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In this study, we explore generalized Ellis-Bronnikov and embedded wormbhole solutions within the context
of F(T,T;) gravity with an anisotropic matter source. To achieve the necessary conditions for wormhole
formation, we investigate the energy conditions within F(T,T) gravity. Our analysis includes various matter
distributions, particularly dark matter halos, using observational data from the M87 galaxy. We also explore
the results in the framework of F(T',T;) gravity, considering three different dark matter halo distributions.
For each case, the violation of energy conditions proves the presence of strange matter, say exotic matter,
which is a necessary condition for wormhole existence in this gravitational model when dark matter halos are
present. We investigate the effect of physical parameters on the stable configurations of the generated thin-shell
surrounding the wormbhole structure. In the first scenario, we can see that the shape function parameters have
a significant impact on the shell’s stable regions. In addition, the considered black hole contributes significantly
to the shell’s stability.

1. Introduction equations as WHs. Ellis combined geometry with a scalar field to
create a geodesically complete manifold without a horizon, introducing

In the mathematical theory of general relativity, there are geometric
shapes with imaginary topological configurations that can aid in star
travel. Theoretically, wormholes (WHs) connect distant locations in the
universe, shortening travel distances and times. Flamm [1] is known for
inventing the term “wormhole” and characterized the Schwarzschild-

type solution scenario in the application of GR field equations as

the idea of a traversable wormhole with a topological structure [4].
Bronnikov studied scalar-electrovacuum systems’ topologies without
scalar charge [5], while Clement described a group of traversable
higher-dimensional wormholes [6]. Morris and Thorne suggested the
presence of a traversable wormhole linking distant parts of space, with

an inoperative WH. Einstein and others [2] proposed a theoretical
relationship called the end model by connecting two identical sections
(Schwarzschild Bh), resulting in the creation of a singularity when the
wormhole throat collapses. Misner and Wheeler [3] were the original
individuals to identify these hypothetical attributes of the GR field

a throat upheld by exotic matter that does not adhere to the null energy
requirement (NEC), thus sustaining the wormhole [7]. The question
of limiting this problem to WH configuration for physical functions
is subject to debate. Extensive studies have been carried out on the
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formation of white holes from the spacetime of black holes and the
investigation into their different physical traits [8-10].

According to various cosmological studies [11,12], the rapid ex-
pansion of the universe is driven by mysterious dark energy, along
with dark matter (DM). Alternative gravity theories are considered
promising and contemporary approaches to uncovering the hidden
aspects of the universe and understanding its expansion. These theo-
ries modify the geometric structure of the Einstein-Hilbert action by
incorporating or replacing it with a curvature invariant. To explore
alternative gravity theories, we analyzed dark energy, dark matter,
and the universe’s ongoing expansion. Numerous studies have exam-
ined modified gravity theories, adding an extra curvature term to
the action [13-23]. Some notable modifications include f(R) gravity,
Gauss—Bonnet gravity, f(R, T) gravity, and scalar-tensor theory, among
others. Furthermore, significant modifications to the gravitational field
equations with fourth-order terms have been achieved by introducing
a torsion term T, corresponding to the Gauss—-Bonnet term 7 [24,25].
The fascinating characteristics of these gravity theories have drawn the
attention of many scientists in modern cosmology, high-energy physics,
and astrophysics. Jawad studied the energy conditions of F(T,T)
gravity in the FRW universe modeled by a perfect fluid, as discussed
in [26]. Zubair and Jawad explored thermodynamic equilibrium within
the framework of F(T,T,;) gravity [27]. Chattopadhyay et al. [28]
investigated potential reconstruction methods in F(T,T;) gravity by
integrating pilgrim dark energy and analyzed the equation of state
for various parameters across different scale factors. In his work [29],
Keskin examined phantom solutions in F(T,T;) gravity with different
dark energy models. Sharif and Nazir [30] proposed anisotropic models
for F(T,Tg) gravity, analyzing various cosmic epochs, including both
relativistic and non-relativistic periods.

Numerous approaches to General Relativity (GR) have been devel-
oped using various techniques, following Buchdahl!’s significant modi-
fication to gravity theory in 1970: f(R) gravity [31]. This theory alters
the Einstein-Hilbert action by incorporating a general function of the
Ricci scalar. R. f(R) gravity has been used to explain the geometry
related to dark energy models [32,33]. Within this framework, Harko
and his team studied stationary spherically symmetric wormholes made
of ordinary matter, ensuring compliance with the necessary energy
conditions [34]. Rahaman and colleagues proposed new methods for
constructing stable wormholes in f(R) gravity, demonstrating that
wormhole solutions could exist without requiring exotic matter [35,
36]. In their analysis of the nonexistence theorem for wormhole geome-
tries, Bronnikov and Starobinsky concluded that scalar-tensor models
are insufficient to describe wormholes with a positive scalar func-
tion [37]. Additionally, Bronnikov and others explored the challenges
to the nonexistence of wormholes in f(R) theory, while Bahamonde and
colleagues examined wormholes in galactic halos [38,39]. Other studies
have focused on static wormholes, with Shamir and Fayyaz investi-
gating traversable wormhole solutions using the Karmarkar condition
within f(R) gravity [40].

Bohmmer et al. [41] examined static traversable wormhole (WH)
solutions by analyzing a specific f(T)) model, along with redshift
and shape functions. Their findings demonstrated that physically vi-
able WH solutions can be achieved while meeting energy conditions.
Jamil et al. [42] derived exact WH solutions in f(T) gravity for
both anisotropic and isotropic cases, investigating energy conditions
to explore the properties of the matter involved. Sharif and Shamaila
(2015) studied N-C WH solutions in two scenarios. First, they used
a viable power-law f(T) model to construct the shape function for
WH geometry. They later performed a separate analysis of dynamic
and charged WH solutions in the context of f(T) gravity, considering
an anisotropic fluid. More recently, Mustafa and his team [43,44]
introduced new WH solutions using conformal symmetry and two
distinct approaches to N-C geometry.

M. Sharif and S. Nazir [45,46] investigated wormhole (WH) so-
lutions through different approaches such as N-C geometry and the
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equation of state. Mustafa and colleagues [47] obtained WH solutions
using conformal symmetry in the N-C geometry, within the frame-
work of gravitational theory F(T,T). Gaussian and Lorentzian matter
distributions were utilized as N-C geometric sources in two different
F(T,T;) gravity models. Shamir et al. [48] also applied Gaussian
and Lorentzian N-C geometry in modified gravity theories, discovering
stable spherically symmetric wormhole solutions in f(R) gravity and
proving the violation of the null energy condition (NEC). Banerjee and
his colleagues introduced nonexotic matter and isotropic pressure in
static spherical WH solutions in the context of f(R,7) gravity [49].
Mustafa and his colleagues [50-60] conducted research on spherical
WH solutions in different modified theories of gravity using different
approaches. Alencar et al. [61] analyzed the Ellis-Bronnikov wormhole
within asymptotically safe gravity on the Planck scale, demonstrating
that compliance with radial energy conditions at the throat radius
is guaranteed by asymptotic safety. It was determined that quantum
gravitational effects support Einstein’s field equations, requiring exotic
matter for the formation of WH space-time [62-85].

In their research, Sharma and Ghosh [86] examined the energy
needs of the embedded Ellis-Bronnikov wormhole (WH) and its ex-
tended form in a five-dimensional warped background. They discovered
that the diminished warp factor meets the weak energy conditions
and enhances other energy conditions when compared to the four-
dimensional scenario. Hassan and his team studied the stability of
WH solutions by analyzing two particular shape functions within the
framework of f(Q) gravity, with Q representing the non-metricity
tensor. Shamir and colleagues investigated WH formations in f(R, ¢, X)
gravity theory, with ¢ as the scalar potential and X as the kinetic
term [87]. The researchers studied how a fluid with no trace behaves
when subject to specific equations of state parameters and found that
the chosen shape functions failed to meet the energy conditions. G.
Mustafa and colleagues [88] discovered possible wormhole solutions
that satisfy energy requirements within f(Q) gravity by making use
of a spacetime embedded subject to the Karmarkar condition. Shekh
et al. [89] studied the physical constraints on accelerated emergent
f(Q) gravity model. Zwicky was the first to propose the presence of
dark matter in galaxies by utilizing the virial theorem [90]. According
to Rahaman et al. [91], galactic halos may have the ability to host
traversable wormholes due to the NFW density profile and flat rotation
curves found in galaxies [92-95].

In this study, we investigate generalized Ellis-Bronnikov and em-
bedded wormhole solutions in F(T, T,;) gravity with anisotropic matter
sources. Using observational data from the M87 galaxy, we analyze
energy conditions for wormhole formation under three distinct dark
matter halo models. The results confirm that the violation of energy
conditions, driven by exotic matter, is crucial for wormhole formation
in this framework. Exploration of wormhole solutions in F(T,T;) grav-
ity with anisotropic matter. Analysis of energy conditions using M 87
galaxy data and three dark matter halo models. Violation of energy
conditions confirms the role of exotic matter in wormhole formation.

The present study is organized in the following structure: We start
with an introduction 1 about this subject, Section 2 concentrates on
the assessment of F(T,Tg) gravity and investigation of the wormhole
(WH) geometry while also deriving the field equations within this
section. Section 3 examines the energy conditions relevant to gravity
involving the F(T,T) theory. Section 4 presents two separate models
along with their related field equations. Sections 5 and 6 discuss the
shape functions and solutions embedded in wormholes. In Section
7, the dark matter halos for scalar field dark matter (SFDM), ultra-
relativistic clusters (URC), and cold dark matter Navarro-Frenk—White
(CDM-NFW) distributions are discussed. The last conclusion of our
results 9.
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2. F(T,Tg) gravity

This section presents the new gravity model F(T,Ty). Kofinas and
his team suggested a new torsional constant T; in the F(T') formalism
in order to obtain a teleparallel version of the Gauss—Bonnet (GB) term.
Moreover, the symbol G will be used to symbolize the GB term.

hG = hTj; + D,
where total divergence is denoted with ©® and G is known as the
teleparallel invariant, which is defined as:

2
G=R>— 4R, R" + R0y R*
and

— ) grl] g3 gads a3 1018 ey a3 g1 ay Jay
T = (le lelechd +21CeblCa ICQd —21CeblCa lC_efchd
a3 3+01 02 32004 3 f bed
+ 2ICeblC“ le lccd)aglgza_;aA’

The Kronecker delta’s determinant is denoted by 6. The tensor-like
torsion in the expression T is raised to the power of four. The primary
tensors of importance, like contusion and torsion, can be expressed as:

1
Icabc = _Kbac = _E(Tbca - Tcab + Tabc)’
and
T, =hg(dhf —d.hy) =T —TI..

The modified gravity action F(T,T;) can be expressed as:

5= L/h[F(T,TG) + L ld%x.
2k2

The Lagrangian in this situation is represented by: £,,, where k2 = I,
and h = det(h;) = \/—_g, where g is the determinant of the metric tensor.
The modified gravity framework, which involves varying h; action,
leads to the derivation of modified field equations.

—(F(T',Tg)) = TFp(T, Tg) = TgFr, (T Te)n'!
— Z(H[ik]j — gk 4 H[ji]k)yk +2(H[ji]k + HUKI _ H[kj]i)cjk
+QHIK 4 kel aHIRCE + T B — b )
where
HY% = Fp(T, Te)(* Kl = K4 + Fr (T, Tg)
(7 (eely  JCIEICE, + €y I IS
1

ij 1ol ged \yodf o kprt iJ xafd il a kprt il odf
+ €1flcdplcqr)lct + P €Idle X(lcfr,t 2]quC,r)+€ pr e:ifle
J Jj ~a kprt
X (K, EICIthr)> +e e;df

((FTg(T, TRKI K + Fr (T. Te)Ch Kl Kt ) , )
and

W = Fp(T, Tg)ep e/ K, K],

dF(T,T;)

dF(T,Ty)
dt ’

Fr(T.Tg) = IT.
G

Fr, (T, Tg) =

The symmetric metric defines the geometry of the WH [45] as.
ds* = g2 — 'O — 2 Q2. 3
where dQ? = d6? + sin*0d§?.

+ The redshift function is defined as A(r) equal to twice the gravi-
tational potential function @(r). It is observed that the essential
redshift function does not have to comply with any horizon
constraints, thus enabling a round-trip journey. Because of this
intellectual aspect, A(r) must remain finite every where.
Moreover, ") = (1-W (r)/r)~!, with W (r) being a radial function
of the coordinate r, is referred to as the shape function due to its
role in determining the WH geometry.
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+ The presence of WH solution W (r() = r,, and the flaring out condi-
tion is defined as (W —W'r)/W?2 > 0. Additionally, the conditions
W'(Wy) < 1 and 1 —W(r)/r > 0 are further requirements for WHs
solutions.

+ These all kinds of conditions lead us to violate the energy condi-
tions.

For considering the WH’s material composition, we use the stress—
energy tensor with anisotropic fluid. Its given with this equation [47]:

T =0+ p)vy0, = pigsy + (0, — IS,

where the components of the 4-velocity vector (v,) are: v* = e“éé and
& = e‘V(Sf which follows v*v; = —£*¢, = 1. The stress-energy tensor
consists of tangential pressure, energy density with radial pressure,
with the condition that the tangential pressure is perpendicular to &,
and the radial pressure is parallel to &,. The diagonal tetrad is given
as:

[SIE

h! = diag e~ A, <1 - @) ,r,rsind|. 4)

The torsion scalar is:

=2 <1 i W(r)> 42 () <1 ~ W(r)> -

r2 r r r
and we get

RAOWEHW' ) S )W (r) W (r)
T = ) - 3 x| 1=
r r r
8w () y (1 3 W(r))
r r

_ 82’(r):V’(r) _ 12/1’(r)5W2(r) + 8}/(r)4W(r)’ ®)
r r r

It is noted that A(r) cannot be considered as constant. otherwise Tj;
vanishes. Using Egs. (3) and (6) in Eq. (1), field equations become

w!
p= ,z(r) Fy(T.Tg) + F(T,Tg) = TF(T. T) = Tg Fy, (T, Tg)
_ 4 <1 - Wm) Fpp(T.TT'
r r
2
. % <5W(r) . 3W2(r) e <1 ~ W(r)>>
I r r r

8 | 4] W(r)
FTGTG(T’TG)T(; + r_2 <1 - T <2— T))

X (P11, (T T)T ) + Frop (T THTY), %)
p = -z (2 (12 20 40 (W)
r r

r r
X Fp(T.Tg) + T Fr (T Tg)

244(r) < L
r

3

2
" ) Fror, (T Te) TG, (8)

p = —F(T.Ty)+ (1 <2— v _ —W,(')> <1 - M)

r r r r r

2
+ 2(1_ W(r)) <21§r) " A 2;')))
r F r
X FT(T,TG)+TGFTG(T,TG)+2 <1 - WT(”> <
+ <_£3/1 <W’(r)— W_2m> X <1 - W_(r))
r F r

2 2
- (0, 20y (-2 >FTUT0(T,TG>T,;

r r2 r2

1A

r r

) Fpp (T, T)T'

8A(r)

<l—m>2><(F (T, To)(TL)? + F, (T, T)TY) 9
2 r TeTgTe " > "G\ G TeTg*\ > 26/ gh
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3. Energy conditions

Five conditions related to energy conditions are recognized: null
energy condition (NEC), weak energy condition (WEC), dominant en-
ergy condition (DEC), strong energy condition (SEC), and trace energy
condition (TEC). In the context of the modified gravity being examined,
the energy conditions can be defined as follows [46]:

Tl = 7m 4 70D,
HV Hv HV

where T‘ff’) denotes the terms related to the dark source. Below, we

present the mathematical expression of the energy conditions:

« NEC: Vi, p+p;>0.

* WEC: p>0 and Vi, p+p; >0.
*DEC: p>0 Vi, p=xp;>0.

*SEC: p+p; 20 and Vi, p+Yp 0.
« TEC: p—p;>20 and Vi, p->p; >0.

4. First model of F(T,T;) gravity

Herein, we shall consider a specific model for F(T, T;) gravity [45-
471, which yields:

¥y

3T

F(T,T5) =Y, <— S (10)
VT >

where ¥,,¥;, and ¥, are the model parameters. It is essential to
mention that the parameter ¥, will remain equal to one throughout the
analysis to achieve physically viable results. For the other parameters,
only positive values between zero and one should work for the current
analysis. The negative value of energy density for F(T,T;) should
be negative, which is unsuitable for WH solutions. By using Eq. (10)
in Egs. (7)-(9), we obtain the respective modified form of the field
equations:

1024 (¥ — 1) ¥, y15(r — b(r))?

v P30 (r)
p=22 3"[/1)(22_ ’ o T 3
(r = b(r))* ' (r) X
4%, — 13+ 10+ 8], 11
[ " 48 (¥, — 1) ¥, xg(r — b(r))* A(r)
P =270 o - : , 12)
r}(9
2
b
" 2048 (¥, = 1) or s (% - ) A(r)
P = 272 'PIIQ 3
X9
+16 ?’2—)(3—)(224')(23—16] , 13)

where y;, i =1,...,23 are given in the Appendix A.
5. Second model of F(T,T;) gravity

Here, we shall take another specific model for F(T,T;) gravity [45-
471, which is expressed as:

F(T,Tg) =¥, (PyTg +T?) +¥5 (PyTg +T%) > - T. 14

where ¥,,¥,,¥;, and ¥, are the model parameters. It is also essential
to mention that the parameter ¥, will remain equal to one throughout
the analysis to achieve the physically viable results for the second
model of F(T,T;) gravity. For the other involved parameters, only
positive but small values, i.e., (0,1) for ¥; and ¥,, should be feasible
for the physically viable WH solutions in this analysis model. The
negative value of energy density for F(T, T;) should be negative, which
is unsuitable for wormhole solutions. Additionally, the positive values
of parameter ¥, are suitable to find viable regions for the WH solution.
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» Utilizing Eq. (14) in Egs. (7)-(9) yields a set of equations for the
initial model of F(T',T,) gravity (see Box I).

We adopt the restriction that A(r) = 2&(r) must be finite every-
where within the WH space-time since an event horizon cannot be
achieved in WH space-time. In the present part, we take the redshift
function as [45-47].
o=-2, 18)

r

where o is constant.

6. Embedded WH solutions

This research investigates embedded wormhole (WH) models through
two distinct approaches. The first approach examines a broader cat-
egory of embedded WH solutions by exploring the Karmarkar con-
dition [96] within class-1, as well as the Ellis and embedded Bron-
nikov spacetimes. The Karmarkar condition’s fundamental framework
is based on class-1 embedded solutions in Riemannian space. Eisenhart
studied the appropriate configuration for these class-1 embedded solu-
tions [97], which is derived from the properties of the Gauss equation.

Rmnpq =2¢ bm [pbq]n‘ (19)
The equation referred to as the Codazzi equation is expressed as:
buip) = F[Z:p] bimg = T [ bp) - 20

In the provided formula, square brackets denote anti-symmetrization,
where ¢ takes values of +1, and b,,, represents the coefficients of the
second differential form. By utilizing Egs. (19) and (20), we can derive
the Karmarkar condition as demonstrated below:

Ri323R1414 = Rypoa Ry334 + Rp12 R334, 2D

where Ry33 # Ry414 # 0. We can use the suitable Riemannian tensor in
Eq. (21), we have:

AV (r)

= {2 [ O+ V@] =0, O£,
1—ev
(22)
By solving (22), we have
e =14+ WeA0 ) 2(p), (23)

In this case, ¥ symbolizes a constant involved in integration. By fol-
lowing the steps detailed in [88], we derive the embedded shape
function.

»

wry=r—- —m 88—
r*+ Wi W, — o)

+o, 0<w< W, 24)
In this situation, W), represents the diameter of the wormhole’s en-
trance. We will continue by studying the generalized Ellis-Bronnikov

spacetime [86], which is an ultra-static wormhole model. This is the
second wormbhole solution derived by embedding, explained as follows:

ds® = —dt* + dI* + r*(1) [d0° + sin®(0)d¢?] . (25)

with

) = Wy +1m]"

(26)
The formulas presented above use / to denote the proper radial dis-
tance, which is also referred to as the tortoise coordinate and is
applicable to both embedded solutions. As previously stated, X|, in-
dicates the diameter of the WH’s throat, with m denoting the WH
parameter, under the constraint (m > 2). We can write Eq. (3) as:

dr?

+dQ>. @7
=

ds® = —di* +
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2 (144802r12(r = b)Y (7> X (1) + Ear® B (1) + 8 (W31 + 4P, 851100 = b(r)?) — 8,) ] (15)
p=|- = ,
r
[ G307 7 @b(AG) = 1) = 4rA() +27) + 8r13(r = B> A (r) = P3P 280,77 (r — BN A(F) + & ] 16
br = 20 ’
5
[815(r = b(r)? 2/ (r) — 643255 (r = ()2 A() + Loy + Gy — 44157 (893 W4L10 + W, #,r'0) ] an
Py = 20 ’
I

where ¢;, j = 1,...,30 are given in the Appendix B.

Box I.

[ 0.05F T T

0.04F - F(T, Tg)-Model F(T, Tg)-Model
F = SFDM-Model 0.04F ~ SFDM-Model
- URC-Model URC-Model

0.03 F NFW-Model 0.03"

0.02

p f p 0.02F
0.01¢ 0.01}
0.00 7= 0.00
-0.01f -0.01f, ~7

=30 =20 =10

Fig. 1. Illustrates how p varies with ¥, =0.02, ¥; =0.11, ¥, = 1, o = —0.01, @ = 0.06 m = 2, and W, = 0.09 in scenarios such as F(T,T;) gravity, URC profile, CDM halo with NFW
profile, and SFDM profile.

005 T T T
0.05- .. F(T, Tg)-Model r F(T, Tg)-Model
- SFDM-Model 0.04} ~ SFDM-Model
0.041 - URC-Model - URC—-Model

NFW-Model NFW-Model

0.03F ] 0.03;
< & r
by b 0.02F
L 00 1t f
0.01} ] 0.01F
0.007 - 0_00:
—0.01} ) ] f
—0.01F, . N7
-30 -30 -20 -10

Fig. 2. Illustrates the pattern of p+p, with specific values of ¥, = 0.02, ¥; =0.11, ¥, =1, o = =0.01, @ = 0.06 m = 2, and W}, = 0.09 across four scenarios including F(T',T;) gravity,
URC profile, CDM halo with NFW profile, and SFDM profile.

] 0.05 T
0.05f . F(T, Tg)-Model ] P E(FTD &G);Ahfggel
F- SFDM-Model ] 0.04] -
0.041 _ URC-Model E URC-Model
0.03F NFW-Model 7 0.03}
Lo0o2 1% o02f
Q 1 & i
o.01 ] 0.01F
0.00 E
0.00f
—0.01F . ] E
. . ‘ Y ‘ ‘ ] —0.01F, LN
-30 -20 -10 0 10 20 30 -30 -20 -10

Fig. 3. Illustrates how p — p, changes when ¥, = 0.02, ¥; =0.11, ¥, = 1, o = —0.01, @ = 0.06 m =2, and W, = 0.09 in four distinct scenarios: F(T,T;) gravity, URC profile, CDM
halo with NFW profile, and SFDM profile.
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0.06F T T T T T T T
[ F(T, Tg)-Model

SFDM-Model
URC-Model
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T T
F(T, Tg)-Mode
SFDM—-Model

URC-Model

0.05F
0.04f ~
0.03F

0.02F

P+p:

Fig. 4. The relationship between p + p, and the specified parameters: ¥, = 0.02, ¥; =0.11, ¥, =1, 0 = —0.01, @ = 0.06, m =2, and W, = 0.09, in scenarios such as F(T,T) gravity,

URC profile, CDM halo with NFW profile, and SFDM profile.

0.05F ‘ ‘ 3
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0.04; — SFDM—Model 1
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. 002} 1
n
& oo1f i
0.00 pmmmmmene===>
—001p N _ 7T ]
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The radial coordinate r and the radial distance / are connected through
the following embedding equation.

2
ar=—4" (28)
=3
r
Finally, we have obtained this function:
2
W(r)=r—rG=2m (;m - I/VO”’)(Z_W . (29)

For m = 2, the geometry corresponds to the Ellis-Bronnikov wormbhole,
which features a spacetime without horizons. We employ two distinct
embedded wormhole solutions from Egs. (12) and (17), linking the

radial coordinate r and the radial distance / through Eq. (14) (see
Fig. 13).

7. Dark matter profiles

Dark matter is a puzzling component of the universe, accounting for
29.6% of its mass energy, followed by dark energy at 67.4% and atomic
matter at 4%. Dark matter is essential in the formation and evolution
of galaxies. The widespread presence of traversable wormholes could
potentially be achieved within it, thanks to energy condition violations.
This research will investigate how different types of DM profiles impact
enclosed wormhole solutions linked to various DM halos.
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a. URC profile: The authors in [98] show that the (URC) is a successful
approach for illustrating mass distribution in disk systems. The URC
profile of the DM halo, as defined by [98], is also characterized by:

3
PsTy

p(r) = —(r " rs)(rz T V%) 5

(30)

In Eq. (30), r, is the radius parameter, and p, is the central density of
the dark matter halo according to the Universal Rotation Curve (URC).
In this research, we utilize the parameters p;, = 6.9 x 10°M, /kpc® and
ry = 91.2 kpc, obtained from observations of the M87 galaxy [99].

b. The CDM halo with NFW profile: The Navarro-Frenk-White (NFW)
profile is the most popular model for explaining the density pro-
file of cold dark matter (CDM) distribution [100]. Based on N-body
simulations [100,101], the NFW profile is written in the following way:

=t
= oA+ rfr )

(€X0)]
In this case, r, indicates the radius parameter, and p, stands for the
central density of the universe. The central density of the M87 galaxy
is p, = 0.008 x 10”5 Mg, /kpc® [44], with a size of r, = 130 kpc as stated
in Ref. [18].
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c. The SFDM profile: The SFDM model [102,103] for the dark matter
halo is expressed as follows.

pgsin(zr/ry)

p(r) = rjrs

(32)

+ In Eq. (32), r, signifies the characteristic radius, whereas p, indi-
cates the central density of the SFDM (scalar field dark matter)
halo. The Milky Way galaxy has values of p, = 3.43x 107 M, /kpc?
and r, = 15.7kpc according to reference 49. In this research,
we will assess the effectiveness of the achieved outcomes. Our
main research interest lies in examining the energy constraints

in the context of F(T',T;) gravity, particularly for two enclosed
wormhole (WH) solutions. Furthermore, we will investigate the
impact of dark matter halos on the URC, NFW, and SFDM profiles
through an analysis of energy conditions.

We utilize the embedded WH solutions obtained from Egs. (24)
and (29), which connect the radial location r and radial distance
I using Eq. (26). Moreover, we include the URC, NFW, and SFDM
profiles as energy density functions, substituting the existing grav-
itational energy density to evaluate their impact and efficacy on
the energy conditions. Figs. 1 and 8 show the energy density
profiles for F(T,T;) gravity models compared to the URC, NFW,
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and SFDM profiles. The energy density mostly stays positive, aside
from the SFDM profile, which has positive values at its highest
point but negative values at small distances. /.

Figs. 2 and 9 Demonstrate the null energy condition (NEC),
described as p + p,, for the included wormhole solutions in both
versions of F(T,T;) gravity. In the second scenario, there is a
notable breach of the NEC, while in the first scenario, this breach
is limited to specific instances of F(T',T,) gravity and SFDM. The
presence of exotic matter in dark matter halos characterized by
URC, NFW, and SFDM profiles is revealed through the violation
of the NEC. These dark matter halos play a crucial role in the
presence of embedded wormhole solutions.

Figs. 3 and 10 display the contrast in characteristics of p —p, and
p + p,. The weak energy condition (WEC) violations in specific
parts of the setups are depicted in Figs. 4 and 5 and 11 and
12 for both F(T,Tg) gravity models. The SEC is represented as
p+ p, +2p, in Figs. 6 and 12 for both forms of F(T,T) gravity
and is observed to be negative in specific parts of the wormhole
configurations. Ultimately, the breach of the trace energy condi-
tion (TEC) can be seen within certain radial distances. / as shown
in Figs. 7 and 14 for both F(T,T) gravity models.

8. Thin-shell around wormholes stability through radial linear
perturbation

This section is devoted to presenting the behavior of shell radius
around WH geometry. For this purpose, we use Schwarzschild BH as an
outer manifold and inner geometry is traversable WH with two different
choices of shape functions for details see the Refs. [104-111]. Then, we
explore the effects choices of two shape functions. By using the Israel

formalism, we develop the energy contents of matter located at the shell
r =y. It can be evaluated as:

b
Yo

1 7o (' (ro) = 2) + b(xp)
B 87:}/3

2(rg —m) (33)

Po =
1 - X0 1-=
Yo 2

where density and pressure at the equilibrium position are denoted
with ¢, and p,, respectively. Now, we want to use linearized radial per-
turbation at y = y to investigate the stable configuration of a developed
thin-shell around WH geometry. We get the effective potential from the

equation of motion of the shell as:
mb(y) b(y)? b(y) m? 2,2 2_ M
V) = - My 241 34
2 16n2y462  64n2y*c? 2y  16x2y4c? Tre Y (34)

The energy conservation constraints are followed by stress—energy
tensor components.

d d
,,E(Wz) + d—T<4nyza> =0, (35)

which turns out to be
;. 2(c+plo))
o =——"".
14

(36)

We can expand the effective potential as:

V() =V + (= V(o) + 30 =10V ") + Ol =) B37)
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which leads to

V()= 30 =10V (o). 38)

Also, we have

M(yy) =4nyio,,  M'(r) = —8myepy, M (v,) = —87py + 167£2(c + py),

with 2;3 =dp/do|,—,, is a EoS parameter. Hence, we obtain:

V' (y) = - 2731M4 {=rgM@m = b(ry)) (M" 2m = b(yy)) — 4M'b (vy))
+ 7y M2 ((b(rg) — 2m)b” (vp) + b (7))
+ 1oM* (10 (10" (r0) = 28/ (rg) + (M')*) + 2b(r) + 4m)
+ 372 (M) (b(rg) — 2m)?
+ 1oM® (yoM" —4M') +3M°} . (39

For stable configuration, we can obtain

= (=o9(2m — b(yp)) (32775peb (v) + (2m — by))(167&; (py + 69) — 87py))

+487p3 (b(yg) — 2m)*
+azyiog ((b(rg) — 2m)b” (rp) + b (r)?)
+647°y3 05 (v3b" (r0) — 210b (vo) + 2b(rp) + 647>y py + 4m)

+20487° 700 (287 + 3)py + 28509) + 30727y S8 (1287 ySo) ™! > 0,(40)

It can be further characterized as

V') >0, = {(rp)és —ny > 0. (41)

Here, the coefficient of the EoS parameter is denoted with {(yy) = ¢,
and remaining terms are named as 5(yy)#-

The stable configuration can be obtained from the following con-
straints:

+ @) For<0=> 63 <19/8o:
+ (i) For §, > 0 = &2 > 1y /&,
where
Mo = b(re) (8 (mpo(6py + 09) — 427 03) = 1900 (v000b" (r0) + 8ot (1)) )

+ 7000 (2r900b" (o) (m — 87r2yga(2))

10
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&y = 4oy(py + 0p) (4mb(y0) - b(y0)2 + 25671'4}/80'3 -

(4pg + 6pyoy + 30'(2))

4m2) .

We consider these two cases of shape functions given as:
5

I
bi(yy) = ~—/——F——+1r to,
1y + Wi W, — o)
_ 2-2
by(ro) = vo—vy " (vg —rp) .

» We observe the impact of physical parameters on the stable con-
figurations of the developed thin-shell around the WH structure
as shown in Figs. 15-18. For the first case, we observe that the
shape function parameter greatly affects the stable regions of the
shell. Also, the massive BH plays a remarkable role in maintaining
the shell’s stable configuration.

9. Conclusion

In this study, we study the modified F(T,T;) gravity model, an ex-
tension of teleparallel gravity incorporating the torsional invariant 7,
introduced to construct a teleparallel equivalent of the Gauss—-Bonnet
term. Through detailed derivations, we examined the teleparallel in-
variants, torsion tensors, and modified field equations resulting from
this framework. Where the geometry of wormhole (WH) solutions was
analyzed under the modified gravity context, considering conditions
for shape and redshift functions, as well as the violation of energy
conditions. Also, the anisotropic stress—energy tensor with its interplay
of radial and tangential pressures was incorporated to characterize the
material composition of WHs. These investigations reveal the structure
of F(T,Tg) gravity and its applications in cosmology and astrophysics,
particularly for traversable wormholes and energy conditions.

The present study investigates F(T,T ) gravity, focusing on two
distinct and highly inclusive embedded wormhole (WH) solutions. The
newly proposed embedded shape functions are considered the most op-
timal options and satisfy the Morris and Thorne WH criteria. Moreover,
we investigated the influence of dark matter (DM) halos on URC, NFW,
and SFDM profiles within the context of the energy conditions case
of F(T,T) gravity framework. The shape functions studied fulfill all
required criteria for the presence of WH structures in the presence of
DM. The primary findings of this study can be summarized as follows:

» Figs. 1 and 8 show the energy density, represented as p, for
the URC, NFW, and SFDM distributions within the framework of
F(T,Tg;) gravity, as well as for the two F(T,T;) gravity models.
It is observed that the energy density stays non-negative in all
wormhole (WH) designs, except for the SFDM matter profile at
small radial distances /.

11

+ Figs. 2 and 9 illustrate the important energy condition, repre-
sented as p + p,, for embedded wormhole (WH) solutions in both
variations of F(T,T;) gravity. In the second model of F(T,Ty)
gravity, the negativity of p+ p, can be observed, while in the first
model it is only seen for F(T,T,;) gravity and scalar field dark
matter (SFDM). Exotic matter is detected when the sum of density
and radial pressure has a negative nature. Since exotic matter
is essential for making a wormhole, the outcomes of this study,
which involve embedded solutions for WH, are both possible and
physically plausible.
The Weak Energy Condition (WEC), shown as p + p,, is depicted
in Figs. 4 and 5 (first model) and Figs. 11 and 12 (second model)
under the framework of F(T,T;) gravity. The Strong Energy
Condition (SEC), represented by p+p,+2p,, is shown in Figs. 6 and
12 for the identical gravitational model. Moreover, it has been
observed that in specific areas of the wormhole (WH) setups, this
characteristic displays negative values.
Figs. 7 and 14 exhibit negative values in specific radial distance
intervals /, as illustrated by the graphical representation of the
trace energy condition (p — p, — 2p,).
We studied two specific models of F(T,T;) gravity to investi-
gate the physical viability of wormhole (WH) solutions under
varying para;neter constraints. For the first model, F(T,T;) =
Te \
n (-57)
tions require ¥, = 1, with positive values of ¥| and ¥; confined
to the range (0, 1). In the second equation, F(T,Tg) = ¥, (W,T; +
T?) + WP, T, + T?)? — T, it is also required that ¥, = 1, with
small positive values of ¥; and ¥, for physical validity. The
figures explain the energy density (p), radial pressure (p,), and
tangential pressure (p,) for profiles like URC, CDM halo with
NFW, and SFDM, confirming compliance with energy conditions.
These results show the potential of F(T',T;) gravity to support
wormhole structures and explain exotic spacetime formations.
The stable configurations of the generated thin-shell surrounding
the WH structure are impacted by physical parameters, as illus-
trated in Figs. 15-18. We find that in the first scenario, the stable
portions of the shell are significantly influenced by the shape
function parameter. The massive BH also contributes significantly
to the shell’s stable structure.

, we established that physically meaningful solu-

We explored embedded wormhole (WH) solutions through two
different methods, concentrating on the Karmarkar criterion and the
generalized Ellis-Bronnikov spacetime. Using the Karmarkar condition
within class-I Riemannian embeddings, we established important equa-
tions controlling the geometry of embedded WHs, yielding particular
solutions such as the embedded shape function. The next method
focused on the extremely static Ellis-Bronnikov WH model, known
for its absence of horizons and geometrical features linked to radial
distance and proper radial coordinate. Analytical findings showed a
relationship between the radial coordinate and proper distance via
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embedding equations, allowing for the examination of WH properties
with varying parameter setups. Where numerical analysis and graphical
representations illustrated the characteristics of energy density (p),
radial pressure (p,), tangential pressure (p,), and their mixtures in
different situations, such as F(T,T;) gravity, the URC profile, the CDM
halo with the NFW profile, and the SFDM profile. These results offer
a more thorough understanding of the geometric and physical traits
of embedded WH solutions, illustrating their reliance on particular
parameters and gravitational profiles.

This research investigates how URC, NFW, and SFDM dark mat-
ter profiles affect wormhole solutions within the context of F(T,Tg;)
gravity. Embedding these profiles as energy density functions in the
analysis emphasizes their influence on energy conditions such as NEC,
WEC, SEC, and TEC. The results illustrate energy conditions, especially
related to the SFDM profile, where negative energy densities are seen
at short radial distances. Moreover, breaches in NEC are seen in all pro-
files, where the importance of exotic matter in maintaining wormhole
structures inside dark matter halos is. The results explain the important
interaction between the distribution of dark matter density and the
energy limitations that control traversable wormholes.
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Appendix A
== V@) +2) A'@)+2r () + 282 (1),
Wy (2020 () (r) + b(r)? (=2r A" (r) = 2r X' (r)? + 32/(r)) + 10, b(r))
A2 = >

/5 \/W;Zu)
W, (W, +2) r? ((5b(r) — r (26'(r) + 3)) X' () + r(r = b)) A (r))
#e (r= b A (P ’
24 =20 (DA (1) = 36 (PP X (1) + 26/ () (202" (1) + P X () = 4 (1)),
25 = =) (422 (r) + 15) + 8rA (r)* + r (114" (r) = 2rA9) (1)) ,
2o = =3rb" (r) + 186 (r) + 4 2" (r) + 8,

==2r (26'(r) + 3) X () + 1 (2rAP () = (T () + 8) A" (1)) + x4 (1),

X7

12
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X = rasb(r) + xsb(r)* +r* x4,
2o =220 (VA (1) + b(r)? (=2r 2 (r) = 2P X (1) + 32/ (1)) + r 1 b(r),
210 =r (2rA9¢) = 29@) (116 (r) + 14))

+227(r) (=5rb" () + 34 (r) + 20) + 412 2" (r)?,
=320 () = 30r" (r) + 86/ (r) (274 (r) + 15)

—4r3 23 + 2412 2" (r) + 40,
a12 = =4 (1) (rb" () = 86/ (1) = 6) = 11 A'(1) + r 1,

213 = 20239 + 424" ()2 = 19729 (r) + 704" (1),
214 = V(@) (4729 (1) = 32747 (r) = 90) +40r 2" (N? + r 13,
a5 =A@ (=9r6" (1) + 82 () + 40)
= 1272 (1)* +2r (3r2D(r) — 1427 (1)
216 = 3rb" (A (1) + 6" (VX () + (r6D () = 78" (1) X (),
a7 = =262 (5P (1) + 2r 2 (R = 152° (1) + j15b'(r) + 2r 46,
X1s = X0 (ranb(r) - X1ab()? + ’2)(17) + (P -2) Zg,
X9 = =82 (N () + 4rb(r) ((36'(r) +2) X' (r) — 2r 2" (r) — 2r X ()?)
+4b(r)* (2r 2" (r) +2
xrd (r)? =32 (),
8 (Wy — 1) W xg(r — b(r) (r (36'(r) +2) = 3b(r))

X0 = s
r)(92

Por2(rRA(r) — 1) = 2b(r)(A(r) — 1))

T = — - +8%, -8,
(r = b(r)* X' (r)
7 (A0) (V1) +2r) = 6'(r) = b(r) (24(r) +3A(r) + 1) +2rA(r)* +2r)

w2 = (= B A () ’

16 (¥, — 1) Wy g (r — b)) A(r) (2 (36 (r) + 24(r) + 4) — b(r)2rA(r) + 4r + 3))
X3 = 2.2 ’

rx;

Appendix B

& =W () (PP (2r (73rb(r) + 416(r)* +3277) A (r)
+r (=56rb(r) + 31b(r)* + 24r7) X' (r)?
— 6 (=T71rb(r) +41b(r)* + 30r%) X' (r)) — 80(2r — 3b(r))(r — b(r)* X' (r)?) ,
& = =317 (=16rb(r) + 15b(r)* + 4r%) A (r)
+4r° (=5rb(r) + 4b(r)* + 7)) A7 (r) = 2 (5% + 14) r*b(r)
= (577 + 16) rb(r)* + 6b(r)* — 4r*) X' (r)?,
& == b)) (877 (=3rb" (1) + 272" (1) + 12)
+rb(r) (27rb" (r) = 56r7 A" (r) — 404) + b(r)?
x (38722 (r) +339)) + 2r (=10rb(r) + 7b(r)* + 3% ) A9 (r)
+2r(r = b(r)) (121rb(r) = 95b(r)* — 32r7)
X A"(r) + 277b(r) (=5rb(r) + 3b(r)* +2r%) X' (r)?
+1 (144r7b(r) — 208rb(r)* + 91b(r)* — 28r°) A'(r)?,
&y = —80%,r'( — b(r)2 X' (r)
+16%5 (=8P, 5, (r — b(r)* A (r) — 1664(r — b(r)° X' (r)* + W7 L5r7) + 1",
& == bNA () + 2 (5b(r) = 34 (r) + (r — b()? A (r)?,
Co = 48N (r)* (217247 (r) — 93r 4/ (r) + 284 (r)?)
+W,P (204 () = 2(57 + 14) V() +r A ()
X (2(rF+10) A7(r) +15) = 132X () A" (r) + 20r A (1)),
G =2(Pr* +168) X' () + 21 (W,r* +84) 1 (r) = 3r (¥, r* +264) X' (1),
G =Cg=2r ((24=11rb" (") A" (1) + 27 2 () + 1 (ra®(r) — 849 (r)) )
+2r (15— 4rb" (r)) X (r)?
+ () (=77269) + 66rb" (r) + 4r° A9 (r) — 28174 (r) — 48)
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=8y =WiLr® — 3844/ (r)* (774" (r) = 23rd (r) + 42’ (r)?)
—16%, (P2 (r)* = (3 +2) ' (r)?

+r A () ((FPF +2) A7) +3) =47 A (DA () + 2r ) (0)*)
=3V TH (DA (1) + X () (P70 (r) + 192722 (r))
+¥0 (rbD(r) — 86" (1) (1)

—576rd (r)* + 961 (r)",

=76804(r)* (724" (r) = 29r X' (r) + T4 (r)?)

+329,° (874" (r)* =4 (97 +13) X' ()* + rA (r)?

X (8 (2 +5) A" (r) +49) — 4T X (A (r) + 40r X' (r)*)

+WIP (4P X () = 1270 + A ()

X (8247 (r) = 199) — 2r (42 AV (r) + 677 A (r)* — 44ri®(r) + 1731 (1))
+ 2 (r) (-16r° A9 (r)

+ 140772 (r) + 450))

=W (4rd () (20" (1) + 272" (1) - 65)

+7 (2078 (r) — 439) A" (r) = 20r7 A" (r)* — 12r

+ (rA®) - 1049())

+2'(r) (66 (r) — 69rb” (r) — 24r° A9 (r) + 198721 () + 539)

+ 4PV () = 1024 (1)) + 7681 (r) (3517 2 (r) — 13574’ (r) + 284'(r)°)
+16%,7° (12747 (r)?

—48 (PP + 1) () +rA () (4 (37 +10) 27(r) + 59)

— 63724 (N (r) +40r A (r)*) ,

=W (4r A () (5rb"(r) + PP " (r) = 55)

—2r (181 =26r8"(r) 2 (r) + 112 2" (1) + 6r (rAD(r)

= 949()) + X (") (16”6P(r) — 169rb" (r) — 24r* A9 (r) + 18417 1" () + 410)
+27° X (r)* - 4r?

X X)) + 7682 (1) (21727 (r) = T5r 2 (r) + 144 (r)?)

+16%,r° (82" (r)* — 2 (14r% + 11) X' (r)®

+ A2 (4(27 +5) A7) +31) = 3724 (A () +20r ) (r)*)

= 48yr7b(r) +2613r°b(r)* = 201,77 b0 + &1y r*b(r)* = 3266 b(r)
+648,r7b(r)° 2 (r)* — 1536rb(r)’

XA () (P27 (r) = 5rA (r) + 42/ (r)?) + 768b(r)* X' (r)* + 8¢,07%,

=85 (A(r) (¥, (=) @r = 3b(r)) (rb' (r) = b(r))

= 2(r = b(r)) (Pyr®b(r) — 8(r — b(r))*) X' (1))

+ 22, r56(r)(b(r) — DA (1) + ¥,

= A'(r) (Por°@r = 3b(r) (rb' () — b(r))

+ 2(r = b(r) (Por®b(r) = 8(r — b(r))*) X' (1)) + 2,10

X (r = b(r)b(r A" (1),

=¥, (=r°) @r = 3b(r)) (rb'(r) = b(r))

= 2(r — b(r)) (P4r%b(r) — 8(r — b(r))*) X' (r),

= (1) (@r = 3b(r)) (rd'(r) = b(r)) + 2r(r — b)) (r))
+2r(r = b(r)b(r) A" (r),

= A'(r) (4 (=) @r = 3b6(r) (b (r) = b(r))

= 2(r = b(r)) (Fyr®b(r) — 8(r — b(r))*) A'(r))

+ 29, 5b(r)(b(r) — A (),

== (422 (") + 15) + 8rA' (0* +r (112" (r) = 2rA9 (1),
= 19277 (4rb' (DA (r) + 2'(r) (20" (1) + ' (r) (=36' () + 2r 2 (r) - 8)))
+rb(r) (=2r (26 (r) + 3) 2 (r)?

+r(2rA9@) = (76 (1) + 8) 2'(r))
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+ A () (=3rb" (1) + 188/ (r) + 4r2 2" (r) + 8) ) + Lygb(r)?,
= —16%; (2%,r°b(r)(b(r) — A" (r) + {174 (1) 2

+AP £16r'0 — 421510 (8P, L10 + P Wr'0),

=r (2rA90) = A9(r) (116 (1) + 14))

+247(r) (=5rb" (r) + 346 (r) +20) + 422" (1),

=4rX () (—rb"(r) + 8Y'(r) + 6) — A'(r) (8b'(r) (222" (r) + 15)
+r(r (36°() - 4rA9 )
+ 2427(r)) = 300" () +40) + &y,

s =12 (=26 () (5rA" () + X' () (2rA () - 15))

+2r (rBPM X () + 8 () 3rA" () + X () (rd () = 7))

+0 () (A () (=9rb" (r) + 87 4" (r) +40) — 12r 4 (r)? +2r (3rA9(r) — 1427 (1)) ) )
= b(r)* (r (2r229(r)

+ 422y = 19rA9(r) + 704" (r)) + X' (r) (47 (rA®(r) = 84" (1) — 90)

+40 rA()?) + Goqrb(r),

=7 (4rb (DA (1) + X' (1) (2r6" (1)) + 1 (r) (=38 (1) + 2r 2 (r) - 8) )

+rb(r) (=2r (26' () +3) X (1) +r

X (2rAD@r) = (76 (r) + 8) A7(r)) + A (r) (=3rb" (r) + 188/ (r) + 474" (r) + 8))
+8p0b(r)’,

= Ge(Ar) = DB () = bIr)(A(r) + DA + 1) + 2r (A + A + 1),

= 8%, (A (r) (P, (=) @r = 3b(r)) (rb'(r) — b(r))

= 2(r = b(r)) (P4rOb(r) — 24(r — b(r))*) X' (1))

F2H,r0b(r)(b(r) = DA (1)) + ¥, ',

= =321 (r = b)) (A(r) = 1) ((5b(r) = r (26" (r) + 3)) X' () + r(r = DA (1))
— 167 (29,r°

X b)) = A" () + G A (1) * + 4P ',

16,5(r = b(r)*A'(r) 1) _

15

=g + Gopr” <
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