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A B S T R A C T

In this study, we explore generalized Ellis–Bronnikov and embedded wormhole solutions within the context
of 𝐹 (𝑇 , 𝑇𝐺) gravity with an anisotropic matter source. To achieve the necessary conditions for wormhole
formation, we investigate the energy conditions within 𝐹 (𝑇 , 𝑇𝐺) gravity. Our analysis includes various matter
distributions, particularly dark matter halos, using observational data from the 𝑀87 galaxy. We also explore
the results in the framework of 𝐹 (𝑇 , 𝑇𝐺) gravity, considering three different dark matter halo distributions.
For each case, the violation of energy conditions proves the presence of strange matter, say exotic matter,
which is a necessary condition for wormhole existence in this gravitational model when dark matter halos are
present. We investigate the effect of physical parameters on the stable configurations of the generated thin-shell
surrounding the wormhole structure. In the first scenario, we can see that the shape function parameters have
a significant impact on the shell’s stable regions. In addition, the considered black hole contributes significantly
to the shell’s stability.
. Introduction

In the mathematical theory of general relativity, there are geometric
hapes with imaginary topological configurations that can aid in star
ravel. Theoretically, wormholes (WHs) connect distant locations in the
niverse, shortening travel distances and times. Flamm [1] is known for
nventing the term ‘‘wormhole’’ and characterized the Schwarzschild-
ype solution scenario in the application of GR field equations as
n inoperative WH. Einstein and others [2] proposed a theoretical
elationship called the end model by connecting two identical sections
Schwarzschild Bh), resulting in the creation of a singularity when the
ormhole throat collapses. Misner and Wheeler [3] were the original

ndividuals to identify these hypothetical attributes of the GR field
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equations as WHs. Ellis combined geometry with a scalar field to
create a geodesically complete manifold without a horizon, introducing
the idea of a traversable wormhole with a topological structure [4].
Bronnikov studied scalar-electrovacuum systems’ topologies without
scalar charge [5], while Clement described a group of traversable
higher-dimensional wormholes [6]. Morris and Thorne suggested the
presence of a traversable wormhole linking distant parts of space, with
a throat upheld by exotic matter that does not adhere to the null energy
requirement (NEC), thus sustaining the wormhole [7]. The question
of limiting this problem to WH configuration for physical functions
is subject to debate. Extensive studies have been carried out on the
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formation of white holes from the spacetime of black holes and the
investigation into their different physical traits [8–10].

According to various cosmological studies [11,12], the rapid ex-
pansion of the universe is driven by mysterious dark energy, along
with dark matter (DM). Alternative gravity theories are considered
promising and contemporary approaches to uncovering the hidden
aspects of the universe and understanding its expansion. These theo-
ries modify the geometric structure of the Einstein–Hilbert action by
incorporating or replacing it with a curvature invariant. To explore
alternative gravity theories, we analyzed dark energy, dark matter,
and the universe’s ongoing expansion. Numerous studies have exam-
ined modified gravity theories, adding an extra curvature term to
the action [13–23]. Some notable modifications include 𝑓 (𝑅) gravity,
Gauss–Bonnet gravity, 𝑓 (𝑅,  ) gravity, and scalar-tensor theory, among
thers. Furthermore, significant modifications to the gravitational field
quations with fourth-order terms have been achieved by introducing
 torsion term 𝑇 , corresponding to the Gauss–Bonnet term 𝑇𝐺 [24,25].

The fascinating characteristics of these gravity theories have drawn the
attention of many scientists in modern cosmology, high-energy physics,
and astrophysics. Jawad studied the energy conditions of 𝐹 (𝑇 , 𝑇𝐺)
gravity in the FRW universe modeled by a perfect fluid, as discussed
in [26]. Zubair and Jawad explored thermodynamic equilibrium within
he framework of 𝐹 (𝑇 , 𝑇𝐺) gravity [27]. Chattopadhyay et al. [28]
nvestigated potential reconstruction methods in 𝐹 (𝑇 , 𝑇𝐺) gravity by

integrating pilgrim dark energy and analyzed the equation of state
for various parameters across different scale factors. In his work [29],
Keskin examined phantom solutions in 𝐹 (𝑇 , 𝑇𝐺) gravity with different
dark energy models. Sharif and Nazir [30] proposed anisotropic models
for 𝐹 (𝑇 , 𝑇𝐺) gravity, analyzing various cosmic epochs, including both
relativistic and non-relativistic periods.

Numerous approaches to General Relativity (GR) have been devel-
ped using various techniques, following Buchdahl’s significant modi-
ication to gravity theory in 1970: 𝑓 (𝑅) gravity [31]. This theory alters

the Einstein–Hilbert action by incorporating a general function of the
Ricci scalar. 𝑅. 𝑓 (𝑅) gravity has been used to explain the geometry
related to dark energy models [32,33]. Within this framework, Harko
and his team studied stationary spherically symmetric wormholes made
of ordinary matter, ensuring compliance with the necessary energy
conditions [34]. Rahaman and colleagues proposed new methods for
constructing stable wormholes in 𝑓 (𝑅) gravity, demonstrating that
wormhole solutions could exist without requiring exotic matter [35,
36]. In their analysis of the nonexistence theorem for wormhole geome-
tries, Bronnikov and Starobinsky concluded that scalar-tensor models
are insufficient to describe wormholes with a positive scalar func-
ion [37]. Additionally, Bronnikov and others explored the challenges

to the nonexistence of wormholes in 𝑓 (𝑅) theory, while Bahamonde and
colleagues examined wormholes in galactic halos [38,39]. Other studies
have focused on static wormholes, with Shamir and Fayyaz investi-
gating traversable wormhole solutions using the Karmarkar condition

ithin 𝑓 (𝑅) gravity [40].
Böhmmer et al. [41] examined static traversable wormhole (WH)

olutions by analyzing a specific 𝑓 (𝑇 ) model, along with redshift
and shape functions. Their findings demonstrated that physically vi-
ble WH solutions can be achieved while meeting energy conditions.
amil et al. [42] derived exact WH solutions in 𝑓 (𝑇 ) gravity for
oth anisotropic and isotropic cases, investigating energy conditions
o explore the properties of the matter involved. Sharif and Shamaila
2015) studied N-C WH solutions in two scenarios. First, they used
 viable power-law 𝑓 (𝑇 ) model to construct the shape function for
H geometry. They later performed a separate analysis of dynamic

nd charged WH solutions in the context of 𝑓 (𝑇 ) gravity, considering
n anisotropic fluid. More recently, Mustafa and his team [43,44]
ntroduced new WH solutions using conformal symmetry and two
istinct approaches to N-C geometry.

M. Sharif and S. Nazir [45,46] investigated wormhole (WH) so-
utions through different approaches such as N-C geometry and the
 r

2 
equation of state. Mustafa and colleagues [47] obtained WH solutions
using conformal symmetry in the N-C geometry, within the frame-
work of gravitational theory 𝐹 (𝑇 , 𝑇𝐺). Gaussian and Lorentzian matter
distributions were utilized as N-C geometric sources in two different
𝐹 (𝑇 , 𝑇𝐺) gravity models. Shamir et al. [48] also applied Gaussian
and Lorentzian N-C geometry in modified gravity theories, discovering
stable spherically symmetric wormhole solutions in 𝑓 (𝑅) gravity and
proving the violation of the null energy condition (NEC). Banerjee and
his colleagues introduced nonexotic matter and isotropic pressure in
static spherical WH solutions in the context of 𝑓 (𝑅,  ) gravity [49].
Mustafa and his colleagues [50–60] conducted research on spherical
WH solutions in different modified theories of gravity using different
approaches. Alencar et al. [61] analyzed the Ellis–Bronnikov wormhole

ithin asymptotically safe gravity on the Planck scale, demonstrating
hat compliance with radial energy conditions at the throat radius
s guaranteed by asymptotic safety. It was determined that quantum
ravitational effects support Einstein’s field equations, requiring exotic
atter for the formation of WH space–time [62–85].

In their research, Sharma and Ghosh [86] examined the energy
needs of the embedded Ellis–Bronnikov wormhole (WH) and its ex-
tended form in a five-dimensional warped background. They discovered
that the diminished warp factor meets the weak energy conditions
and enhances other energy conditions when compared to the four-
dimensional scenario. Hassan and his team studied the stability of
WH solutions by analyzing two particular shape functions within the
framework of 𝑓 (𝑄) gravity, with 𝑄 representing the non-metricity
tensor. Shamir and colleagues investigated WH formations in 𝑓 (𝑅, 𝜑, 𝑋)
gravity theory, with 𝜑 as the scalar potential and 𝑋 as the kinetic
term [87]. The researchers studied how a fluid with no trace behaves
when subject to specific equations of state parameters and found that
the chosen shape functions failed to meet the energy conditions. G.
Mustafa and colleagues [88] discovered possible wormhole solutions
that satisfy energy requirements within 𝑓 (𝑄) gravity by making use
of a spacetime embedded subject to the Karmarkar condition. Shekh
et al. [89] studied the physical constraints on accelerated emergent
𝑓 (𝑄) gravity model. Zwicky was the first to propose the presence of
ark matter in galaxies by utilizing the virial theorem [90]. According

to Rahaman et al. [91], galactic halos may have the ability to host
traversable wormholes due to the NFW density profile and flat rotation
urves found in galaxies [92–95].

In this study, we investigate generalized Ellis–Bronnikov and em-
edded wormhole solutions in 𝐹 (𝑇 , 𝑇𝐺) gravity with anisotropic matter

sources. Using observational data from the 𝑀87 galaxy, we analyze
nergy conditions for wormhole formation under three distinct dark
atter halo models. The results confirm that the violation of energy

conditions, driven by exotic matter, is crucial for wormhole formation
in this framework. Exploration of wormhole solutions in 𝐹 (𝑇 , 𝑇𝐺) grav-
ty with anisotropic matter. Analysis of energy conditions using 𝑀87
alaxy data and three dark matter halo models. Violation of energy
onditions confirms the role of exotic matter in wormhole formation.

The present study is organized in the following structure: We start
ith an introduction 1 about this subject, Section 2 concentrates on

he assessment of 𝐹 (𝑇 , 𝑇𝐺) gravity and investigation of the wormhole
WH) geometry while also deriving the field equations within this

section. Section 3 examines the energy conditions relevant to gravity
involving the 𝐹 (𝑇 , 𝑇𝐺) theory. Section 4 presents two separate models
along with their related field equations. Sections 5 and 6 discuss the
shape functions and solutions embedded in wormholes. In Section
7, the dark matter halos for scalar field dark matter (SFDM), ultra-
elativistic clusters (URC), and cold dark matter Navarro–Frenk–White

(CDM-NFW) distributions are discussed. The last conclusion of our
esults 9.
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2. 𝑭 (𝑻 , 𝑻𝑮) gravity

This section presents the new gravity model 𝐹 (𝑇 , 𝑇𝐺). Kofinas and
is team suggested a new torsional constant 𝑇𝐺 in the 𝐹 (𝑇 ) formalism

in order to obtain a teleparallel version of the Gauss–Bonnet (GB) term.
Moreover, the symbol 𝐺 will be used to symbolize the GB term.

𝐡 = 𝐡𝑇𝐺 +D,

where total divergence is denoted with D and  is known as the
teleparallel invariant, which is defined as:

 = 2 − 4𝜇 𝜈𝜇 𝜈 +𝜇 𝜈 𝛼 𝛽𝜇 𝜈 𝛼 𝛽

and

𝑇𝐺 =
(

𝑎2
𝑏 𝑎1

𝑒𝑎
𝑎3
𝑓 𝑐

𝑎4
𝑑 + 2𝑎3

𝑒𝑏
𝑎1𝑎2
𝑎 𝑒𝑎4

𝑐 ,𝑑 − 2𝑎3
𝑒𝑏

𝑎1𝑎2
𝑎 𝑒

𝑓 𝑐
𝑓 𝑎4
𝑑

+ 2𝑎3
𝑒𝑏

𝑎1𝑎2
𝑎 𝑒𝑎4

𝑓 𝑓
𝑐 𝑑
)

𝛿𝑎𝑏𝑐 𝑑𝑎1𝑎2𝑎3𝑎4
,

The Kronecker delta’s determinant is denoted by 𝛿. The tensor-like
torsion in the expression 𝑇 is raised to the power of four. The primary
tensors of importance, like contusion and torsion, can be expressed as:

𝑎𝑏𝑐 = −𝑏𝑎𝑐 = −1
2
(𝑇𝑏𝑐 𝑎 − 𝑇𝑐 𝑎𝑏 + 𝑇𝑎𝑏𝑐 ),

and

𝑇 𝑎
𝑏𝑐 = 𝐡𝑎𝛼(𝜕𝑏𝐡

𝛼
𝑐 − 𝜕𝑐𝐡𝛼𝑏 ) = 𝛤 𝑎

𝑐 𝑏 − 𝛤 𝑎
𝑏𝑐 .

The modified gravity action 𝐹 (𝑇 , 𝑇𝐺) can be expressed as:

𝑆 = 1
2𝜅2 ∫ 𝐡[𝐹 (𝑇 , 𝑇𝐺) + m]𝑑4𝑥.

The Lagrangian in this situation is represented by: m, where 𝜅2 = 1,
nd 𝐡 = det(𝐡𝑎𝛽 ) =

√

−g, where 𝑔 is the determinant of the metric tensor.
The modified gravity framework, which involves varying 𝐡𝑎𝛽 action,
leads to the derivation of modified field equations.

−(𝐹 (𝑇 , 𝑇𝐺)) − 𝑇 𝐹𝑇 (𝑇 , 𝑇𝐺) − 𝑇𝐹𝑇𝐺 (𝑇 , 𝑇𝐺)𝜂𝑖𝑗
= 2(𝐻 [𝑖𝑘]𝑗 −𝐻 [𝑘𝑗]𝑖 +𝐻 [𝑗 𝑖]𝑘),𝑘 + 2(𝐻 [𝑗 𝑖]𝑘 +𝐻 [𝑖𝑘]𝑗 −𝐻 [𝑘𝑗]𝑖)𝐶𝑑

𝑑 𝑘
+(2𝐻 [𝑖𝑘]𝑑 +𝐻𝑑 𝑘𝑖)𝐶𝑗

𝑘𝑑 + 4𝐻 [𝑑 𝑗]𝑘𝐶 𝑖
𝑑 𝑘 + 𝑇 𝑖

𝑘𝑑𝐻
𝑘𝑑 𝑗 − 𝐡𝑖𝑗 , (1)

where

𝐻 𝑖𝑗 𝑘 = 𝐹𝑇 (𝑇 , 𝑇𝐺)(𝜂𝑖𝑘𝑗 𝑑
𝑑 −𝑗 𝑘𝑖) + 𝐹𝑇 (𝑇 , 𝑇𝐺)

(

𝜖𝑘𝑝𝑟𝑡(𝑒𝜖𝑖𝑑 𝑙 𝑓𝑗 𝑘
𝑝 𝑑

𝑞 𝑟 + 𝜖𝑞 𝑑 𝑙 𝑓𝑖𝑙
𝑝

𝑗 𝑑
𝑟

+ 𝜖𝑖𝑗𝑙 𝑓𝑙
𝑑 𝑝𝑑

𝑞 𝑟)𝑞 𝑓
𝑡 + 𝜖𝑘𝑝𝑟𝑡𝜖𝑖𝑗𝑙 𝑑𝑓 𝑑

𝑝 × (𝑙
𝑓 𝑟,𝑡 −

1
2
𝑙

𝑓 𝑞𝐶𝑞
𝑡𝑟) + 𝜖𝑘𝑝𝑟𝑡𝜖𝑖𝑙𝑑 𝑓𝑑 𝑓

𝑝

× (𝑗
𝑘𝑟,𝑡 −

1
2
𝑗

𝑙 𝑞𝐶
𝑞
𝑡𝑟)
)

+ 𝜖𝑘𝑝𝑟𝑡𝜖𝑖𝑙 𝑑 𝑓
(

(𝐹𝑇 (𝑇 , 𝑇𝐺)𝑗 𝑙
𝑝 

𝑑 𝑓
𝑟 ),𝑡 + 𝐹𝑇 (𝑇 , 𝑇𝐺)𝐶

𝑞
𝑝𝑡

𝑗 𝑙
𝑞 

𝑑 𝑓
𝑟

)

, (2)

and

𝐡𝑖𝑗 = 𝐹𝑇 (𝑇 , 𝑇𝐺)𝜖𝑖𝑙 𝑘𝑒𝜖𝑗 𝑎𝑏𝑒𝑙
𝑓 𝑎𝑓 𝑘

𝑏 ,

𝐹𝑇 (𝑇 , 𝑇𝐺) =
𝑑 𝐹 (𝑇 , 𝑇𝐺)

𝑑 𝑡 , 𝐹𝑇 (𝑇 , 𝑇𝐺) =
𝑑 𝐹 (𝑇 , 𝑇𝐺)

𝑑 𝑇𝐺
.

The symmetric metric defines the geometry of the WH [45] as.

𝑑 𝑠2 = 𝑒𝜆(𝑟)𝑑 𝑡2 − 𝑒𝜈(𝑟)𝑑 𝑟2 − 𝑟2𝑑 𝛺2. (3)

where 𝑑 𝛺2 = 𝑑 𝜃2 + 𝑠𝑖𝑛2𝜃 𝑑 𝜙2.

• The redshift function is defined as 𝜆(𝑟) equal to twice the gravi-
tational potential function 𝛷(𝑟). It is observed that the essential
redshift function does not have to comply with any horizon
constraints, thus enabling a round-trip journey. Because of this
intellectual aspect, 𝜆(𝑟) must remain finite every where.

• Moreover, 𝑒𝜈(𝑟) = (1 −𝑊 (𝑟)∕𝑟)−1, with 𝑊 (𝑟) being a radial function
of the coordinate 𝑟, is referred to as the shape function due to its
role in determining the WH geometry.
3 
• The presence of WH solution 𝑊 (𝑟0) = 𝑟0 and the flaring out condi-
tion is defined as (𝑊 −𝑊 ′𝑟)∕𝑊 2 > 0. Additionally, the conditions
𝑊 ′(𝑊0) < 1 and 1 −𝑊 (𝑟)∕𝑟 > 0 are further requirements for WHs
solutions.

• These all kinds of conditions lead us to violate the energy condi-
tions.

For considering the WH’s material composition, we use the stress–
energy tensor with anisotropic fluid. Its given with this equation [47]:

𝜇 𝜈 = (𝜌 + 𝑝𝑡)𝜐𝜆𝜐𝜈 − 𝑝𝑡g𝜆𝜈 + (𝑝𝑟 − 𝑝𝑡)𝜉𝜆𝜉𝜈 ,

where the components of the 4-velocity vector (𝜐𝜆) are: 𝜐𝜆 = 𝑒−𝜆𝛿𝜆0 and
𝜉𝜆 = 𝑒−𝜈𝛿𝜆1 which follows 𝜐𝜆𝜐𝜆 = −𝜉𝜆𝜉𝜆 = 1. The stress–energy tensor
onsists of tangential pressure, energy density with radial pressure,
ith the condition that the tangential pressure is perpendicular to 𝜉𝜆
nd the radial pressure is parallel to 𝜉𝜆. The diagonal tetrad is given
s:

𝐡𝑎𝜈 = 𝑑 𝑖𝑎𝑔
⎛

⎜

⎜

⎝

𝑒−𝜆(𝑟),
(

1 − 𝑊 (𝑟)
𝑟

)− 1
2
, 𝑟, 𝑟𝑠𝑖𝑛𝜃

⎞

⎟

⎟

⎠

. (4)

The torsion scalar is:
𝑇 = 2

𝑟2

(

1 − 𝑊 (𝑟)
𝑟

)

4𝜆′(𝑟)
𝑟

(

1 − 𝑊 (𝑟)
𝑟

)

(5)

and we get

𝑇𝐺 =
12𝜆′(𝑟)𝑊 (𝑟)𝑊 ′(𝑟)

𝑟4
−

8(𝜆′(𝑟))2𝑊 (𝑟)
𝑟3

×
(

1 − 𝑊 (𝑟)
𝑟

)

−
8𝜆′′(𝑟)𝑊 (𝑟)

𝑟3
×
(

1 − 𝑊 (𝑟)
𝑟

)

−
8𝜆′(𝑟)𝑊 ′(𝑟)

𝑟3
−

12𝜆′(𝑟)𝑊 2(𝑟)
𝑟5

+
8𝜆′(𝑟)𝑊 (𝑟)

𝑟4
, (6)

It is noted that 𝜆(𝑟) cannot be considered as constant. otherwise 𝑇𝐺
vanishes. Using Eqs. (3) and (6) in Eq. (1), field equations become

𝜌 =
2𝑊 ′(𝑟)

𝑟2
𝐹𝑇 (𝑇 , 𝑇𝐺) + 𝐹 (𝑇 , 𝑇𝐺) − 𝑇 𝐹𝑇 (𝑇 , 𝑇𝐺) − 𝑇𝐺𝐹𝑇 (𝑇 , 𝑇𝐺)

− 4
𝑟

(

1 − 𝑊 (𝑟)
𝑟

)

𝐹𝑇 𝑇 (𝑇 , 𝑇𝐺)𝑇 ′

+ 4
𝑟3

(

5𝑊 (𝑟)
𝑟

− 2 − 3𝑊 2(𝑟)
𝑟2

− 3𝑊 ′(𝑟)
(

1 − 𝑊 (𝑟)
𝑟

))

𝐹𝑇𝐺𝑇𝐺 (𝑇 , 𝑇𝐺)𝑇 ′
𝐺 + 8

𝑟2

(

1 − 𝑊 (𝑟)
𝑟

(

2 − 𝑊 (𝑟)
𝑟

))

× (𝐹𝑇𝐺𝑇𝐺𝑇𝐺 (𝑇 , 𝑇𝐺)(𝑇 ′
𝐺)

2 + 𝐹𝑇𝐺𝑇𝐺 (𝑇 , 𝑇𝐺)𝑇 ′′
𝐺 ), (7)

𝑟 = −𝐹 (𝑇 , 𝑇𝐺) +
(

2
𝑟2

(

1 − 2𝑊 (𝑟)
𝑟

)

−
4𝜆(𝑟)
𝑟2

(

1 − 𝑊 (𝑟)
𝑟

))

× 𝐹𝑇 (𝑇 , 𝑇𝐺) + 𝑇𝐺𝐹𝑇𝐺 (𝑇 , 𝑇𝐺)

+
24𝜆(𝑟)
𝑟3

(

1 − 𝑊 (𝑟)
𝑟

)2
𝐹𝑇𝐺𝑇𝐺 (𝑇 , 𝑇𝐺)(𝑇 ′

𝐺)
2, (8)

𝑝𝑡 = −𝐹 (𝑇 , 𝑇𝐺) +
(

1
𝑟

(

2 − 𝑊 (𝑟)
𝑟

−
𝑊 ′(𝑟)

𝑟

) (
1
𝑟
−

𝜆(𝑟)
𝑟

)

+ 2
(

1 − 𝑊 (𝑟)
𝑟

) (
2𝜆(𝑟)
𝑟2

+
𝜆2(𝑟)
𝑟2

))

× 𝐹𝑇 (𝑇 , 𝑇𝐺) + 𝑇𝐺𝐹𝑇𝐺 (𝑇 , 𝑇𝐺) + 2
(

1 − 𝑊 (𝑟)
𝑟

) (
1
𝑟
−

𝜆(𝑟)
𝑟

)

𝐹𝑇 𝑇 (𝑇 , 𝑇𝐺)𝑇 ′

+
(

−12𝜆
𝑟3

(

𝑊 ′(𝑟) − 𝑊 (𝑟)
𝑟2

)

×
(

1 − 𝑊 (𝑟)
𝑟

)

− 8
𝑟

(

2𝜆(𝑟)
𝑟2

+
𝜆2(𝑟)
𝑟2

) (
1 − 𝑊 (𝑟)

𝑟

)2
)

𝐹𝑇𝐺𝑇𝐺 (𝑇 , 𝑇𝐺)𝑇 ′
𝐺

+
8𝜆(𝑟)
𝑟2

(

1 − 𝑊 (𝑟)
𝑟

)2

× (𝐹𝑇𝐺𝑇𝐺𝑇𝐺 (𝑇 , 𝑇𝐺)(𝑇 ′
𝐺)

2 + 𝐹𝑇𝐺𝑇𝐺 , (𝑇 , 𝑇𝐺)𝑇 ′′
𝐺 ), (9)
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3. Energy conditions

Five conditions related to energy conditions are recognized: null
energy condition (NEC), weak energy condition (WEC), dominant en-
ergy condition (DEC), strong energy condition (SEC), and trace energy
condition (TEC). In the context of the modified gravity being examined,
the energy conditions can be defined as follows [46]:

 (𝑒𝑓 𝑓 )
𝜇 𝜈 =  (𝑚)

𝜇 𝜈 +  ()
𝜇 𝜈 ,

where  ()
𝜇 𝜈 denotes the terms related to the dark source. Below, we

resent the mathematical expression of the energy conditions:

• NEC: ∀𝑖, 𝜌 + 𝑝𝑖 ≥ 0.
• WEC: 𝜌 ≥ 0 and ∀𝑖, 𝜌 + 𝑝𝑖 ≥ 0.
• DEC: 𝜌 ≥ 0 ∀𝑖, 𝜌 ± 𝑝𝑖 ≥ 0.
• SEC: 𝜌 + 𝑝𝑖 ≥ 0 and ∀𝑖, 𝜌 +

∑

𝑝𝑖 ≥ 0.
• TEC: 𝜌 − 𝑝𝑖 ≥ 0 and ∀𝑖, 𝜌 −

∑

𝑝𝑖 ≥ 0.

4. First model of 𝑭 (𝑻 , 𝑻𝑮) gravity

Herein, we shall consider a specific model for 𝐹 (𝑇 , 𝑇𝐺) gravity [45–
47], which yields:

𝐹 (𝑇 , 𝑇𝐺) = 𝛹1

(

−
𝛹3𝑇𝐺
√

𝑇

)𝛹2

, (10)

where 𝛹1, 𝛹3, and 𝛹2 are the model parameters. It is essential to
ention that the parameter 𝛹2 will remain equal to one throughout the

analysis to achieve physically viable results. For the other parameters,
only positive values between zero and one should work for the current
analysis. The negative value of energy density for 𝐹 (𝑇 , 𝑇𝐺) should
e negative, which is unsuitable for WH solutions. By using Eq. (10)
n Eqs. (7)–(9), we obtain the respective modified form of the field

equations:

𝜌 = 2
𝛹2
2 −3𝛹1𝜒

𝛹2
2

[

−
𝛹2𝑟3𝑏′(𝑟)

(𝑟 − 𝑏(𝑟))2𝜆′(𝑟)
+

1024
(

𝛹2 − 1)𝛹2𝜒18(𝑟 − 𝑏(𝑟))2

𝑟𝜒3
19

−4 𝛹2 − 𝜒3 + 𝜒20 + 8] , (11)

𝑝𝑟 = 2
𝛹2
2 −3𝛹1𝜒

𝛹2
2

[

𝜒21 −
48

(

𝛹2 − 1)𝛹2𝜒8(𝑟 − 𝑏(𝑟))2𝜆(𝑟)

𝑟𝜒2
9

]

, (12)

𝑝𝑡 = 2
𝛹2
2 −4𝛹1𝜒

𝛹2
2

⎡

⎢

⎢

⎢

⎣

2048
(

𝛹2 − 1)𝛹2𝑟𝜒18

(

𝑏(𝑟)
𝑟 − 1

)2
𝜆(𝑟)

𝜒3
19

+16 𝛹2 − 𝜒3 − 𝜒22 + 𝜒23 − 16
]

, (13)

where 𝜒𝑖, 𝑖 = 1,… , 23 are given in the Appendix A.

5. Second model of 𝑭 (𝑻 , 𝑻𝑮) gravity

Here, we shall take another specific model for 𝐹 (𝑇 , 𝑇𝐺) gravity [45–
47], which is expressed as:

𝐹 (𝑇 , 𝑇𝐺) = 𝛹1
(

𝛹2𝑇𝐺 + 𝑇 2) + 𝛹3
(

𝛹4𝑇𝐺 + 𝑇 2) 2 − 𝑇 . (14)

where 𝛹1, 𝛹2, 𝛹3, and 𝛹4 are the model parameters. It is also essential
o mention that the parameter 𝛹2 will remain equal to one throughout
he analysis to achieve the physically viable results for the second
odel of 𝐹 (𝑇 , 𝑇𝐺) gravity. For the other involved parameters, only
ositive but small values, i.e., (0, 1) for 𝛹3 and 𝛹4, should be feasible
or the physically viable WH solutions in this analysis model. The
egative value of energy density for 𝐹 (𝑇 , 𝑇𝐺) should be negative, which
s unsuitable for wormhole solutions. Additionally, the positive values
f parameter 𝛹1 are suitable to find viable regions for the WH solution.
4 
• Utilizing Eq. (14) in Eqs. (7)–(9) yields a set of equations for the
initial model of 𝐹 (𝑇 , 𝑇𝐺) gravity (see Box I).

We adopt the restriction that 𝜆(𝑟) = 2𝛷(𝑟) must be finite every-
where within the WH space–time since an event horizon cannot be
chieved in WH space–time. In the present part, we take the redshift
unction as [45–47].

𝛷 = −𝜚
𝑟
, (18)

where 𝜚 is constant.

6. Embedded WH solutions

This research investigates embedded wormhole (WH) models through
wo distinct approaches. The first approach examines a broader cat-
gory of embedded WH solutions by exploring the Karmarkar con-
ition [96] within class-1, as well as the Ellis and embedded Bron-

nikov spacetimes. The Karmarkar condition’s fundamental framework
is based on class-1 embedded solutions in Riemannian space. Eisenhart
studied the appropriate configuration for these class-1 embedded solu-
tions [97], which is derived from the properties of the Gauss equation.

𝑚𝑛𝑝𝑞 = 2 𝜖 𝑏𝑚 [𝑝𝑏𝑞]𝑛. (19)

The equation referred to as the Codazzi equation is expressed as:

𝑏𝑚[𝑛;𝑝] = 𝛤 𝑞
[𝑛 𝑝] 𝑏𝑚𝑞 − 𝛤 𝑞

𝑚 [𝑛 𝑏𝑝]𝑞 . (20)

In the provided formula, square brackets denote anti-symmetrization,
where 𝜖 takes values of ±1, and 𝑏𝑚𝑛 represents the coefficients of the
econd differential form. By utilizing Eqs. (19) and (20), we can derive

the Karmarkar condition as demonstrated below:

𝑅2323𝑅1414 = 𝑅1224𝑅1334 + 𝑅1212𝑅3434, (21)

where 𝑅2323 ≠ 𝑅1414 ≠ 0. We can use the suitable Riemannian tensor in
Eq. (21), we have:
𝜆′(𝑟)𝜈′(𝑟)
1 − 𝑒𝜈(𝑟)

−
{

𝜆′(𝑟)𝜈′(𝑟) + 𝜆′(𝑟)2 − 2 [𝜆′′(𝑟) + 𝜆′(𝑟)2
]}

= 0, 𝑒𝜈(𝑟) ≠ 1,

(22)

By solving (22), we have

𝑒𝜈(𝑟) = 1 + 𝛹 𝑒𝜆(𝑟)𝜆′2(𝑟), (23)

In this case, 𝛹 symbolizes a constant involved in integration. By fol-
owing the steps detailed in [88], we derive the embedded shape

function.

𝑊 (𝑟) = 𝑟 − 𝑟5

𝑟4 +𝑊 4
0 (𝑊0 − 𝜔)

+ 𝜔, 0 < 𝜔 < 𝑊0, (24)

In this situation, 𝑊0 represents the diameter of the wormhole’s en-
trance. We will continue by studying the generalized Ellis–Bronnikov
spacetime [86], which is an ultra-static wormhole model. This is the
second wormhole solution derived by embedding, explained as follows:

𝑑 𝑠2 = −𝑑 𝑡2 + 𝑑 𝑙2 + 𝑟2(𝑙)
[

𝑑 𝜃2 + sin2(𝜃)𝑑 𝜙2] , (25)

with

𝑟(𝑙) = [

𝑊 𝑚
0 + 𝑙𝑚

]1∕𝑚 . (26)

The formulas presented above use 𝑙 to denote the proper radial dis-
tance, which is also referred to as the tortoise coordinate and is
applicable to both embedded solutions. As previously stated, 𝑋0 in-
dicates the diameter of the WH’s throat, with 𝑚 denoting the WH
parameter, under the constraint (𝑚 ≥ 2). We can write Eq. (3) as:

𝑑 𝑠2 = −𝑑 𝑡2 + 𝑑 𝑟2
[

𝑊 (𝑟)
] + 𝑑 𝛺2. (27)
1 − 𝑟
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𝜌 =

[

−
2
(

144𝛽3𝛹 2
4 𝑟

12(𝑟 − 𝑏(𝑟))𝑏′(𝑟)3𝜆′(𝑟) + 𝜁4𝑟3𝑏′(𝑟) + 8 (𝛹3𝜁14 + 4𝛹1𝜁5𝑟10(𝑟 − 𝑏(𝑟))2
)

− 8𝜁1
)

𝑟20

]

, (15)

𝑝𝑟 =

[

𝜁30𝑟17(4𝑏(𝑟)(𝜆(𝑟) − 1) − 4𝑟𝜆(𝑟) + 2𝑟) + 8𝑟15(𝑟 − 𝑏(𝑟))2𝜆′(𝑟) − 𝛹3𝛹 2
4 𝜁21𝑟

9(𝑟 − 𝑏(𝑟))2𝜆(𝑟) + 𝜁22
𝑟20

]

, (16)

𝑝𝑡 =

[

8𝑟15(𝑟 − 𝑏(𝑟))2𝜆′(𝑟) − 64𝛹3𝛹 2
4 𝜁25𝑟

9(𝑟 − 𝑏(𝑟))2𝜆(𝑟) + 𝜁27 + 𝜁30 − 4𝜁18𝑟5
(

8𝛹3𝛹4𝜁19 + 𝛹1𝛹2𝑟10
)

𝑟20

]

, (17)

where 𝜁𝑗 , 𝑗 = 1,… , 30 are given in the Appendix B.

Box I.
Fig. 1. Illustrates how 𝜌 varies with 𝛹1 = 0.02, 𝛹3 = 0.11, 𝛹2 = 1, 𝜚 = −0.01, 𝜔 = 0.06 𝑚 = 2, and 𝑊0 = 0.09 in scenarios such as 𝐹 (𝑇 , 𝑇𝐺) gravity, URC profile, CDM halo with NFW
profile, and SFDM profile.
Fig. 2. Illustrates the pattern of 𝜌+𝑝𝑟 with specific values of 𝛹1 = 0.02, 𝛹3 = 0.11, 𝛹2 = 1, 𝜚 = −0.01, 𝜔 = 0.06 𝑚 = 2, and 𝑊0 = 0.09 across four scenarios including 𝐹 (𝑇 , 𝑇𝐺) gravity,
URC profile, CDM halo with NFW profile, and SFDM profile.
Fig. 3. Illustrates how 𝜌 − 𝑝𝑟 changes when 𝛹1 = 0.02, 𝛹3 = 0.11, 𝛹2 = 1, 𝜚 = −0.01, 𝜔 = 0.06 𝑚 = 2, and 𝑊0 = 0.09 in four distinct scenarios: 𝐹 (𝑇 , 𝑇𝐺) gravity, URC profile, CDM
alo with NFW profile, and SFDM profile.
5 
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Fig. 4. The relationship between 𝜌+ 𝑝𝑡 and the specified parameters: 𝛹1 = 0.02, 𝛹3 = 0.11, 𝛹2 = 1, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09, in scenarios such as 𝐹 (𝑇 , 𝑇𝐺) gravity,
RC profile, CDM halo with NFW profile, and SFDM profile.
Fig. 5. This illustrates the behavior of 𝜌 − 𝑝𝑡 with 𝛹1 = 0.02, 𝛹3 = 0.11, 𝛹2 = 1, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 for four cases: 𝐹 (𝑇 , 𝑇𝐺) gravity, URC profile, CDM halo
ith NFW profile, and SFDM profile.
Fig. 6. The behavior of 𝜌 + 𝑝𝑟 + 2𝑝2 is shown with parameters 𝛹1 = 0.02, 𝛹3 = 0.11, 𝛹2 = 1, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 for four cases: 𝐹 (𝑇 , 𝑇𝐺) gravity, URC profile,
CDM halo (NFW profile), and SFDM profile.
m
o
p

The radial coordinate 𝑟 and the radial distance 𝑙 are connected through
the following embedding equation.

𝑑 𝑙2 = 𝑑 𝑟2
[

1 − 𝑊 (𝑟)
𝑟

] (28)

Finally, we have obtained this function:

𝑊 (𝑟) = 𝑟 − 𝑟(3−2𝑚)
(

𝑟𝑚 −𝑊 𝑚
0
)(2− 2

𝑚 ) . (29)

For 𝑚 = 2, the geometry corresponds to the Ellis–Bronnikov wormhole,
hich features a spacetime without horizons. We employ two distinct

mbedded wormhole solutions from Eqs. (12) and (17), linking the
6 
radial coordinate 𝑟 and the radial distance 𝑙 through Eq. (14) (see
Fig. 13).

7. Dark matter profiles

Dark matter is a puzzling component of the universe, accounting for
29.6% of its mass energy, followed by dark energy at 67.4% and atomic

atter at 4%. Dark matter is essential in the formation and evolution
f galaxies. The widespread presence of traversable wormholes could
otentially be achieved within it, thanks to energy condition violations.

This research will investigate how different types of DM profiles impact
enclosed wormhole solutions linked to various DM halos.
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Fig. 7. Illustrates the behavior of 𝜌 − 𝑝𝑟 − 2𝑝𝑡 with parameters 𝛹1 = 0.02, 𝛹3 = 0.11, 𝛹2 = 1, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 for four scenarios: 𝐹 (𝑇 , 𝑇𝐺) gravity, URC
rofile, CDM halo with NFW profile, and SFDM profile.
Fig. 8. This illustrates the behavior of 𝜌 with the parameters 𝛹1 = −7.2, 𝛹3 = 0.11, 𝛹2 = 1, 𝛹4 = 0.05, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 for four distinct scenarios: 𝐹 (𝑇 , 𝑇𝐺)
ravity, the URC profile, the CDM halo with the NFW profile, and the SFDM profile.
Fig. 9. This illustrates the behavior of 𝜌 + 𝑝𝑟 with parameters 𝛹1 = −7.2, 𝛹3 = 0.11, 𝛹2 = 1, 𝛹4 = 0.05, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 for four different cases: 𝐹 (𝑇 , 𝑇𝐺)
ravity, the URC profile, the CDM halo with the NFW profile, and the SFDM profile.
c
i

a. URC profile: The authors in [98] show that the (URC) is a successful
approach for illustrating mass distribution in disk systems. The URC
rofile of the DM halo, as defined by [98], is also characterized by:

𝜌(𝑟) = 𝜌𝑠𝑟3𝑠
(𝑟 + 𝑟𝑠)(𝑟2 + 𝑟2𝑠 )

, (30)

In Eq. (30), 𝑟𝑠 is the radius parameter, and 𝜌𝑠 is the central density of
the dark matter halo according to the Universal Rotation Curve (URC).
In this research, we utilize the parameters 𝜌𝑠 = 6.9 × 106M⊙∕k pc3 and

= 91.2 k pc, obtained from observations of the M87 galaxy [99].
𝑠

7 
b. The CDM halo with NFW profile: The Navarro–Frenk–White (NFW)
profile is the most popular model for explaining the density pro-
file of cold dark matter (CDM) distribution [100]. Based on 𝑁-body
simulations [100,101], the NFW profile is written in the following way:

𝜌(𝑟) = 𝜌𝑠
(𝑟∕𝑟𝑠)(1 + 𝑟∕𝑟𝑠)2

, (31)

In this case, 𝑟𝑠 indicates the radius parameter, and 𝜌𝑠 stands for the
entral density of the universe. The central density of the M87 galaxy
s 𝜌𝑠 = 0.008 × 107.5 M⊙∕kpc3 [44], with a size of 𝑟𝑠 = 130 kpc as stated

in Ref. [18].
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Fig. 10. This illustrates the behavior of 𝜌−𝑝𝑟 under the conditions 𝛹1 = −7.2, 𝛹3 = 0.11, 𝛹2 = 1, 𝛹4 = 0.05, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 across four different scenarios:
𝐹 (𝑇 , 𝑇𝐺) gravity, URC profile, CDM halo with NFW profile, and SFDM profile.
Fig. 11. This illustrates the behavior of 𝜌+ 𝑝𝑡 with the parameters 𝛹1 = −7.2, 𝛹3 = 0.11, 𝛹2 = 1, 𝛹4 = 0.05, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 across four different scenarios:
(𝑇 , 𝑇𝐺) gravity, the URC profile, the CDM halo with the NFW profile, and the SFDM profile.
Fig. 12. This illustrates the behavior of 𝜌−𝑝𝑡 given the parameters 𝛹1 = −7.2, 𝛹2 = 1, 𝛹3 = 0.11, 𝛹4 = 0.05, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 across four different scenarios:
(𝑇 , 𝑇𝐺) gravity, URC profile, CDM halo with an NFW profile, and SFDM profile.
c. The SFDM profile: The SFDM model [102,103] for the dark matter
alo is expressed as follows.

𝜌(𝑟) = 𝜌𝑠 sin(𝜋 𝑟∕𝑟𝑠)
𝜋 𝑟∕𝑟𝑠

. (32)

• In Eq. (32), 𝑟𝑠 signifies the characteristic radius, whereas 𝜌𝑠 indi-
cates the central density of the SFDM (scalar field dark matter)
halo. The Milky Way galaxy has values of 𝜌𝑠 = 3.43 × 107 M⊙∕k pc3
and 𝑟𝑠 = 15.7 k pc according to reference 49. In this research,
we will assess the effectiveness of the achieved outcomes. Our
main research interest lies in examining the energy constraints
8 
in the context of 𝐹 (𝑇 , 𝑇𝐺) gravity, particularly for two enclosed
wormhole (WH) solutions. Furthermore, we will investigate the
impact of dark matter halos on the URC, NFW, and SFDM profiles
through an analysis of energy conditions.

• We utilize the embedded WH solutions obtained from Eqs. (24)
and (29), which connect the radial location 𝑟 and radial distance
𝑙 using Eq. (26). Moreover, we include the URC, NFW, and SFDM
profiles as energy density functions, substituting the existing grav-
itational energy density to evaluate their impact and efficacy on
the energy conditions. Figs. 1 and 8 show the energy density
profiles for 𝐹 (𝑇 , 𝑇𝐺) gravity models compared to the URC, NFW,
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Fig. 13. The behavior of 𝜌+ 𝑝𝑟 + 2𝑝𝑡 with the parameters 𝛹1 = −7.2, 𝛹2 = 1, 𝛹3 = 0.11, 𝛹4 = 0.05, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09 across four different scenarios: 𝐹 (𝑇 , 𝑇𝐺)
ravity, the URC profile, the CDM halo using the NFW profile, and the SFDM profile.
Fig. 14. The behavior of 𝜌 − 𝑝𝑟 − 2𝑝𝑡 is analyzed for the following parameters: 𝛹1 = −7.2, 𝛹2 = 1, 𝛹3 = 0.11, 𝛹4 = 0.05, 𝜚 = −0.01, 𝜔 = 0.06, 𝑚 = 2, and 𝑊0 = 0.09. This analysis is
onducted across four different scenarios: 𝐹 (𝑇 , 𝑇𝐺) gravity, URC profile, CDM halo with an NFW profile, and SFDM profile.
t
e

and SFDM profiles. The energy density mostly stays positive, aside
from the SFDM profile, which has positive values at its highest
point but negative values at small distances. 𝑙.

• Figs. 2 and 9 Demonstrate the null energy condition (NEC),
described as 𝜌 + 𝑝𝑟, for the included wormhole solutions in both
versions of 𝐹 (𝑇 , 𝑇𝐺) gravity. In the second scenario, there is a
notable breach of the NEC, while in the first scenario, this breach
is limited to specific instances of 𝐹 (𝑇 , 𝑇𝐺) gravity and SFDM. The
presence of exotic matter in dark matter halos characterized by
URC, NFW, and SFDM profiles is revealed through the violation
of the NEC. These dark matter halos play a crucial role in the
presence of embedded wormhole solutions.

• Figs. 3 and 10 display the contrast in characteristics of 𝜌− 𝑝𝑟 and
𝜌 + 𝑝𝑟. The weak energy condition (WEC) violations in specific
parts of the setups are depicted in Figs. 4 and 5 and 11 and
12 for both 𝐹 (𝑇 , 𝑇𝐺) gravity models. The SEC is represented as
𝜌 + 𝑝𝑟 + 2𝑝2 in Figs. 6 and 12 for both forms of 𝐹 (𝑇 , 𝑇𝐺) gravity
and is observed to be negative in specific parts of the wormhole
configurations. Ultimately, the breach of the trace energy condi-
tion (TEC) can be seen within certain radial distances. 𝑙 as shown
in Figs. 7 and 14 for both 𝐹 (𝑇 , 𝑇𝐺) gravity models.

8. Thin-shell around wormholes stability through radial linear
perturbation

This section is devoted to presenting the behavior of shell radius
around WH geometry. For this purpose, we use Schwarzschild BH as an
outer manifold and inner geometry is traversable WH with two different
choices of shape functions for details see the Refs. [104–111]. Then, we
explore the effects choices of two shape functions. By using the Israel
9 
formalism, we develop the energy contents of matter located at the shell
𝑟 = 𝛾. It can be evaluated as:

𝜎0 = − 1
4𝜋 𝛾0

⎧

⎪

⎨

⎪

⎩

√

−2𝑚
𝛾0

+ 1 −
√

−
𝑏(𝛾0)
𝛾0

+ 1
⎫

⎪

⎬

⎪

⎭

,

𝑝0 =
1

8𝜋 𝛾20

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾0
(

𝑏′(𝛾0) − 2) + 𝑏(𝛾0)
√

1 − 𝑏(𝛾0)
𝛾0

+
2(𝛾0 − 𝑚)
√

1 − 2𝑚
𝛾0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (33)

where density and pressure at the equilibrium position are denoted
with 𝜎0 and 𝑝0, respectively. Now, we want to use linearized radial per-
turbation at 𝛾 = 𝛾0 to investigate the stable configuration of a developed
hin-shell around WH geometry. We get the effective potential from the
quation of motion of the shell as:

𝑉 (𝛾) = 𝑚𝑏(𝛾)
16𝜋2𝛾4𝜎2

−
𝑏(𝛾)2

64𝜋2𝛾4𝜎2
−
𝑏(𝛾)
2𝛾

− 𝑚2

16𝜋2𝛾4𝜎2
− 4𝜋2𝛾2𝜎2− 𝑚

𝛾
+ 1. (34)

The energy conservation constraints are followed by stress–energy
tensor components.

𝑝 𝑑
𝑑 𝜏 (4𝜋 𝛾

2) + 𝑑
𝑑 𝜏 (4𝜋 𝛾

2𝜎) = 0, (35)

which turns out to be

𝜎′ = −2(𝜎 + 𝑝(𝜎))
𝛾

. (36)

We can expand the effective potential as:
1
𝑉 (𝛾) = 𝑉 (𝛾0) + (𝛾 − 𝛾0)𝑉 ′(𝛾0) + 2
(𝛾 − 𝛾0)2𝑉 ′′(𝛾0) + 𝑂[(𝛾 − 𝛾0)3], (37)
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Fig. 15. Stable regions for case (i) for different values of 𝜔 as 𝜔 = 0.3 (first plot), 𝜔 = 0.4 (second plot), 𝜔 = 0.5 (third plot). The straight line shows the position of the expected
event horizon of the developed structure. Stable regions are denoted with shaded regions.
Fig. 16. Stable regions for case i for different values of 𝜔 as 𝑊0 = 0.1 (first plot), 𝑊0 = 0.4 (second plot), 𝑊0 = 0.6 (third plot).
Fig. 17. Stable regions for case ii for different values of 𝜔 as 𝑚 = 0.5 (first plot), 𝑚 = 0.7 (second plot), 𝑚 = 1 (third plot).
which leads to
𝑉 (𝛾) = 1

2
(𝛾 − 𝛾0)2𝑉 ′′(𝛾0). (38)

Also, we have

𝑀(𝛾0) = 4𝜋 𝛾20𝜎0, 𝑀 ′(𝛾0) = −8𝜋 𝛾0𝑝0, 𝑀 ′′(𝛾0) = −8𝜋 𝑝0 + 16𝜋 𝜉20 (𝜎0 + 𝑝0),

with 𝜉20 = 𝑑 𝑝∕𝑑 𝜎|𝛾=𝛾0 is a EoS parameter. Hence, we obtain:

𝑉 ′′(𝛾0) = − 1
2𝛾40𝑀

4

{

−𝛾40𝑀(2𝑚 − 𝑏(𝛾0))
(

𝑀 ′′(2𝑚 − 𝑏(𝛾0)) − 4𝑀 ′𝑏′(𝛾0)
)

+ 𝛾40𝑀
2 ((𝑏(𝛾0) − 2𝑚)𝑏′′(𝛾0) + 𝑏′(𝛾0)2

)

+ 𝛾0𝑀
4
(

𝛾0
(

𝛾0𝑏
′′(𝛾0) − 2𝑏′(𝛾0) +

(

𝑀 ′)2
)

+ 2𝑏(𝛾0) + 4𝑚
)

+ 3𝛾40
(

𝑀 ′)2 (𝑏(𝛾0) − 2𝑚)2

+ 𝛾0𝑀
5 (𝛾0𝑀

′′ − 4𝑀 ′) + 3𝑀6} . (39)

For stable configuration, we can obtain

−
(

−𝜎 (2𝑚 − 𝑏(𝛾 ))
(

32𝜋 𝛾 𝑝 𝑏′(𝛾 ) + (2𝑚 − 𝑏(𝛾 ))(16𝜋 𝜉2(𝑝 + 𝜎 ) − 8𝜋 𝑝 )
)

0 0 0 0 0 0 0 0 0 0

10 
+48𝜋 𝑝20(𝑏(𝛾0) − 2𝑚)2
+4𝜋 𝛾20𝜎20

(

(𝑏(𝛾0) − 2𝑚)𝑏′′(𝛾0) + 𝑏′(𝛾0)2
)

+64𝜋3𝛾30𝜎
4
0
(

𝛾20 𝑏
′′(𝛾0) − 2𝛾0𝑏′(𝛾0) + 2𝑏(𝛾0) + 64𝜋2𝛾30𝑝

2
0 + 4𝑚)

+2048𝜋5𝛾60𝜎
5
0 ((2𝜉

2
0 + 3)𝑝0 + 2𝜉20𝜎0) + 3072𝜋5𝛾60𝜎

6
0
)

(128𝜋3𝛾60𝜎
4
0 )

−1 > 0,(40)

It can be further characterized as

𝑉 ′′(𝛾0) > 0, ⇒ 𝜁 (𝛾0)𝜉20 − 𝜂0 > 0. (41)

Here, the coefficient of the EoS parameter is denoted with 𝜁 (𝛾0) = 𝜁0
and remaining terms are named as 𝜂(𝛾0)𝜂0.

The stable configuration can be obtained from the following con-
straints:

• (i) For 𝜁0 < 0 ⇒ 𝜉20 < 𝜂0∕𝜁0:
• (ii) For 𝜁0 > 0 ⇒ 𝜉20 > 𝜂0∕𝜁0,

where

𝜂0 = 𝑏(𝛾0)
(

8
(

𝑚𝑝0(6𝑝0 + 𝜎0) − 4𝜋2𝛾30𝜎
4
0
)

− 𝛾0𝜎0
(

𝛾0𝜎0𝑏
′′(𝛾0) + 8𝑝0𝑏′(𝛾0)

))

+ 𝛾 𝜎
(

2𝛾 𝜎 𝑏′′(𝛾 )
(

𝑚 − 8𝜋2𝛾3𝜎2
)

0 0 0 0 0 0 0
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Fig. 18. Stable regions for case ii for different values of 𝜔 as 𝑟0 = 0.1 (first plot), 𝑟0 = 0.4 (second plot), 𝑟0 = 0.6 (third plot).
+ 𝑏′(𝛾0)
(

−𝛾0𝜎0𝑏′(𝛾0) + 32𝜋2𝛾30𝜎
3 + 16𝑚𝑝0

))

− 2𝑝0𝑏(𝛾0)2(6𝑝0 + 𝜎0) − 8 (32𝜋4𝛾60𝜎
4
0
(

4𝑝20 + 6𝑝0𝜎0 + 3𝜎20
)

(42)
+ 8𝜋2𝛾30𝑚𝜎

4
0 + 𝑚2𝑝0(6𝑝0 + 𝜎0)

)

,

𝜁0 = 4𝜎0(𝑝0 + 𝜎0)
(

4𝑚𝑏(𝛾0) − 𝑏(𝛾0)2 + 256𝜋4𝛾60𝜎
4
0 − 4𝑚2) .

We consider these two cases of shape functions given as:

𝑏1(𝛾0) = −
𝛾50

𝛾40 +𝑊 4
0 (𝑊0 − 𝜔)

+ 𝛾0 + 𝜔,

𝑏2(𝛾0) = 𝛾0 − 𝛾3−2𝑚0
(

𝛾𝑚0 − 𝑟𝑚0
)2− 2

𝑚 .

• We observe the impact of physical parameters on the stable con-
figurations of the developed thin-shell around the WH structure
as shown in Figs. 15–18. For the first case, we observe that the
shape function parameter greatly affects the stable regions of the
shell. Also, the massive BH plays a remarkable role in maintaining
the shell’s stable configuration.

9. Conclusion

In this study, we study the modified 𝐹 (𝑇 , 𝑇𝐺) gravity model, an ex-
tension of teleparallel gravity incorporating the torsional invariant 𝑇𝐺,
introduced to construct a teleparallel equivalent of the Gauss–Bonnet
term. Through detailed derivations, we examined the teleparallel in-
variants, torsion tensors, and modified field equations resulting from
this framework. Where the geometry of wormhole (WH) solutions was
analyzed under the modified gravity context, considering conditions
for shape and redshift functions, as well as the violation of energy
conditions. Also, the anisotropic stress–energy tensor with its interplay
of radial and tangential pressures was incorporated to characterize the
material composition of WHs. These investigations reveal the structure
of 𝐹 (𝑇 , 𝑇𝐺) gravity and its applications in cosmology and astrophysics,
particularly for traversable wormholes and energy conditions.

The present study investigates 𝐹 (𝑇 , 𝑇𝐺) gravity, focusing on two
distinct and highly inclusive embedded wormhole (WH) solutions. The
newly proposed embedded shape functions are considered the most op-
timal options and satisfy the Morris and Thorne WH criteria. Moreover,
we investigated the influence of dark matter (DM) halos on URC, NFW,
and SFDM profiles within the context of the energy conditions case
of 𝐹 (𝑇 , 𝑇𝐺) gravity framework. The shape functions studied fulfill all
required criteria for the presence of WH structures in the presence of
DM. The primary findings of this study can be summarized as follows:

• Figs. 1 and 8 show the energy density, represented as 𝜌, for
the URC, NFW, and SFDM distributions within the framework of
𝐹 (𝑇 , 𝑇𝐺) gravity, as well as for the two 𝐹 (𝑇 , 𝑇𝐺) gravity models.
It is observed that the energy density stays non-negative in all
wormhole (WH) designs, except for the SFDM matter profile at
small radial distances 𝑙.
11 
• Figs. 2 and 9 illustrate the important energy condition, repre-
sented as 𝜌 + 𝑝𝑟, for embedded wormhole (WH) solutions in both
variations of 𝐹 (𝑇 , 𝑇𝐺) gravity. In the second model of 𝐹 (𝑇 , 𝑇𝐺)
gravity, the negativity of 𝜌+𝑝𝑟 can be observed, while in the first
model it is only seen for 𝐹 (𝑇 , 𝑇𝐺) gravity and scalar field dark
matter (SFDM). Exotic matter is detected when the sum of density
and radial pressure has a negative nature. Since exotic matter
is essential for making a wormhole, the outcomes of this study,
which involve embedded solutions for WH, are both possible and
physically plausible.

• The Weak Energy Condition (WEC), shown as 𝜌 + 𝑝𝑡, is depicted
in Figs. 4 and 5 (first model) and Figs. 11 and 12 (second model)
under the framework of 𝐹 (𝑇 , 𝑇𝐺) gravity. The Strong Energy
Condition (SEC), represented by 𝜌+𝑝𝑟+ 2𝑝2, is shown in Figs. 6 and
12 for the identical gravitational model. Moreover, it has been
observed that in specific areas of the wormhole (WH) setups, this
characteristic displays negative values.

• Figs. 7 and 14 exhibit negative values in specific radial distance
intervals 𝑙, as illustrated by the graphical representation of the
trace energy condition (𝜌 − 𝑝𝑟 − 2𝑝2).

• We studied two specific models of 𝐹 (𝑇 , 𝑇𝐺) gravity to investi-
gate the physical viability of wormhole (WH) solutions under
varying parameter constraints. For the first model, 𝐹 (𝑇 , 𝑇𝐺) =
𝛹1

(

−𝛹3𝑇𝐺
√

𝑇

)𝛹2
, we established that physically meaningful solu-

tions require 𝛹2 = 1, with positive values of 𝛹1 and 𝛹3 confined
to the range (0, 1). In the second equation, 𝐹 (𝑇 , 𝑇𝐺) = 𝛹1(𝛹2𝑇𝐺 +
𝑇 2) + 𝛹3(𝛹4𝑇𝐺 + 𝑇 2)2 − 𝑇 , it is also required that 𝛹2 = 1, with
small positive values of 𝛹3 and 𝛹4 for physical validity. The
figures explain the energy density (𝜌), radial pressure (𝑝𝑟), and
tangential pressure (𝑝𝑡) for profiles like URC, CDM halo with
NFW, and SFDM, confirming compliance with energy conditions.
These results show the potential of 𝐹 (𝑇 , 𝑇𝐺) gravity to support
wormhole structures and explain exotic spacetime formations.

• The stable configurations of the generated thin-shell surrounding
the WH structure are impacted by physical parameters, as illus-
trated in Figs. 15–18. We find that in the first scenario, the stable
portions of the shell are significantly influenced by the shape
function parameter. The massive BH also contributes significantly
to the shell’s stable structure.

We explored embedded wormhole (WH) solutions through two
different methods, concentrating on the Karmarkar criterion and the
generalized Ellis–Bronnikov spacetime. Using the Karmarkar condition
within class-I Riemannian embeddings, we established important equa-
tions controlling the geometry of embedded WHs, yielding particular
solutions such as the embedded shape function. The next method
focused on the extremely static Ellis–Bronnikov WH model, known
for its absence of horizons and geometrical features linked to radial
distance and proper radial coordinate. Analytical findings showed a
relationship between the radial coordinate and proper distance via
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embedding equations, allowing for the examination of WH properties
with varying parameter setups. Where numerical analysis and graphical
epresentations illustrated the characteristics of energy density (𝜌),

radial pressure (𝑝𝑟), tangential pressure (𝑝𝑡), and their mixtures in
different situations, such as 𝐹 (𝑇 , 𝑇𝐺) gravity, the URC profile, the CDM
alo with the NFW profile, and the SFDM profile. These results offer
 more thorough understanding of the geometric and physical traits
f embedded WH solutions, illustrating their reliance on particular
arameters and gravitational profiles.

This research investigates how URC, NFW, and SFDM dark mat-
ter profiles affect wormhole solutions within the context of 𝐹 (𝑇 , 𝑇𝐺)
gravity. Embedding these profiles as energy density functions in the
nalysis emphasizes their influence on energy conditions such as NEC,
EC, SEC, and TEC. The results illustrate energy conditions, especially

elated to the SFDM profile, where negative energy densities are seen
t short radial distances. Moreover, breaches in NEC are seen in all pro-
iles, where the importance of exotic matter in maintaining wormhole
tructures inside dark matter halos is. The results explain the important
nteraction between the distribution of dark matter density and the
nergy limitations that control traversable wormholes.
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Appendix A

𝜒1 = − (

3𝑏′(𝑟) + 2) 𝜆′(𝑟) + 2𝑟𝜆′′(𝑟) + 2𝑟𝜆′(𝑟)2,

𝜒2 =
𝛹3

(

2𝑟2𝑏′(𝑟)𝜆′(𝑟) + 𝑏(𝑟)2
(

−2𝑟𝜆′′(𝑟) − 2𝑟𝜆′(𝑟)2 + 3𝜆′(𝑟)) + 𝑟𝜒1𝑏(𝑟)
)

𝑟5
√

(𝑟−𝑏(𝑟))2𝜆′(𝑟)
𝑟5

,

𝜒3 =
𝛹2

(

𝛹2 + 2) 𝑟2 ((5𝑏(𝑟) − 𝑟
(

2𝑏′(𝑟) + 3)) 𝜆′(𝑟) + 𝑟(𝑟 − 𝑏(𝑟))𝜆′′(𝑟)
)

(𝑟 − 𝑏(𝑟))2𝜆′(𝑟)2
,

𝜒4 = 2𝑟𝑏′′(𝑟)𝜆′(𝑟) − 3𝑏′(𝑟)2𝜆′(𝑟) + 2𝑏′(𝑟) (2𝑟𝜆′′(𝑟) + 𝑟𝜆′(𝑟)2 − 4𝜆′(𝑟)) ,
𝜒5 = −𝜆′(𝑟) (4𝑟2𝜆′′(𝑟) + 15) + 8𝑟𝜆′(𝑟)2 + 𝑟

(

11𝜆′′(𝑟) − 2𝑟𝜆(3)(𝑟)) ,
𝜒6 = −3𝑟𝑏′′(𝑟) + 18𝑏′(𝑟) + 4𝑟2𝜆′′(𝑟) + 8,
𝜒 = −2𝑟 (2𝑏′(𝑟) + 3) 𝜆′(𝑟)2 + 𝑟

(

2𝑟𝜆(3)(𝑟) − (

7𝑏′(𝑟) + 8) 𝜆′′(𝑟)) + 𝜒 𝜆′(𝑟),
7 6

12 
𝜒8 = 𝑟𝜒7𝑏(𝑟) + 𝜒5𝑏(𝑟)2 + 𝑟2𝜒4,

𝜒9 = 2𝑟2𝑏′(𝑟)𝜆′(𝑟) + 𝑏(𝑟)2
(

−2𝑟𝜆′′(𝑟) − 2𝑟𝜆′(𝑟)2 + 3𝜆′(𝑟)) + 𝑟𝜒1𝑏(𝑟),

10 = 𝑟
(

2𝑟𝜆(4)(𝑟) − 𝜆(3)(𝑟)
(

11𝑏′(𝑟) + 14))

+ 2𝜆′′(𝑟) (−5𝑟𝑏′′(𝑟) + 34𝑏′(𝑟) + 20) + 4𝑟2𝜆′′(𝑟)2,
11 = 3𝑟2𝑏(3)(𝑟) − 30𝑟𝑏′′(𝑟) + 8𝑏′(𝑟) (2𝑟2𝜆′′(𝑟) + 15)

− 4𝑟3𝜆(3)(𝑟) + 24𝑟2𝜆′′(𝑟) + 40,
12 = −4𝑟𝜆′(𝑟)2 (𝑟𝑏′′(𝑟) − 8𝑏′(𝑟) − 6) − 𝜒11𝜆

′(𝑟) + 𝑟𝜒10,

𝜒13 = 2𝑟2𝜆(4)(𝑟) + 4𝑟2𝜆′′(𝑟)2 − 19𝑟𝜆(3)(𝑟) + 70𝜆′′(𝑟),
14 = 𝜆′(𝑟)

(

4𝑟3𝜆(3)(𝑟) − 32𝑟2𝜆′′(𝑟) − 90) + 40𝑟𝜆′(𝑟)2 + 𝑟𝜒13,

𝜒15 = 𝜆′(𝑟)
(

−9𝑟𝑏′′(𝑟) + 8𝑟2𝜆′′(𝑟) + 40)

− 12𝑟𝜆′(𝑟)2 + 2𝑟 (3𝑟𝜆(3)(𝑟) − 14𝜆′′(𝑟)) ,
𝜒16 = 3𝑟𝑏′′(𝑟)𝜆′′(𝑟) + 𝑟𝑏′′(𝑟)𝜆′(𝑟)2 +

(

𝑟𝑏(3)(𝑟) − 7𝑏′′(𝑟)) 𝜆′(𝑟),
17 = −2𝑏′(𝑟)2 (5𝑟𝜆′′(𝑟) + 2𝑟𝜆′(𝑟)2 − 15𝜆′(𝑟)) + 𝜒15𝑏

′(𝑟) + 2𝑟𝜒16,

18 = 𝜒9
(

𝑟𝜒12𝑏(𝑟) − 𝜒14𝑏(𝑟)2 + 𝑟2𝜒17
)

+
(

𝛹2 − 2)𝜒2
8 ,

𝜒19 = −8𝑟2𝑏′(𝑟)𝜆′(𝑟) + 4𝑟𝑏(𝑟) ((3𝑏′(𝑟) + 2) 𝜆′(𝑟) − 2𝑟𝜆′′(𝑟) − 2𝑟𝜆′(𝑟)2)

+ 4𝑏(𝑟)2 (2𝑟𝜆′′(𝑟) + 2
× 𝑟𝜆′(𝑟)2 − 3𝜆′(𝑟)) ,

20 =
8
(

𝛹2 − 1)𝛹2𝜒8(𝑟 − 𝑏(𝑟))
(

𝑟
(

3𝑏′(𝑟) + 2) − 3𝑏(𝑟))

𝑟𝜒2
9

,

𝜒21 =
𝛹2𝑟2(𝑟(2𝜆(𝑟) − 1) − 2𝑏(𝑟)(𝜆(𝑟) − 1))

(𝑟 − 𝑏(𝑟))2𝜆′(𝑟)
+ 8𝛹2 − 8,

𝜒22 =
𝛹2𝑟2

(

𝜆(𝑟)
(

𝑏′(𝑟) + 2𝑟) − 𝑏′(𝑟) − 𝑏(𝑟)
(

2𝜆(𝑟)2 + 3𝜆(𝑟) + 1) + 2𝑟𝜆(𝑟)2 + 2𝑟)
(𝑟 − 𝑏(𝑟))2𝜆′(𝑟)

,

23 =
16

(

𝛹2 − 1)𝛹2𝜒8(𝑟 − 𝑏(𝑟))𝜆(𝑟)
(

𝑟2
(

3𝑏′(𝑟) + 2𝜆(𝑟) + 4) − 𝑏(𝑟)(2𝑟𝜆(𝑟) + 4𝑟 + 3))
𝑟2𝜒2

9

.

Appendix B

𝜁1 = 𝛹3𝛹4𝑟
9𝑏′(𝑟)2

(

𝛹4𝑟
2 (2𝑟

(

−73𝑟𝑏(𝑟) + 41𝑏(𝑟)2 + 32𝑟2) 𝜆′′(𝑟)
+ 𝑟

(

−56𝑟𝑏(𝑟) + 31𝑏(𝑟)2 + 24𝑟2) 𝜆′(𝑟)2
− 6 (−71𝑟𝑏(𝑟) + 41𝑏(𝑟)2 + 30𝑟2) 𝜆′(𝑟)) − 80(2𝑟 − 3𝑏(𝑟))(𝑟 − 𝑏(𝑟))2𝜆′(𝑟)2

)

,

𝜁2 = −3𝑟2 (−16𝑟𝑏(𝑟) + 15𝑏(𝑟)2 + 4𝑟2) 𝜆′(𝑟)
+ 4𝑟3 (−5𝑟𝑏(𝑟) + 4𝑏(𝑟)2 + 𝑟2

)

𝜆′′(𝑟) − 2 ((5𝑟2 + 14) 𝑟2𝑏(𝑟)
−
(

5𝑟2 + 16) 𝑟𝑏(𝑟)2 + 6𝑏(𝑟)3 − 4𝑟3) 𝜆′(𝑟)2,
𝜁3 = (𝑟 − 𝑏(𝑟))𝜆′(𝑟)

(

8𝑟2
(

−3𝑟𝑏′′(𝑟) + 2𝑟2𝜆′′(𝑟) + 12)

+ 𝑟𝑏(𝑟)
(

27𝑟𝑏′′(𝑟) − 56𝑟2𝜆′′(𝑟) − 404) + 𝑏(𝑟)2

×
(

38𝑟2𝜆′′(𝑟) + 339)) + 2𝑟 (−10𝑟𝑏(𝑟) + 7𝑏(𝑟)2 + 3𝑟2) 𝜆(3)(𝑟)
+ 2𝑟(𝑟 − 𝑏(𝑟))

(

121𝑟𝑏(𝑟) − 95𝑏(𝑟)2 − 32𝑟2)

× 𝜆′′(𝑟) + 2𝑟2𝑏(𝑟) (−5𝑟𝑏(𝑟) + 3𝑏(𝑟)2 + 2𝑟2) 𝜆′(𝑟)3
+ 𝑟

(

144𝑟2𝑏(𝑟) − 208𝑟𝑏(𝑟)2 + 91𝑏(𝑟)3 − 28𝑟3) 𝜆′(𝑟)2,
𝜁4 = −80𝛹1𝑟

10(𝑟 − 𝑏(𝑟))2𝜆′(𝑟)

+ 16𝛹3
(

−8𝛹4𝜁2𝑟
3(𝑟 − 𝑏(𝑟))2𝜆′(𝑟) − 1664(𝑟 − 𝑏(𝑟))6𝜆′(𝑟)3 + 𝛹 2

4 𝜁3𝑟
7) + 𝑟15,

𝜁5 = 𝑟3(𝑟 − 𝑏(𝑟))𝜆′′(𝑟) + 𝑟2(5𝑏(𝑟) − 3𝑟)𝜆′(𝑟) + (𝑟 − 𝑏(𝑟))2𝜆′(𝑟)2,

𝜁6 = 48𝜆′(𝑟)2 (21𝑟2𝜆′′(𝑟) − 93𝑟𝜆′(𝑟) + 28𝜆′(𝑟)2)

+𝛹4𝑟
3 (2𝑟3𝜆′′(𝑟)2 − 2 (5𝑟2 + 14) 𝜆′(𝑟)3 + 𝑟𝜆′(𝑟)2

×
(

2
(

𝑟2 + 10) 𝜆′′(𝑟) + 15) − 13𝑟2𝜆′(𝑟)𝜆′′(𝑟) + 20𝑟𝜆′(𝑟)4) ,
𝜁7 = 2 (𝛹4𝑟

4 + 168) 𝜆′(𝑟)2 + 2𝑟2 (𝛹4𝑟
2 + 84) 𝜆′′(𝑟) − 3𝑟 (𝛹4𝑟

2 + 264) 𝜆′(𝑟),
𝜁8 = 𝜁8 = 2𝑟 ((24 − 11𝑟𝑏′′(𝑟)) 𝜆′′(𝑟) + 2𝑟2𝜆′′(𝑟)2 + 𝑟

(

𝑟𝜆(4)(𝑟) − 8𝜆(3)(𝑟)))

+ 2𝑟 (15 − 4𝑟𝑏′′(𝑟)) 𝜆′(𝑟)2
+ 𝜆′(𝑟)

(

−7𝑟2𝑏(3)(𝑟) + 66𝑟𝑏′′(𝑟) + 4𝑟3𝜆(3)(𝑟) − 28𝑟2𝜆′′(𝑟) − 48) ,
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4 𝜁8𝑟

5 − 384𝜆′(𝑟)2 (7𝑟2𝜆′′(𝑟) − 23𝑟𝜆′(𝑟) + 4𝜆′(𝑟)2)

− 16𝛹4𝑟
3 (𝑟3𝜆′′(𝑟)2 −

(

3𝑟2 + 2) 𝜆′(𝑟)3
+𝑟𝜆′(𝑟)2

((

𝑟2 + 2) 𝜆′′(𝑟) + 3) − 4𝑟2𝜆′(𝑟)𝜆′′(𝑟) + 2𝑟𝜆′(𝑟)4) ,
𝜁10 = 3𝛹 2

4 𝑟
7𝑏′′(𝑟)𝜆′′(𝑟) + 𝜆′(𝑟)2

(

𝛹 2
4 𝑟

7𝑏′′(𝑟) + 192𝑟2𝜆′′(𝑟))

+𝛹 2
4 𝑟

6 (𝑟𝑏(3)(𝑟) − 8𝑏′′(𝑟)) 𝜆′(𝑟)
− 576𝑟𝜆′(𝑟)3 + 96𝜆′(𝑟)4,

𝜁11 = 7680𝜆′(𝑟)2 (7𝑟2𝜆′′(𝑟) − 29𝑟𝜆′(𝑟) + 7𝜆′(𝑟)2)

+ 32𝛹4𝑟
3 (8𝑟3𝜆′′(𝑟)2 − 4 (9𝑟2 + 13) 𝜆′(𝑟)3 + 𝑟𝜆′(𝑟)2

×
(

8
(

𝑟2 + 5) 𝜆′′(𝑟) + 49) − 47𝑟2𝜆′(𝑟)𝜆′′(𝑟) + 40𝑟𝜆′(𝑟)4)

+𝛹 2
4 𝑟

5 (4𝑟3𝜆′(𝑟)4 − 12𝑟2𝜆′(𝑟)3 + 𝑟𝜆′(𝑟)2

×
(

8𝑟2𝜆′′(𝑟) − 199) − 2𝑟 (4𝑟2𝜆(4)(𝑟) + 6𝑟2𝜆′′(𝑟)2 − 44𝑟𝜆(3)(𝑟) + 173𝜆′′(𝑟))

+ 𝜆′(𝑟)
(

−16𝑟3𝜆(3)(𝑟)

+ 140𝑟2𝜆′′(𝑟) + 450)) ,
𝜁12 = 𝛹 2

4 𝑟
5 (4𝑟𝜆′(𝑟)2

(

2𝑟𝑏′′(𝑟) + 2𝑟2𝜆′′(𝑟) − 65)

+ 𝑟
((

20𝑟𝑏′′(𝑟) − 439) 𝜆′′(𝑟) − 20𝑟2𝜆′′(𝑟)2 − 12𝑟
+

(

𝑟𝜆(4)(𝑟) − 10𝜆(3)(𝑟)))

+ 𝜆′(𝑟)
(

6𝑟2𝑏(3)(𝑟) − 69𝑟𝑏′′(𝑟) − 24𝑟3𝜆(3)(𝑟) + 198𝑟2𝜆′′(𝑟) + 539)

+ 4𝑟3𝜆′(𝑟)4 − 10𝑟2𝜆′(𝑟)3) + 768𝜆′(𝑟)2 (35𝑟2𝜆′′(𝑟) − 135𝑟𝜆′(𝑟) + 28𝜆′(𝑟)2)

+ 16𝛹4𝑟
3 (12𝑟3𝜆′′(𝑟)2

− 48 (𝑟2 + 1) 𝜆′(𝑟)3 + 𝑟𝜆′(𝑟)2
(

4
(

3𝑟2 + 10) 𝜆′′(𝑟) + 59)

− 63𝑟2𝜆′(𝑟)𝜆′′(𝑟) + 40𝑟𝜆′(𝑟)4) ,
𝜁13 = 𝛹 2

4 𝑟
5 (4𝑟𝜆′(𝑟)2

(

5𝑟𝑏′′(𝑟) + 𝑟2𝜆′′(𝑟) − 55)

− 2𝑟 ((181 − 26𝑟𝑏′′(𝑟)) 𝜆′′(𝑟) + 11𝑟2𝜆′′(𝑟)2 + 6𝑟 (𝑟𝜆(4)(𝑟)
− 9𝜆(3)(𝑟))) + 𝜆′(𝑟)

(

16𝑟2𝑏(3)(𝑟) − 169𝑟𝑏′′(𝑟) − 24𝑟3𝜆(3)(𝑟) + 184𝑟2𝜆′′(𝑟) + 410)

+ 2𝑟3𝜆′(𝑟)4 − 4𝑟2
× 𝜆′(𝑟)3

)

+ 768𝜆′(𝑟)2 (21𝑟2𝜆′′(𝑟) − 75𝑟𝜆′(𝑟) + 14𝜆′(𝑟)2)

+ 16𝛹4𝑟
3 (8𝑟3𝜆′′(𝑟)2 − 2 (14𝑟2 + 11) 𝜆′(𝑟)3

+ 𝑟𝜆′(𝑟)2
(

4
(

2𝑟2 + 5) 𝜆′′(𝑟) + 31) − 37𝑟2𝜆′(𝑟)𝜆′′(𝑟) + 20𝑟𝜆′(𝑟)4) ,
𝜁14 = 4𝜁9𝑟7𝑏(𝑟) + 2𝜁13𝑟6𝑏(𝑟)2 − 2𝜁12𝑟5𝑏(𝑟)3 + 𝜁11𝑟

4𝑏(𝑟)4 − 32𝜁6𝑟3𝑏(𝑟)5
+ 64𝜁7𝑟2𝑏(𝑟)6𝜆′(𝑟)2 − 1536𝑟𝑏(𝑟)7
× 𝜆′(𝑟)2

(

𝑟2𝜆′′(𝑟) − 5𝑟𝜆′(𝑟) + 4𝜆′(𝑟)2) + 768𝑏(𝑟)8𝜆′(𝑟)4 + 8𝜁10𝑟8,

𝜁15 = 8𝛹3
(

𝜆′(𝑟)
(

𝛹4
(

−𝑟5
)

(2𝑟 − 3𝑏(𝑟)) (𝑟𝑏′(𝑟) − 𝑏(𝑟)
)

− 2(𝑟 − 𝑏(𝑟))
(

𝛹4𝑟
6𝑏(𝑟) − 8(𝑟 − 𝑏(𝑟))3

)

𝜆′(𝑟)
)

+ 2𝛹4𝑟
6𝑏(𝑟)(𝑏(𝑟) − 𝑟)𝜆′′(𝑟)

)

+ 𝛹1𝑟
10,

𝜁16 = 𝜆′(𝑟)
(

𝛹2𝑟
5(2𝑟 − 3𝑏(𝑟)) (𝑟𝑏′(𝑟) − 𝑏(𝑟)

)

+ 2(𝑟 − 𝑏(𝑟))
(

𝛹2𝑟
6𝑏(𝑟) − 8(𝑟 − 𝑏(𝑟))3

)

𝜆′(𝑟)
)

+ 2𝛹2𝑟
6

× (𝑟 − 𝑏(𝑟))𝑏(𝑟)𝜆′′(𝑟),

𝜁17 = 𝛹4
(

−𝑟5
)

(2𝑟 − 3𝑏(𝑟)) (𝑟𝑏′(𝑟) − 𝑏(𝑟)
)

− 2(𝑟 − 𝑏(𝑟))
(

𝛹4𝑟
6𝑏(𝑟) − 8(𝑟 − 𝑏(𝑟))3

)

𝜆′(𝑟),

𝜁18 = 𝜆′(𝑟)
(

(2𝑟 − 3𝑏(𝑟)) (𝑟𝑏′(𝑟) − 𝑏(𝑟)
)

+ 2𝑟(𝑟 − 𝑏(𝑟))𝑏(𝑟)𝜆′(𝑟)
)

+ 2𝑟(𝑟 − 𝑏(𝑟))𝑏(𝑟)𝜆′′(𝑟),

𝜁19 = 𝜆′(𝑟)
(

𝛹4
(

−𝑟5
)

(2𝑟 − 3𝑏(𝑟)) (𝑟𝑏′(𝑟) − 𝑏(𝑟)
)

− 2(𝑟 − 𝑏(𝑟))
(

𝛹4𝑟
6𝑏(𝑟) − 8(𝑟 − 𝑏(𝑟))3

)

𝜆′(𝑟)
)

+ 2𝛹4𝑟
6𝑏(𝑟)(𝑏(𝑟) − 𝑟)𝜆′′(𝑟),

𝜁20 = −𝜆′(𝑟) (4𝑟2𝜆′′(𝑟) + 15) + 8𝑟𝜆′(𝑟)2 + 𝑟
(

11𝜆′′(𝑟) − 2𝑟𝜆(3)(𝑟)) ,
𝜁21 = 192𝑟2 (4𝑟𝑏′(𝑟)𝜆′′(𝑟) + 𝜆′(𝑟)

(

2𝑟𝑏′′(𝑟) + 𝑏′(𝑟)
(

−3𝑏′(𝑟) + 2𝑟𝜆′(𝑟) − 8)))

+ 𝑟𝑏(𝑟)
(

−2𝑟
(

2𝑏′(𝑟) + 3) 𝜆′(𝑟)2
( (3) ( ′ ) ′′ )
+ 𝑟 2𝑟𝜆 (𝑟) − 7𝑏 (𝑟) + 8 𝜆 (𝑟)

13 
+ 𝜆′(𝑟)
(

−3𝑟𝑏′′(𝑟) + 18𝑏′(𝑟) + 4𝑟2𝜆′′(𝑟) + 8)) + 𝜁20𝑏(𝑟)2,

𝜁22 = −16𝛹3
(

2𝛹4𝑟
6𝑏(𝑟)(𝑏(𝑟) − 𝑟)𝜆′′(𝑟) + 𝜁17𝜆

′(𝑟)
) 2

+ 4𝛹1𝜁16𝑟
10 − 4𝜁18𝑟5

(

8𝛹3𝛹4𝜁19 + 𝛹1𝛹2𝑟
10) ,

𝜁23 = 𝑟
(

2𝑟𝜆(4)(𝑟) − 𝜆(3)(𝑟)
(

11𝑏′(𝑟) + 14))

+ 2𝜆′′(𝑟) (−5𝑟𝑏′′(𝑟) + 34𝑏′(𝑟) + 20) + 4𝑟2𝜆′′(𝑟)2,

𝜁24 = 4𝑟𝜆′(𝑟)2 (−𝑟𝑏′′(𝑟) + 8𝑏′(𝑟) + 6) − 𝜆′(𝑟)
(

8𝑏′(𝑟)
(

2𝑟2𝜆′′(𝑟) + 15)

+ 𝑟
(

𝑟
(

3𝑏(3)(𝑟) − 4𝑟𝜆(3)(𝑟)
+ 24𝜆′′(𝑟)

)

− 30𝑏′′(𝑟)) + 40) + 𝜁23𝑟,

25 = 𝑟2
(

−2𝑏′(𝑟)2
(

5𝑟𝜆′′(𝑟) + 𝜆′(𝑟)
(

2𝑟𝜆′(𝑟) − 15))

+ 2𝑟 (𝑟𝑏(3)(𝑟)𝜆′(𝑟) + 𝑏′′(𝑟)
(

3𝑟𝜆′′(𝑟) + 𝜆′(𝑟)
(

𝑟𝜆′(𝑟) − 7)))

+𝑏′(𝑟)
(

𝜆′(𝑟)
(

−9𝑟𝑏′′(𝑟) + 8𝑟2𝜆′′(𝑟) + 40) − 12𝑟𝜆′(𝑟)2 + 2𝑟 (3𝑟𝜆(3)(𝑟) − 14𝜆′′(𝑟))))

− 𝑏(𝑟)2
(

𝑟
(

2𝑟2𝜆(4)(𝑟)

+ 4𝑟2𝜆′′(𝑟)2 − 19𝑟𝜆(3)(𝑟) + 70𝜆′′(𝑟)) + 𝜆′(𝑟)
(

4𝑟2
(

𝑟𝜆(3)(𝑟) − 8𝜆′′(𝑟)) − 90)

+ 40 𝑟𝜆′(𝑟)2
)

+ 𝜁24𝑟𝑏(𝑟),

26 = 𝑟2
(

4𝑟𝑏′(𝑟)𝜆′′(𝑟) + 𝜆′(𝑟)
(

2𝑟𝑏′′(𝑟) + 𝑏′(𝑟)
(

−3𝑏′(𝑟) + 2𝑟𝜆′(𝑟) − 8)))

+ 𝑟𝑏(𝑟)
(

−2𝑟
(

2𝑏′(𝑟) + 3) 𝜆′(𝑟)2 + 𝑟

×
(

2𝑟𝜆(3)(𝑟) − (

7𝑏′(𝑟) + 8) 𝜆′′(𝑟)) + 𝜆′(𝑟)
(

−3𝑟𝑏′′(𝑟) + 18𝑏′(𝑟) + 4𝑟2𝜆′′(𝑟) + 8))

+ 𝜁20𝑏(𝑟)2,

27 = 𝜁26(𝜆(𝑟) − 1)𝑏′(𝑟) − 𝑏(𝑟)(𝜆(𝑟) + 1)(2𝜆(𝑟) + 1) + 2𝑟 (𝜆(𝑟)2 + 𝜆(𝑟) + 1) ,
28 = 8𝛹3

(

𝜆′(𝑟)
(

𝛹4
(

−𝑟5
)

(2𝑟 − 3𝑏(𝑟)) (𝑟𝑏′(𝑟) − 𝑏(𝑟)
)

− 2(𝑟 − 𝑏(𝑟))
(

𝛹4𝑟
6𝑏(𝑟) − 24(𝑟 − 𝑏(𝑟))3

)

𝜆′(𝑟)
)

+2𝛹4𝑟
6𝑏(𝑟)(𝑏(𝑟) − 𝑟)𝜆′′(𝑟)

)

+ 𝛹1𝑟
10,

29 = −32𝜁28𝑟2(𝑟 − 𝑏(𝑟))2(𝜆(𝑟) − 1) ((5𝑏(𝑟) − 𝑟
(

2𝑏′(𝑟) + 3)) 𝜆′(𝑟) + 𝑟(𝑟 − 𝑏(𝑟))𝜆′′(𝑟)
)

− 16𝛹3
(

2𝛹4𝑟
6

× 𝑏(𝑟)(𝑏(𝑟) − 𝑟)𝜆′′(𝑟) + 𝜁17𝜆
′(𝑟)

) 2 + 4𝛹1𝜁16𝑟
10,

30 = 𝜁29 + 𝜁27𝑟
17
(

16𝜁15(𝑟 − 𝑏(𝑟))2𝜆′(𝑟)
𝑟15

− 1
)

.
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