, together
with specific lump solutions and their three-dimensional plots and density plots.
Concluding remarks will be given finally in the last section.

2 A generalized Hietarinta-type equation

We would like to consider a generalized Hietarinta-type equation:

P (u) = α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)

+ γ1uyt + γ2uxx + γ3uxt + γ4uxy + γ5uyy

= 0, (2.1)

where vx = u, and the constants α1, α2, and γi, 1 6 i 6 5, are generally
arbitrary. The coefficient α2 corresponds to a Hietarinta-type nonlinear term
studied in [13]. We will see that this nonlinear term creates the complexity of
presenting lump solutions, and the corresponding constant term in the solution
of the associated Hirota bilinear equation is very complicated.

It is straightforward to check that through the logarithmic transformations

u = 2(log f)x, v = 2 log f, (2.2)

the above generalized Hietarinta-type nonlinear equation (2.1) is linked with
the following Hirota bilinear equation:

B(f) = (α1D
4
x + α2DxD

3
t + γ1DyDt + γ2D

2
x

+ γ3DxDt + γ4DxDy + γ5D
2
y)f · f

= 0, (2.3)

where Dx, Dy, and Dt are three Hirota bilinear derivatives. In fact, the
connection between the nonlinear and bilinear equations reads

P (u) =
(B(f)

f2

)
x
,

when u, v, and f are determined by (2.2). The generalized Hietarinta-type
equation (2.3) contains two types of fourth-order derivative terms and five
second-order derivative terms. We will show that there exist abundant lump
solutions to the generalized Hietarinta-type equation (2.3).

If we take
α1 = γ1 = γ2 = 0,

then the generalized Hietarinta-type equation (2.1) presents a reduced nonlinear
equation:

α2(3ututt + 3uxtvtt + uxttt) + γ3uxt + γ4uxy + γ5uyy = 0,
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which possesses a Hirota bilinear form

(α2DxD
3
t + γ3DxDt + γ4DxDy + γ5D

2
y)f · f = 0,

under (2.2), and an explicit lump solution in one case of this equation will be
presented later.

If we take
γ4 = γ5 = 0,

then the generalized Hietarinta-type equation (2.1) gives another reduced non-
linear equation:

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt) + γ1uyt + γ2uxx + γ3uxt = 0,

whose Hirota bilinear form is given by

(α1D
4
x + α2DxD

3
t + γ1DyDt + γ2D

2
x + γ3DxDt)f · f = 0,

under (2.2). An example of lump solutions in one case of this equation will be
presented later as well.

3 Lump solutions via symbolic computation

In this section, we would like to compute lump solutions to the generalized
Hietarinta-type fourth-order nonlinear equation (2.1) via symbolic computa-
tions with Maple.

Using a general ansatz on lump solutions in (2+1)-dimensions [27], we start
to determine positive quadratic solutions

f = (a1x+ a2y + a3t+ a4)
2 + (a5x+ a6y + a7t+ a8)

2 + a9, (3.1)

to the corresponding Hirota bilinear equation (2.3). The task is to conduct
symbolic computations to determine the involved constant parameters ai, 1 6
i 6 9.

A direct computation with a Maple code can determine a set of solutions
for the parameters:

a3 = − b1
(a2γ1 + a1γ3)2 + (a6γ1 + a5γ3)2

,

a7 = − b2
(a2γ1 + a1γ3)2 + (a6γ1 + a5γ3)2

,

a9 =
α1b3 + α2(b4,1 + b4,2 + b4,3)

q
,

(3.2)

and all other ai’s are arbitrary. The involved seven constants of bi, b4,i, 1 6 i 6
3, and q are given by

b1 = [(a21a2 + 2 a1a5a6 − a2a25)γ2 + a1(a
2
2 + a26)γ4 + a2(a

2
2 + a26)γ5]γ1

+ [a1(a
2
1 + a25)γ2 + a2(a

2
1 + a25)γ4 + (a1a

2
2 + 2 a2a5a6 − a1a26)γ5]γ3,
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b2 = [(−a21a6 + 2 a1a2a5 + a25a6)γ2 + a5(a
2
2 + a26)γ4 + a6(a

2
2 + a26)γ5]γ1

+ [a5(a
2
1 + a25)γ2 + a6(a

2
1 + a25)γ4 + (−a22a5 + 2 a1a2a6 + a5a

2
6)γ5]γ3,

b3 = − 3(a21 + a25)
4γ43 − 12(a21 + a25)

3(a1a2 + a5a6)γ1γ
3
3 − 6(a21 + a25)

2p1γ
2
1γ

2
3

− 12(a22 + a26)(a
2
1 + a25)

2(a1a2 + a5a6)γ
3
1γ3 − 3(a22 + a26)

2(a21 + a25)
2γ41 ,

b4,1 = 3(a22 + a26)
2p2γ3γ

3
5 + 3(a2

2 + a6
2)3(a1a2 + a5a6)γ1γ

3
5

+ 3(a22 + a26)(a1a2 + a5a6)p3γ3γ4γ
2
5 + 3(a22 + a26)

2p1γ1γ4γ
2
5

+ p4γ2γ3γ
2
5 + 3(a22 + a26)(a1a2 + a5a6)p3γ1γ2γ

2
5 ,

b4,2 = 3(a22 + a26)(a
2
1 + a25)p3γ3γ

2
4γ5 + 9(a22 + a26)

2(a21 + a25)

· (a1a2 + a5a6)γ1γ
2
4γ5 + 6(a21 + a25)(a1a2 + a5a6)p3γ2γ3γ4γ5

+ 6(a22 + a26)(a
2
1 + a25)p3γ1γ2γ4γ5 + 9(a21 + a25)

2p2γ
2
2γ3γ5

+ 3(a21 + a25)(a1a2 + a5a6)p3γ1γ
2
2γ5,

b4,3 = 3(a22 + a26)(a
2
1 + a25)

2(a1a2 + a5a6)γ3γ
3
4 + 3(a22 + a26)

2(a21 + a25)
2γ1γ

3
4

+ 3(a21 + a25)
2p1γ2γ3γ

2
4 + 9(a22 + a26)(a

2
1 + a25)

2(a1a2 + a5a6)γ1γ2γ
2
4

+ 9(a21 + a25)
3(a1a2 + a5a6)γ

2
2γ3γ4 + 3(a21 + a25)

2p1γ1γ
2
2γ4

+ 3(a21 + a25)
4γ32γ3 + 3(a21 + a25)

3(a1a2 + a5a6)γ1γ
3
2 ,

(3.3)

and

q = (a21 + a25)(a1a6 − a2a5)2γ43γ5 + 2(a1a2 + a5a6)(a1a6 − a2a5)2γ1γ33γ5
+ (a22 + a26)(a1a6 − a2a5)2γ21γ23γ5 − (a21 + a25)(a1a6 − a2a5)2γ1γ33γ4
+ p5γ

2
1γ

2
3γ4 − (a22 + a26)(a1a6 − a2a5)2γ31γ3γ4

+ (a21 + a25)(a1a6 − a2a5)2γ21γ2γ23 + 2(a1a2 + a5a6)(a1a6 − a2a5)2γ31γ2γ3
+ (a22 + a26)(a1a6 − a2a5)2γ41γ2, (3.4)

where for brevity, we define five polynomials pi, 1 6 i 6 5, as follows:

p1 = 3a21a
2
2 + a21a

2
6 + 4a1a2a5a6 + a22a

2
5 + 3a25a

2
6,

p2 = (a1a2 − a1a6 + a2a5 + a5a6)(a1a2 + a1a6 − a2a5 + a5a6),

p3 = 3a1
2a22 − a21a26 + 8a1a2a5a6 − a22a25 + 3a25a

2
6,

p4 = 9a41a
4
2 − 6a41a

2
2a

2
6 + 9a41a

4
6 + 48a31a

3
2a5a6 − 48a31a2a5a

3
6 (3.5)

− 6a21a
4
2a

2
5 + 132a21a

2
2a

2
5a

2
6 − 6a21a

2
5a

4
6 − 48a1a

3
2a

3
5a6

+ 48a1a2a
3
5a

3
6 + 9a42a

4
5 − 6a22a

4
5a

2
6 + 9a45a

4
6,

p5 = −2a31a2a
2
6 + 4a21a

2
2a5a6 − 2a21a5a

3
6 − 2a1a

3
2a

2
5 + 4a1a2a

2
5a

2
6 − 2a22a

3
5a6.

The constant b4,1 consists of terms involving γ35 and γ25 ; the constant b4,2, γ5;
and the constant b4,3, γ

0
5 . The above solutions for a3 and a7 represent abundant
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dispersion relations in (2 + 1)-dimensional dispersive waves, and the solution
for a9 exhibits a very complicated coefficient in quadratic solutions f to Hirota
bilinear equations, special reductions of which will be made in the nest section.

We point out that all the above expressions for the wave frequencies and the
constant term in (3.2)–(3.5) have been presented through direct simplifications
with Maple. To generate lump solutions, besides a9 > 0 to guarantee the
analyticity of rational solutions, we require only one basic condition:

a1a6 − a2a5 6= 0,

which implies the localization of rational solutions in all spatial directions.

4 Specific reductions

4.1 Case of γ1 = γ2 = 0

We consider the case of

γ1 = γ2 = 0, γ3 = γ4 = γ5 = 1.

The corresponding generalized Hietarinta-type nonlinear equation and bilinear
equation read

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)uxt + uxy + uyy = 0,

where vx = u, and

(α1D
4
x + α2DxD

3
t +DxDt +DxDy +D2

y)f · f = 0,

respectively. The reduced frequencies and constant coefficient are

a3 = −a
2
1a2 + a1a

2
2 − a1a26 + a2a

2
5 + 2a2a5a6

a21 + a25
,

a7 = −a
2
1a6 − a22a5 + a25a6 + a5a

2
6 + 2a1a2a6

a21 + a25
,

a9 = − 3(a21 + a25)
4α1 − b4α2

(a21 + a25)(a1a6 − a2a5)2
,

where

b4 = 3(a22 + a26)[(a1 + a2)
2 + (a5 + a6)

2][a31a2 + (a22 + a5a6 − a26)a21
+ a2a5(a5 + 4a6)a1 − a25(a22 − a5a6 − a26)].

4.2 Case of γ1 = γ4 = 0

We consider the case of

γ1 = γ4 = 0, γ2 = γ3 = γ5 = 1.
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The corresponding generalized Hietarinta-type nonlinear equation and bilinear
equation read

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)uxx + uxt + uyy = 0,

where vx = u, and

(α1D
4
x + α2DxD

3
t +D2

x +DxDt +D2
y)f · f = 0,

respectively. The reduced frequencies and constant coefficient are

a3 = −a
3
1 + a1a

2
2 + a1a

2
5 − a1a26 + 2a2a5a6

a21 + a25
,

a7 = −a
2
1a5 − a22a5 + a35 + a5a

2
6 + 2a1a2a6

a21 + a25
,

a9 = − 3(a21 + a25)
4α1 − b4α2

(a21 + a25)(a1a6 − a2a5)2
,

where

b4 = 3[a41 + (a22 + 2a25 − a26)a21 + 4a2a5a6a1 − a25(a22 − a25 − a26)]
· [(a1 − a6)2 + (a2 + a5)

2][(a1 + a6)
2 + (a2 − a5)2].

4.3 Case of γ2 = γ4 = 0

We consider the case of

γ2 = γ4 = 0, γ1 = γ3 = γ5 = 1.

The corresponding generalized Hietarinta-type nonlinear equation and bilinear
equation read

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)uyt + uxt + uyy = 0,

where vx = u, and

(α1D
4
x + α2DxD

3
t +DyDt +DxDt +D2

y)f · f = 0,

respectively. The reduced frequencies and constant coefficient are

a3 = −a1a
2
2 − a1a26 + a32 + 2a2a5a6 + a2a

2
6

(a1 + a2)2 + (a5 + a6)2
,

a7 = −2a1a2a6 − a22a5 + a22a6 + a5a
2
6 + a36

(a1 + a2)2 + (a5 + a6)2
,

a9 =
b3α1 + b4α2

[(a1 + a2)2 + (a5 + a6)2](a1a6 − a2a5)2
,
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where

b3 = − 3a81 − 12a71a2 − 18
(
a22 +

2

3
a25 +

2

3
a5a6 +

1

3
a26

)
a61

− 12a2(a
2
2 + 3a25 + 2a5a6 + a26)a

5
1 − 3[6a45 + 12a35a6 + (14a22 + 10a26)a

2
5

+ (4a6a
2
2 + 4a36)a5 + (a22 + a26)

2]a41 − 24a25

(
a22 +

3

2
a25 + 2a5a6 + a26

)
a2a

3
1

− [12a65 + 36a6a
5
5 + (30a22 + 42a26)a

4
5 + 24a6(a

2
2 + a26)a

3
5

+ 6(a22 + a26)
2a25]a

2
1 − 3[4a65 + 8a6a

5
5 + 4(a22 + a26)a

4
5]a2a1

− 3a5[a
7
5 + 4a6a

6
5 + 2(a22 + 3a26)a

5
5 + 4a6(a

2
2 + a26)a

4
5 + (a22 + a26)

2a35],

b4 = 3(a22 − a26)(a22 + a26)
2a21 + 3[4a6(a

2
2 + a26)

2a5 + (a22 + a26)
3]a2a1

− 3a5[(a
2
2 − a26)(a22 + a26)

2a5 − a6(a22 + a26)
3].

4.4 Case of γ2 = γ5 = 0

We consider the case of

γ2 = γ5 = 0, γ1 = γ3 = γ4 = 1.

The corresponding generalized Hietarinta-type nonlinear equation and bilinear
equation read

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)uyt + uxt + uxy = 0,

where vx = u, and

(α1D
4
x + α2DxD

3
t +DyDt +DxDt +DxDy)f · f = 0,

respectively. The reduced frequencies and constant coefficient are

a3 = −(a21 + a25)a2 + (a22 + a26)a1
(a1 + a2)2 + (a5 + a6)2

,

a7 = −(a21 + a25)a6 + (a22 + a26)a5
(a1 + a2)2 + (a5 + a6)2

,

a9 = 3{[(a1 + a2)
2 + (a5 + a6)

2]2α1 − (a22 + a26)[(a1 + a2)a2 + (a5 + a6)a6]α2}
· (a21 + a25)

2{[(a1 + a2)
2 + (a5 + a6)

2](a1a6 − a2a5)2}−1.

4.5 Case of γ3 = γ4 = 0

We consider the case of

γ3 = γ4 = 0, γ1 = γ2 = γ5 = 1.

The corresponding generalized Hietarinta-type nonlinear equation and bilinear
equation read

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)uyt + uxx + uyy = 0,
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where vx = u, and

(α1D
4
x + α2DxD

3
t +DyDt +D2

x +D2
y)f · f = 0,

respectively. The reduced frequencies and constant coefficient are

a3 = −a
3
2 + a21a2 − a2a25 + a2a

2
6 + 2a1a5a6

a22 + a26
,

a7 = −a
3
6 − a21a6 + a22a6 + a25a6 + 2a1a2a5

a22 + a26
,

a9 = −3(a21 + a25)
2(a22 + a26)

2α1 − b4α2

(a22 + a26)(a1a6 − a2a5)2
,

where
b4 = 3(a1a2 + a5a6)[(a1 + a6)

2 + (a2 − a5)2]
· [(a1 − a6)2 + (a2 + a5)

2](a21 + a22 + a25 + a26).

4.6 Case of γ3 = γ5 = 0

We consider the case of

γ3 = γ5 = 0, γ1 = γ2 = γ4 = 1.

The corresponding generalized Hietarinta-type nonlinear equation and bilinear
equation read

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)uyt + uxx + uxy = 0,

where vx = u, and

(α1D
4
x + α2DxD

3
t +DyDt +D2

x +DxDy)f · f = 0,

respectively. The reduced frequencies and constant coefficient are

a3 = −(a21 − a25)a2 + (a22 + a26)a1 + 2a1a5a6
a22 + a26

,

a7 = −(a25 − a21)a6 + (a22 + a26)a5 + 2a1a2a5
a22 + a26

,

a9 = −3(a21 + a25)
2(a22 + a26)

2α1 − b4α2

(a22 + a26)(a1a6 − a2a5)2
,

where

b4 = 3[(a1 + a2)
2 + (a5 + a6)

2][(a1 + a2)a2 + (a5 + a6)a6](a
2
1 + a25)

2.
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4.7 Case of γ4 = γ5 = 0

We consider the case of

γ4 = γ5 = 0, γ1 = γ2 = γ3 = 1.

The corresponding generalized Hietarinta-type nonlinear equation and bilinear
equation read

α1(6uxuxx + uxxxx) + α2(3ututt + 3uxtvtt + uxttt)uyt + uxx + uxt = 0,

where vx = u, and

(α1D
4
x + α2DxD

3
t +DyDt +D2

x +DxDt)f · f = 0,

respectively. The reduced frequencies and constant coefficient are

a3 = −(a1 + a2)a
2
1 + (a1 − a2)a25 + 2a1a5a6

(a1 + a2)2 + (a5 + a6)2
,

a7 = −(a5 + a6)a
2
5 + (a5 − a6)a21 + 2a1a2a5

(a1 + a2)2 + (a5 + a6)2
,

a9 = − 3{[(a1 + a2)
2 + (a5 + a6)

2]2α1 − (a21 + a25)[a1(a1 + a2)

+ a5(a5 + a6)]α2}(a21 + a25)
2{[(a1 + a2)

2 + (a5 + a6)
2](a1a6 − a2a5)2}−1.

5 Two illustrative examples

Let us first choose

α1 = γ1 = γ2 = 0, α2 = γ3 = γ4 = γ5 = 1,

which leads to a specific generalized Hietarinta-type nonlinear equation

3ututt + 3uxtvtt + uxttt + uxt + uxy + uyy = 0, (5.1)

where vx = u. This has a Hirota bilinear form

(DxD
3
t +DxDt +DxDy +D2

y)f · f = 0,

under the logarithmic transformations in (2.2).
Based on the previous computation in Subsection 4.1, we know that there

are lump solutions if we guarantee

a31a2 + a35a6 + (a21 − a25)(a22 − a26) + a1(a1a6 + a2a5 + 4a2a6)a5 > 0,

so that a9 > 0.



Lump solutions to a generalized Hietarinta-type equation 445

Upon further taking

a1 = 3, a2 = 2, a4 = a6 = 1, a5 = −1, a8 = −3,

the transformations in (2.2) with (3.1) present a pair of lump solutions to the
first specific generalized Hietarinta-type nonlinear equation (5.1):

u1 =
4(−5t+ 10x+ 5y + 6)

(−5
2 t+ 3x+ 2y + 1)2 + (−5

2 t− x+ y − 3)2 + 75
.

Three three-dimensional plots and density plots of the lump solution u1 at three
different times are made by using Maple in Figure 1.

Fig. 1 Profiles of u1 when t = 0, 10, 20: 3d plots (top) and density plots (bottom)

Let us second choose

γ4 = γ5 = 0, α1 = α2 = γ1 = γ2 = γ3 = 1,

which leads to another specific generalized Hietarinta-type nonlinear equation

uxxxx + 6uxuxx + 3ututt + 3uxtvtt + uxttt + uyt + uxx + uxt = 0, (5.2)

where vx = u. This has a Hirota bilinear form

(D4
x +DxD

3
t +DyDt +D2

x +DxDt)f · f = 0,

under the logarithmic transformations in (2.2).
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Based on the previous computation in Subsection 4.7, we know that there
are lump solutions if we guarantee

[(a1 + a2)
2 + (a5 + a6)

2]2 − (a21 + a25)[a1(a1 + a2) + a5(a5 + a6)] < 0,

so that a9 > 0.
Upon further taking

a1 = −3, a2 = 2, a4 = −2, a5 = −1, a6 = 1, a8 = 6,

the transformations in (2.2) with (3.1) present a pair of lump solutions to the
second specific generalized Hietarinta-type nonlinear equation (5.2):

u2 =
4(−30t+ 10x− 7y)

(8t− 3x+ 2y − 2)2 + (6t− x+ y + 6)2 + 8700
.

Similarly, three three-dimensional plots and density plots of the lump solution
u2 at three different times are made through Maple in Figure 2.

Fig. 2 Profiles of u2 when t = 0, 50, 100: 3d plots (top) and density plots (bottom)

6 Concluding remarks

With Maple symbolic computation, we have shown that the Hietarinta-type
fourth-order nonlinear term can create lump solutions, together with second-
order dispersive terms. The resulting lump solutions were explicitly presented
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in terms of the coefficients in the considered model equation. Our analysis
provides another example of nonlinear partial differential equations in dispersive
waves, which possess lump solutions. Specific reductions were also made and
two illustrative examples were given, together with their 3d plots and density
plots at three different times.

We point out that the adopted ansatz on lump solutions is increasingly
being used in computations of exact solutions (see, e.g., [4,5,16,57]), and all
such solutions obtained this way provide valuable insights into other solution
methods in soliton theory, which include the Wronskian technique (see, e.g.,
[40,56]), Darboux transformations (see, e.g., [58,61,68]), the generalized bilinear
approach (see, e.g., [25]), the multiple-wave expansion approach (see, e.g.,
[22,30]), the Riemann-Hilbert technique (see, e.g., [29]), symmetry reductions
(see, e.g., [9,23,48,54]), and symmetry constraints (see, e.g., [20,21,38] for the
continuous case and [8,35] for the discrete case).

We also mention that on one hand, various recent studies exhibit the
striking richness of lump solutions to both linear PDEs [30,33,34], and non-
linear PDEs in (2 + 1)-dimensions (see, e.g., [36,45,47,55,64,67], and [41] with
higher-order rational dispersion relations) and (3 + 1)-dimensions (see, e.g.,
[10,12,28,50,60,66]). Based on the Hirota bilinear form and the generalized
bilinear forms, some more generic formulations have also been presented for
lump solutions [2,42,43]. On the other hand, different classes of homoclinic
and heteroclinic interaction solutions between lumps and other kinds of
dispersive waves (see, e.g., [19,32,39,52,53,62]) have been generated for
integrable equations in (2 + 1)-dimensions.
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