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Abstract The multi-component nonlinear Schrödin-
ger equations (MNLS) are derived by extending the
single-component nonlinear Schrödinger equation to
multiple interactingfields. These equations often descr-
ibe the dynamics of wave packets in quantum mechan-
ics or nonlinear optics. In this paper, we investigate
MNLS equations via the Lie symmetry method. The
Lie infinitesimal symmetries of the MNLS equations
are derived by solving recursive determining equations,
and the symmetry reductions of the equations are given
by using symmetry variables. Moreover, some interest-
ing explicit solutions for the equations are constructed.
Finally, the conservation laws of the MNLS equations
are obtainedutilizing Ibragimov’smethodwith detailed
derivation.
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1 Introduction

Nonlinear Schrödinger equation is a classical field
equation. The standard nonlinear Schrödinger equation
[1] is

i pt + k1 pxx + k2|p|2 p = 0 (1)

for the complex field p = p(x, t), where k1, and k2 are
nonzero real numbers, representing the coefficients of
group velocity dispersion and self-phase modulation,
respectively. Various aspects related to the integrability
of (1) have been studied in [1–3].

The interaction of waves of different frequencies
gives rise to multi-component nonlinear Schrödinger
models. The MNLS equations are a very important
dynamical system in optics and mathematical physics
which are used to describe the simultaneous propaga-
tion of multi-nonlinear waves in a uniform medium
and have numerous applications in the areas of plasma
physics [4], quantum electronics [5], nonlinear optics
[6], Bose-Einstein condensates [7], and hydrodynamics
[8]. Recently, many studies have also emerged in fields
such as rogue oceanic waves [9], atmosphere [10], and
matter waves [11].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08833-9&domain=pdf
http://orcid.org/0000-0001-5911-3016


18440 Y.-S. Bai et al.

In this paper,we consider followingmulti-compone-
nt nonlinear Schrödinger equations [12,13] generalized
from equation (1):

p j,t = 1

2
i

⎡
⎣ p j,xx + 2

⎛
⎝

n∑
l=1

pl p
∗
l

⎞
⎠ p j

⎤
⎦ , 1 ≤ j ≤ n,

(2)

where subscripts x and t denote spatial and temporal
partial derivatives. Here we notice that some work has
been done for the system (2). The generalized Darboux
transformation for system (2) was derived in [13]. A
binary Darboux transformation of system (2) has been
carried out in [14] (see [12,15] for many other interest-
ing applications about system (2)). As far as we know,
Lie symmetries and conservation laws of the system
(2) have not been studied.

Exact solutions to nonlinear differential equations
play an important role in the proper understanding
of many nonlinear phenomena and processes in var-
ious areas of natural science. Currently, there are var-
ious methods used to solve nonlinear partial differen-
tial equations, such as the inverse scattering method
[16,17], Darboux transformation [18,19], Hirota bilin-
ear method [20,21], Lie symmetry group method [22–
26], and so on. Among them, the Lie symmetry method
provides powerful new ways to find exact solutions.
The method has applications for both ordinary and par-
tial differential equations and is not restricted to linear
equations [24].

Another important application of Lie symmetry
to physical problems is the construction of conser-
vation laws [27,28]. For given systems of differen-
tial equations arising from a Lagrangian formulation,
there exists a fundamental theorem due to E. Noether.
Noether proved that for every infinitesimal transfor-
mation which is admitted by the action integral of a
Lagrangian system, one can constructively find a con-
servation law. Noether’s method is the principal sys-
tematic procedure for constructing conservation laws
for complicated systems of partial differential equa-
tions. However, Noether’s theorem can be applied only
for differential equations with Lagrangian. Recently,
this method has been developed and appears to be fruit-
ful [27,29,30]. In particular, Ibragimov proposed a new
method to construct the conservation laws in [31,32]
based on the concept of a formal Lagrangian, and gave
the formula for constructing conservation laws. In this
paper, the Lie symmetry method is used to study the

system (2) including constructing explicit solutions,
and the conservation laws with Ibragimov’s method.

This paper has the following structure. In Sect. 2,
we will obtain the Lie point symmetry of the system
(2). In Sect. 3, we will derive the symmetry reductions
of (2) and construct exact solutions of (2). In Sect. 4,
we will give the conservation laws of (2). In Sect. 5,
we give summaries and discussions.

2 Lie symmetries

Lie symmetry analysis will be performed on the system
(2). We consider the complex-valued function p(x, t)
in the following form:

p j (x, t) = u j (x, t) + v j (x, t)i, 1 ≤ j ≤ n, (3)

where u j (x, t) and v j (x, t) are real-valued functions.
Substituting (3) into (2) and decomposing into real and
imaginary parts, we obtain

u j,t + 1

2
v j,xx +

[
n∑

l=1

(
u2l + v2l

)]
v j = 0,

1 ≤ j ≤ n, (4)

v j,t − 1

2
u j,xx −

[
n∑

l=1

(
u2l + v2l

)]
u j = 0,

1 ≤ j ≤ n. (5)

To find out the symmetries, we consider the Lie group
of point transformations

x∗ = x + ε ξ(x, t, u1, u2, . . . , un, v1, v2, . . . , vn) + O(ε2),

t∗ = t + ε τ(x, t, u1, u2, . . . , un, v1, v2, . . . , vn) + O(ε2),

u∗
j = u j + ε η j (x, t, u1, u2, . . . , un, v1, v2, . . . , vn)

+O(ε2), 1 ≤ j ≤ n,

v∗
j = v j + ε φ j (x, t, u1, u2, . . . , un, v1, v2, . . . , vn)

+O(ε2), 1 ≤ j ≤ n, (6)

where ε � 1 is a group parameter, and ξ, τ, η j , φ j are
the infinitesimals. The vector field corresponding to the
transformation group (6) is

V = ξ(x, t, u1, u2, . . . , un, v1, v2, . . . , vn)
∂

∂x

+τ(x, t, u1, u2, . . . , un, v1, v2, . . . , vn)
∂

∂t

+
n∑
j=1

η j (x, t, u1, u2, . . . , un, v1, v2, . . . , vn)
∂

∂u j

+
n∑
j=1

φ j (x, t, u1, u2, . . . , un, v1, v2, . . . , vn)
∂

∂v j
.

(7)
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Thevector field (7)will generate the symmetries ofEqs.
(4, 5). Equations (4, 5) involve second-order deriva-
tives; therefore, we need to prolong vector field V to
the second order. The second prolongation of V is

pr2 V = ξ
∂

∂x
+ τ

∂

∂t
+ η j

∂

∂u j

+φ j
∂

∂v j
+ η

(1)
j,t

∂

∂u j,t
+ φ

(1)
j,t

∂

∂v j,t

+η
(2)
j,xx

∂

∂u j,xx
+ φ

(2)
j,xx

∂

∂v j,xx
. (8)

To calculate the symmetries of (4)-(5), employ the sec-
ond prolongation (8) of the vector field (7) along with
invariance condition onto (4)-(5):

pr2 V (Δ1, j )|Δ1,1=0,Δ2,1=0,...,Δ1,n=0,Δ2,n=0, = 0,

1 ≤ j ≤ n,

pr2 V (Δ2, j )|Δ1,1=0,Δ2,1=0,...,Δ1,n=0,Δ2,n=0, = 0,

1 ≤ j ≤ n, (9)

where

Δ1, j = u j,t + 1

2
v j,xx +

[
n∑

l=1

( u2l + v2l )

]
v j ,

1 ≤ j ≤ n,

Δ2, j = v j,t − 1

2
u j,xx −

[
n∑

l=1

( u2l + v2l )

]
u j ,

1 ≤ j ≤ n. (10)

The system (9) can also be rewritten as

pr2 V (Δ1, j ) =
n∑

l=1

[ηl ∂

∂ul
+ φl

∂

∂vl
] + η

(1)
j,t

∂

∂u j,t

+φ
(2)
j,xx

∂

∂v j,xx
, 1 ≤ j ≤ n,

pr2 V (Δ2, j ) =
n∑

l=1

[ηl ∂

∂ul
+ φl

∂

∂vl
] + φ

(1)
j,t

∂

∂v j,t

+η
(2)
j,xx

∂

∂u j,xx
, 1 ≤ j ≤ n, (11)

where

η
(1)
j,t = Dt [η j − ξ u j,x − τ u j,t ] + ξ u j,xt + τ u j,t t ,

1 ≤ j ≤ n,

φ
(1)
j,t = Dt [φ j − ξ v j,x − τ v j,t ] + ξ v j,xt + τ v j,t t ,

1 ≤ j ≤ n,

η
(2)
j,xx = Dxx [η j − ξ u j,x − τ u j,t ] + ξ u j,xxx + τ u j,xxt ,

1 ≤ j ≤ n,

φ
(2)
j,xx = Dxx [φ j − ξ v j,x − τ v j,t ] + ξ v j,xxx + τ v j,xxt ,

1 ≤ j ≤ n, (12)

and Dx = ∂
∂x + u j,x

∂
∂u j

+ v j,x
∂

∂v j
+ u j,xt

∂
∂u j,t

+
u j,xx

∂
∂u j,x

+ · · · , Dt = ∂
∂t + u j,t

∂
∂u j

+ v j,t
∂

∂v j
+

u j,xt
∂

∂u j,x
+u j,t t

∂
∂u j,t

+· · · are the total derivative oper-
ators.

Combining (9) and (12),we get an equivalent system
of (9) as follows

2 v j [
n∑

l=1

(ulηl + vlφl)] +φ j

n∑
l=1

( u2l + v2l ) + η
(1)
j,t

+1

2
φ

(2)
j,xx = 0, 1 ≤ j ≤ n,

2 u j [
n∑

l=1

(ulηl + vlφl)] +η j

n∑
l=1

( u2l + v2l ) − φ
(1)
j,t

+1

2
η

(2)
j,xx = 0, 1 ≤ j ≤ n.

(13)

Substituting (12) into (13), we obtain the determining
equations with respect to ξ, τ, η j and φ j . Solving the
determining equations,wefind a nontrivial Lie groupof
transformation which is admitted by the system (4)-(5)
with the infinitesimal generators ( infinitesimal sym-
metries) given by

V1 = t
∂

∂x
+

n∑
j=1

(
u j x

∂

∂v j
− v j x

∂

∂u j

)
,

V2 = x
∂

∂x
+ 2 t

∂

∂t
−

n∑
j=1

(
u j

∂

∂u j
+ v j

∂

∂v j

)
,

V3 = ∂

∂x
, V4 = ∂

∂t
,

Vj+4 = u j
∂

∂v j
− v j

∂

∂u j
, 1 ≤ j ≤ n,

V1,lk = vl
∂

∂uk
− ul

∂

∂vk
+ vk

∂

∂ul
− uk

∂

∂vl
,

1 ≤ k ≤ l − 1 ; 2 ≤ l ≤ n,

V2,lk = −ul
∂

∂uk
− vl

∂

∂vk
+ uk

∂

∂ul
+ vk

∂

∂vl
,

1 ≤ k ≤ l − 1 ; 2 ≤ l ≤ n. (14)

3 Symmetry reductions and Exact solutions

In the following, we will give the symmetry reductions
and exact solutions of (4)-(5).
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Case 1: For the generator V1, the characteristic equa-
tions are
dx

t
= dt

0
= du1

−v1x
= dv1

u1x
= . . .= dun

−vnx
= dvn

unx
. (15)

Integration of the first equation of this system gives
the similarity variable α = t2. Using this similarity
variable, from (15) we have

u j (x, t) = Mj (α)cos

[
x2

2t
+ N j (α)

]
, 1 ≤ j ≤ n,

(16)

v j (x, t) = Mj (α)sin[ x
2

2t
+ N j (α)], 1 ≤ j ≤ n. (17)

Substituting (16) and (17) into (3), we obtain

p j (x, t) = Mj (α)exp{i[ x
2

2t
+ N j (α)]}, 1 ≤ j ≤ n,

(18)

where Mj and N j are fuctons of the similarity variable
α = t2.

Then substituting (16)-(17) into (4)-(5) leads to the
ordinary differential equations (ODEs)

4αM
′
j + Mj = 0, 1 ≤ j ≤ n,

4αMj N
′
j − 2

√
αMj

(
n∑

l=1

M2
l

)
= 0, 1 ≤ j ≤ n.

(19)

The general solutions of (19) are

Mj = 1

α
1
4

c j , 1 ≤ j ≤ n,

N j =
ln(α)(

n∑
l=1

c2l )

2
+ λ j , 1 ≤ j ≤ n, (20)

where c j and λ j are arbitrary constants.
Thus the exact solutions of the system (2) are given

by

p j (x, t) = c j

t
1
2
exp

⎧⎨
⎩i

⎡
⎣ x2

2t +
ln(t2)

(
n∑

l=1
c2l

)

2 + λ j

⎤
⎦
⎫⎬
⎭ ,

1 ≤ j ≤ n. (21)

For n = 1, we obtain exact solutions of (4)-(5)

u1(x, t) = c1

t
1
2

cos

[
x2

2t
+ ln(t2)c21

2
+ λ1

]
, (22)

v1(x, t) = c1

t
1
2

sin

[
x2

2t
+ ln(t2)c21

2
+ λ1

]
, (23)

Fig. 1 For n = 1, the special exact solutions of (4)-(5) with
c1 = 1 and λ1 = 5

where c1 and λ1 are arbitrary real constants.
Figure1 shows the dynamic characteristics of the

special exact solutions (22) and (23) with c1 = 1 and
λ1 = 5. And we find that u1 → 0, v1 → 0(t → +∞).

Case 2: For the generator V4 +
n∑
j=1

a j Vj+4, the char-

acteristic euqations are

dx

0
= dt

1
= du1

−a1v1
= dv1

a1u1
= · · · = dun

−anvn
= dvn

anun
.

(24)

Simple quadrature yields the similarity variable α =
x . Therefore, invariant solutions are of the form

u j (x, t) = Mj (α)cos[a j t + N j (α)], 1 ≤ j ≤ n,

(25)

v j (x, t) = Mj (α)sin[a j t + N j (α)], 1 ≤ j ≤ n.

(26)

Substituting (25), (26) into (3), we get

p j (x, t) = Mj (α)exp{i[a j t + N j (α)]}, 1 ≤ j ≤ n,

(27)

where Mj and N j are functions of the similarity vari-
able α = x .

Substituting (27) into system (2), we have

2M
′
j N

′
j + Mj N

′′
j = 0,

1 ≤ j ≤ n, (28)

M
′′
j − 2a j M j − Mj N

′2
j + 2Mj

(
n∑

l=1

M2
l

)
= 0,

1 ≤ j ≤ n. (29)

Equation (28) leads to

N
′
j = λ j

M2
j

, 1 ≤ j ≤ n, (30)

where λ j are arbitrary constants. Substituting (30) into
(29), we obtain

123



Lie symmetry analysis, exact solutions, and conservation 18443

M
′′
j − 2a j M j − Mj (

λ j

M2
j

)2 + 2Mj

(
n∑

l=1

M2
l

)
= 0,

1 ≤ j ≤ n. (31)

Thus the exact solutions of the system (2) are given
by

p j (x, t) = Mj (α)exp

{
i

[
a j t +

∫
λ j

M2
j

dα + γ j

]}
,

j = 1, . . . , n, (32)

where γ j are arbitrary constants, Mj are given by (31).

For n = 1, if a1 = λ1
k1

− k21
2 , we have

u1(x, t) =
√

λ1

k1
cos

[(
λ1

k1
− k21

2

)
t + k1x + γ1

]
,

(33)

v1(x, t) =
√

λ1

k1
sin

[(
λ1

k1
− k21

2

)
t + k1x + γ1

]
,

(34)

where k1, λ1 and γ1 are arbitrary real constants.
Figure2 shows the periodic waves via solutions (33)

and (34) with k1 = 2, λ1 = 4, γ1 = 5.
Figure3 shows the breather waves via solutions (33)

and (34) when taking a1 = 1, λ1 = 0 in (31).

Fig. 2 For n = 1, the periodic wave solutions of (4)-(5) with
k1 = 2, λ1 = 4 and γ1 = 5

Fig. 3 For n = 1, the breather wave solutions of (4)-(5) with
a1 = 1, λ1 = 0

Case 3: For the generator V2 +
n∑
j=1

a j Vj+4, the char-

acteristic equations

dx

x
= dt

2t
= du1

−u1 − a1v1
= dv1

a1u1 − v1
= . . .

= dun
−un − anvn

= dvn

anun − vn

(35)

provide the similarity variable α = xt− 1
2 .

We seek the invariant solutions in the form

u j (x, t) = t−
1
2 Mj (α)cos

[a j

2
lnt + N j (α)

]
,

1 ≤ j ≤ n,

(36)

v j (x, t) = t−
1
2 Mj (α) sin

[a j

2
lnt + N j (α)

]
,

1 ≤ j ≤ n.

(37)

Furthermore, we have

p j (x, t) = t−
1
2 Mj (α)exp

{
i
[a j

2
lnt + N j (α)

]}
,

1 ≤ j ≤ n,

(38)

whereMj and N j are fuctions of the similarity variable

α = xt− 1
2 .

Substituting (38) into (2), we have

Mj + αM
′
j − 2M

′
j N

′
j − Mj N

′′
j = 0,

1 ≤ j ≤ n, (39)

M
′′
j − Mj N

′2
j + αMj N

′
j − a j M j + 2Mj(

n∑
l=1

M2
l

)
= 0, 1 ≤ j ≤ n. (40)

From (39), we get

Mj = exp

{
−

∫ 1 − N
′′
j

α − 2N
′
j

dα + λ j

}
, 1 ≤ j ≤ n,

(41)

where λ j are arbitrary constants. And then (40) leads
to N j .

Thus the exact solutions of the system (2) are given
by

p j (x, t) = t−
1
2 exp

{
i
[a j

2
lnt + N j (α)

]

−
∫ 1 − N

′′
j

α − 2N
′
j

dα + λ j

}
, 1 ≤ j ≤ n,

(42)

where λ j are arbitrary constants, N j are given by (40).
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Fig. 4 For n = 1, the special exact solutions of (4)-(5) with
ek1 = 10 and λ1 = 5

For n = 1, if a1 = 2e2k1 , we get the explicit solu-
tions of (4)-(5)

u1(x, t) = t−
1
2 ek1cos

[
e2k1 lnt + (xt− 1

2 )2

2
+ λ1

]
,(43)

v1(x, t) = t−
1
2 ek1sin

[
e2k1 lnt + (xt− 1

2 )2

2
+ λ1

]
,(44)

where k1, λ1 and γ1 are arbitrary real constants.
Figure4 shows the dynamic characteristics of the

solutions (43) and (44). It is clear that u1 → 0, v1 →
0(t → +∞).

Case 4: For the generator V3 +aV4 +
n∑
j=1

b j Vj+4, the

characteristic system

dx

1
= dt

a
= du1

−b1v1
= dv1

b1u1
= . . .

= dun
−bnvn

= dvn

bnun
(45)

provides the similarity variable α = t − ax . Then
one seeks the solutions in the form

u j (x, t) = Mj (α)cos[b j x + N j (α)], 1 ≤ j ≤ n,

(46)

v j (x, t) = Mj (α)sin[b j x + N j (α)], 1 ≤ j ≤ n,

(47)

where Mj and N j are functions of α. Furthermore,
we obtain

p j (x, t) = Mj (α)exp{i[b j x + N j (α)]},
1 ≤ j ≤ n.

(48)

The after substituting (48) into (2), one obtains

2M
′
j (−1 + ab j − a2N

′
j ) − a2Mj N

′′
j = 0,

1 ≤ j ≤ n, (49)

a2M
′′
j − Mj

[
b2j − 2(−1 + ab j )N

′
j + a2N

′2
j

−2

(
n∑

l=1

M2
l

)]
= 0,

1 ≤ j ≤ n. (50)

From (49)-(50) we obtain

N
′
j = (−1 + ab j )M2

j − λ j

a2M2
j

, 1 ≤ j ≤ n, (51)

a2M
′′
j −Mj

[
b2j − 2(−1 + ab j )

(−1 + ab j )M2
j − λ j

a2M2
j

+a2
[

(−1 + ab j )M2
j − λ j

a2M2
j

]2

− 2

(
n∑

l=1

M2
l

)⎤
⎦ = 0,

1 ≤ j ≤ n. (52)

where λ j are arbitrary constants. Thus the exect solu-
tions of the system (2) are as follows:

p j (x, t) = Mj (α)exp

{i
[
b j x +

∫ (
(−1 + ab j )M2

j − λ j

a2M2
j

dα + γ j

)]
},

1 ≤ j ≤ n, (53)

where γ j are arbitrary constants.

Case 5: For the generator V3+aV4, we have similarity
variable α = ax − t, and the invariant solutions of the
form

u j (x, t) = Mj (α), 1 ≤ j ≤ n,

v j (x, t) = N j (α), 1 ≤ j ≤ n.
(54)

Then substituting the following equation

p j (x, t) = Mj (α) + i N j (α), 1 ≤ j ≤ n (55)

into systems (2), we get the following reduced system
for Mj and N j :

N j

[
n∑

l=1

(M2
l + N 2

l )

]
− M

′
j + 1

2
a2N

′′
j = 0,

1 ≤ j ≤ n,

Mj

[
n∑

l=1

(M2
l + N 2

l )

]
+ N

′
j + 1

2
a2M

′′
j = 0,

1 ≤ j ≤ n.

(56)

Case 6: For the generator V3, we have similarity vari-
able α = t, and the invariant solutions of the form

u j (x, t) = Mj (α), 1 ≤ j ≤ n,

v j (x, t) = N j (α), 1 ≤ j ≤ n.
(57)
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Then after substituting the following equations

p j (x, t) = Mj (α) + i N j (α), 1 ≤ j ≤ n (58)

into (2), we get the reduced system for Mj and N j :

Mj

[
n∑

l=1

(M2
l + N 2

l )

]
− N

′
j = 0, 1 ≤ j ≤ n,

N j

[
n∑

l=1

(M2
l + N 2

l )

]
+ M

′
j = 0, 1 ≤ j ≤ n.

(59)

Case 7: For the generator V4, we have similarity vari-
able α = x, and the invariant solutions of the form

u j (x, t) = Mj (α), 1 ≤ j ≤ n,

v j (x, t) = N j (α), 1 ≤ j ≤ n.
(60)

Substituting following equations

p j (x, t) = Mj (α) + i N j (α), 1 ≤ j ≤ n (61)

into (2), then the reduced system for Mj and N j are
given by

2 Mj

[
n∑

l=1

(M2
l + N 2

l )

]
+ M

′′
j = 0, 1 ≤ j ≤ n,

2 N j

[
n∑

l=1

(M2
l + N 2

l )

]
+ N

′′
j = 0, 1 ≤ j ≤ n.

(62)
4 Conservation laws

Now we use the obtained symmetries to construct the
conservation law of (4)-(5). In [31], Ibragimov pro-
posed a new conservation theorem, that is, constructing
conservation laws of differential equations that do not
require the existence of a Lagrangian.

Ibragimov’smethod is related to formal Lagrangian,
adjoint equations, and Lie symmetry. According to new
conservation theorem [31], the Lagrangian of system
(4)-(5) can be written as follows

L =
n∑
j=1

{
α j (x, t)

{
u j,t + 1

2
v j,xx +

[
n∑

l=1

( u2l + v2l )

]
v j

}

+β j (x, t)

{
v j,t − 1

2
u j,xx −

[
n∑

l=1

( u2l + v2l )

]
u j

}}
, (63)

where α j (x, t) and β j (x, t) are new dependent vari-
ables. The adjoint equations of system (4)-(5) have the
following form

P∗
j = δL

δu j
= 0, 1 ≤ j ≤ n,

Q∗
j = δL

δv j
= 0, 1 ≤ j ≤ n,

(64)

with

δL

δu j
= ∂L

∂u j
− Dt

∂L

∂u j,t
+ D2

x
∂L

∂u j,xx
, 1 ≤ j ≤ n,

δL

δv j
= ∂L

∂v j
− Dt

∂L

∂v j,t
+ D2

x
∂L

∂v j,xx
, 1 ≤ j ≤ n.

(65)

From (63) and (64), we obtain

P∗
j = 2u j

n∑
l=1

(vlαl − ulβl) − β j

[
n∑

l=1

( u2l + v2l )

]

−α j,t − 1

2
β j,xx , 1 ≤ j ≤ n,

Q∗
j = 2v j

n∑
l=1

(vlαl − ulβl) + α j

[
n∑

l=1

( u2l + v2l )

]
− β j,t + 1

2
α j,xx , 1 ≤ j ≤ n.

(66)

If α j is replaced by u j and β j by v j in (66), we
obtain systems (4)-(5). The conservation vector C =
(C1,C2,C3, . . .) has the following form

Cn = ξnL + Wα

[
∂ L

∂ uα
n

− Dj

(
∂ L

∂ uα
nj

)

+Dj Dk
( ∂ L

∂ uα
njk

− · · ·
]

+ Dj (W
α)

[
∂ L

∂ uα
nj

− Dk

(
∂ L

∂ uα
njk

)
+ · · ·

]

+ Dj Dk(W
α)

[
∂ L

∂ uα
njk

− · · ·
]

,

(67)

where Wα = ηα − ξ j uα
j (α = 1, 2, . . . ,m).

According to (67), the conservation vectors of (63)
are writen as

Cx = ξL +
n∑
j=1

[
Wu j

(
−Dx

∂L

∂u j,xx

)]

+
n∑
j=1

[
Dx (W

u j )
∂L

∂u j,xx

]

+
n∑
j=1

[
W v j

(
−Dx

∂L

∂v j,xx

)]
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+
n∑
j=1

[
Dx (W

v j )
∂L

∂v j,xx

]
,

Ct = τ L +
n∑
j=1

(Wu j
∂L

∂u j,t
) +

n∑
j=1

(
W v j

∂L

∂v j,t

)
.

(68)

In the following, we will use Lie point symmetry
(14) to construct conservation laws of systems (4)-(5).

Case 1: For the generator V1 = t ∂
∂x +

n∑
j=1

( u j x
∂

∂v j
−

v j x
∂

∂u j
), we have

Wu j = −v j x − u j,x t, 1 ≤ j ≤ n,

W v j = u j x − v j,x t, 1 ≤ j ≤ n.
(69)

Substituting (69) into (68), we obtain the conserved
vectors

Cx
1 = 1

2

⎡
⎣

n∑
j=1

( u2j + v2j )

⎤
⎦ + t

⎡
⎣

n∑
j=1

(u j u j,t + v jv j,t )

⎤
⎦ ,

Ct
1 = −t

⎡
⎣

n∑
j=1

(u j u j,x + v jv j,x )

⎤
⎦ . (70)

The vectors Cx
1 and Ct

1 satisfy

Dx (C
x
1 ) + Dt (C

t
1) = 0. (71)

Then substituting u j = p j+p∗
j

2 and v j = p j−p∗
j

2i into
(70), we get the conservation laws of (2) as follows

T x
1 = 1

2
{

n∑
j=1

(p j p
∗
j ) + t

⎡
⎣

n∑
j=1

(p∗
j p j,t + p j p

∗
j,t )

⎤
⎦},

T t
1 = −1

2
t

⎡
⎣

n∑
j=1

(p∗
j p j,x + p j p

∗
j,x )

⎤
⎦ .

(72)

Case 2: For the generator V2 = x ∂
∂x + 2 t ∂

∂t −
n∑
j=1

( u j
∂

∂u j
+ v j

∂
∂v j

), we have

Wu j = −u j − xu j,x − 2tu j,t , 1 ≤ j ≤ n,

W v j = −v j − xv j,x − 2tv j,t , 1 ≤ j ≤ n.
(73)

For this case, (68) yields the conserved vectors

Cx
2 = x

⎡
⎣

n∑
j=1

(u j u j,t + v jv j,t )

⎤
⎦ + 3

2

⎡
⎣

n∑
j=1

(v j u j,x − v j,x u j )

⎤
⎦

+t

⎡
⎣

n∑
j=1

(u j,xv j,t − u j,tv j,x + v j u j,t x − u jv j,t x )

⎤
⎦ ,

Ct
2 = t

⎡
⎣

n∑
j=1

(u jv j,xx − v j u j,xx )

⎤
⎦

−x

⎡
⎣

n∑
j=1

(u j u j,x + v jv j,x )

⎤
⎦ −

⎡
⎣

n∑
j=1

(u2j + v2j )

⎤
⎦ . (74)

The vectors Cx
2 and Ct

2 satisfy

Dx (C
x
2 ) + Dt (C

t
2) = 0. (75)

Then substituting u j = p j+p∗
j

2 and v j = p j−p∗
j

2i into
(41), we get the conservation laws of (2) as follows

T x
2 = x

2

⎡
⎣

n∑
j=1

(p∗
j p j,t + p j p

∗
j,t )

⎤
⎦

+ 3

4i

⎡
⎣

n∑
j=1

(
p j p

∗
j,x − p∗

j p j,x

)⎤⎦

+ t

2i

⎡
⎣

n∑
j=1

(
p∗
j,x p j,t − p j,x p

∗
j,t

+p j p
∗
j,t x − p∗

j p j,t x

)]
,

T t
2 = − t

2i

⎡
⎣

n∑
j=1

(p∗
j p j,xx − p j p

∗
j,xx )

⎤
⎦

− x

2

⎡
⎣

n∑
j=1

(p∗
j p j,x + p j p

∗
j,x )

⎤
⎦

−
⎡
⎣

n∑
j=1

(p∗
j p j )

⎤
⎦ .

(76)

Case 3: For the generator V3 = ∂
∂x , we have

Wu j = −u j,x , 1 ≤ j ≤ n,

W v j = −v j,x , 1 ≤ j ≤ n,
(77)

and conserved vectors are written as:

Cx
3 =

n∑
j=1

(u ju j,t + v jv j,t ),

Ct
3 = −

⎡
⎣

n∑
j=1

(u ju j,x + v jv j,x )

⎤
⎦ .

(78)

The vectors Cx
3 and Ct

3 satisfy the following equation:

Dx (C
x
3 ) + Dt (C

t
3) = 0. (79)
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Consequently, the conservation laws of (2) are writen
as

T x
3 = 1

2

⎡
⎣

n∑
j=1

(
p∗
j p j,t + p j p

∗
j,t

)⎤⎦ ,

T t
3 = −1

2

⎡
⎣

n∑
j=1

(
p∗
j p j,x + p j p

∗
j,x

)⎤⎦ .

(80)

Case 4: For the generator V4 = ∂
∂t , we have

Wu j = −u j,t , 1 ≤ j ≤ n,

W v j = −v j,t , 1 ≤ j ≤ n,
(81)

and the conserved vectors:

Cx
4 = 1

2

⎡
⎣

n∑
j=1

(−v j,x u j,t + v j u j,t x + v j,t u j,x − u jv j,t x
)
⎤
⎦ ,

Ct
4 = 1

2

⎡
⎣

n∑
j=1

(
u jv j,xx − v j u j,xx

)
⎤
⎦ . (82)

The vectors Cx
4 and Ct

4 in (82) satisfy the following
equation:

Dx (C
x
4 ) + Dt (C

t
4) = 0. (83)

Substitution of u j = p j+p∗
j

2 and v j = p j−p∗
j

2i into (82)
leads to the conservation laws of (2) as follows

T x
4 = 1

4i

⎡
⎣

n∑
j=1

(
p∗
j,x p j,t − p j,x p

∗
j,t − p∗

j p j,t x + p j p
∗
j,t x

)⎤⎦ ,

T t
4 = 1

4i

⎡
⎣

n∑
j=1

(
p∗
j p j,xx − p j p

∗
j,xx

)⎤⎦ . (84)

Case 5: The generator Vj+4 = u j
∂

∂v j
− v j

∂
∂u j

yields
the trivial conservation laws

Dx (C
x
j+4) + Dt (C

t
j+4) = 0, 1 ≤ j ≤ n, (85)

where

Cx
j+4 = 0, 1 ≤ j ≤ n,

Ct
j+4 = 0, 1 ≤ j ≤ n.

(86)

The conservation laws ofV1,lk andV2,lk are obtained
likewise.

5 Conclusion

This paper aims to investigate symmetry reductions and
conservation laws of MNLS equations. As far as we

know, there are few studies on the symmetry reduc-
tion and conservation laws of nonlinear Schrödinger
equations with arbitrary components, except for the
two or three-component nonlinear Schrödinger equa-
tions.Here,wepresent the general formula of infinitesi-
mal symmetries ofMNLS equations, which is essential
for analyzing the specific types of MNLS equations in
practice. Using the symmetry invariance property, the
system (2) was reduced systematically and some new
exact solutions were constructed successfully. More
interestingly, the conservation laws of theMNLS equa-
tions were presented with a detailed derivation by uti-
lizing Ibragimov’s method. The resulting conservation
laws can be used to find exact solutions and to expand
numerical methods.

The MNLS equations can have various applications
in different fields, includingBose-Einstein condensates
in atomic physics, nonlinear optics, and superfluidity in
condensed matter physics, among others. We hope that
this study might be important for researchers special-
izing in applied mathematics, optical fibers, nonlinear
transmission network, etc. In futurework,wewill focus
on the derivative NLS equation with arbitrary compo-
nents derived by adding nonlinear terms or high-order
linear dispersion terms to the standard NLS equations.
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