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1. Introduction

Many phenomena in the nonlinear sciences and in the physics can be modeled by a various classes of integrable nonlinear
partial differential equations. Consequently, construction of wave solutions of nonlinear evolution equations plays a crucial
role in the study of nonlinear sciences and nonlinear phenomena. To obtain the traveling wave solutions for these equations,
especially for the higher-dimensional and the coupled nonlinear evolution equations, can make people know the described
physical phenomena. Besides traveling wave solutions, another set of interesting multi-exponential wave solutions [10,11] is
a linear combination of exponential waves. Nowadays, with the rapid software technology development, solving nonlinear
partial differential equations via explicit and symbolic computation is taking an increasing role due to its accuracy, efficiency
and its restrained use. To this end, in the open literature, a set of systematic methods have been developed to obtain explicit
solutions for nonlinear evolution equation, such as tanh-coth function, sine-cosine function, Jacobi elliptic function method,
symmetry method, Weierstrass function method, the F-expansion method, Homotopy perturbation method, variational iter-
ation method [31-33] and so on. However, all methods mentioned above have some restrictions in their applications.

On the other hand, the Hirota bilinear formalism [1,2] has been successfully used in the search for exact solutions of
continuous and discrete systems [20-22], and also in the search for new integrable equations by testing for multisoliton
solutions or Backlund transformations, and even used in constructing N-soliton solutions for integrable couplings by pertur-
bation [8]. It is now believed that most integrable systems if not all, could be transformed into bilinear forms by dependent
variable transformations. Therefore, one would expect to study most integrable systems within the bilinear formalism.
Moreover, various methods have been presented in the last four decades to construct exact solutions for many nonlinear
evolution equations, such as Grammian determinant approach [1,23], and Wronskian determinant approach [4,15].
Wronskian determinant, Grammian determinant and Pfaffian solutions to the (3+1)-dimensional generalized KP and BKP
equations were constructed in [6,7].
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In this work, our aim is to investigate two well-known models that are of particular interest in science. The (3+1)-
dimensional Jimbo-Miwa equation [30]:

Uy + 3Uxlly + 3Uxllyy + 2Uy — 3Uy, = 0, (1)
and the (3+1)-dimensional nonlinear evolution equation [16]:
3Wie — (Wi + W — 2WW,), + 2(W,0, ' W), = 0, (2)

where

u=uxy.z0, wewxyzo, fo=0 and 3= [ fix

Both of which can be written in terms of the Hirota bilinear operator. Moreover, Eq. (1) was firstly investigated by Jimbo-
Miwa and its soliton solutions were obtained in [30]. It is the second member in the entire Kadomtsev-Petviashvili hierar-
chy. Lately, Wazwaz [12,13] successfully studied one-soliton solutions to Eq. (1) by means of the Tanh-Coth method. He also
employed the Hirota’s bilinear method to the Jimbo-Miwa equation and confirmed that it is completely integrable and it
admits multiple-soliton solutions of any order. In fact Eq. (2) was firstly investigated by Geng (see [16], where it was decom-
posed into systems of solvable ordinary differential equations with the help of the (1+1)-dimensional AKNS equations and
algebraic-geometrical solutions for it were explicitly given in terms of the Riemann theta functions). Further, Geng and
Ma [14] derived an N-soliton solution of the equation and its Wronskian form by using the Hirota direct method and Wrons-
kian technique. Eq. (2) has Grammian determinant solution in [5] and Eq. (1) has Wronskian solution in [19].

In our present paper, we will show the above (3+1)-dimensional nonlinear evolution equations has a class of extended
Grammian determinant solutions, with all generating functions for matrix entries satisfying a linear system of partial differ-
ential equations involving variable-coefficient, which guarantee that the Grammian determinant solves the equation. The
Jacobi identity for determinants is the key to establish the Grammian formulation [18]. Moreover, a systematic analysis
of linear partial differential equations is used to solve the representative linear systems.

A theory of transformation of surfaces initiated by Backlund [24] and later developed by Loewner [25] has, in recent years,
proved to be of remarkable importance in the analysis of a wide range of physical phenomena, and the successful applica-
tions of this transformation theory to nonlinear evolution equations have led to a rekindling of interest in this topic. Perhaps
the simplest example of Backlund transformation is the Cauchy-Riemann relations. In particular, Backlund transformations
of the Sine-Gordon equation have generated results of interest in dislocation theory [26], in the study of long Josephson junc-
tions [27], and in the investigation of propagation of long optical pulses through a resonant laser medium [28]. The work by
Miura [29] on the Korteweg-de Vries equation has likewise involved the use of a Bicklund transformation. In 1950, Loewner
[25] introduced an important generalization of the concept of Backlund transformation. This was in connection with the
reduction to canonical form of the well-known hodograph equations of gasdynamics. In Section 5, we would like to present
a bilinear Backlund transformation for the above (3+1)-dimensional Jimbo-Miwa Eq. (1) and the (3+1)-dimensional nonlin-
ear evolution Eq. (2). Furthermore, we will use the transformation to generate a new class of wave and rational solutions to
the same equation.

2. Pfaffian and bilinear form

2.1. Pfaffian

Pfaffians, which may be an unfamiliar word, are closely related to determinants. They are usually defined by the property
that the square of a Pfaffian is the determinant of an antisymmetric matrix. This feature leads often to the misunderstanding
that a Pfaffian is a special case of a determinant. In fact, it is easy to recognize that the Pfaffians are a generalization of deter-
minants. Therefore, Pliicker relations and Jacobi identities, which are identities for determinants, also hold for Pfaffians.

In this paper, we will use Pfaffian identities [3] to search for exact solutions to the nonlinear partial differential equations:
(1) and (2).

Let us discuss some basics about the Pfaffian [3]. Let A = (o), _; ., be @ skew-symmetric matrix, in which oy = —o;
forj,k=1,2,...,m.It is known that det(A) of odd order vanishes but det(A) of even order m = 2n is the square of a Pfaffian,
that is

det(A) — 0, if m is odd, 3
etA) = Pf(ozjk)fgkgm, if m is even. 3

We can denote this Pfaffian Pf (o) xcon BY
PE(%k)1 jkean = (1,2,3,...,2n). (4)

Then, we have
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0 012 013 14
—0o 0 o o
12 2 = (0120034 — 0130024 + 05140523]2 (5)
—013  —03 0 o3
—0Ol14 —Os —0O34 O
=(1,2,3,4)> (6)
Therefore, a second-order (n = 2) Pfaffian is given by
(1,2,3,4) =(1,2)(3,4) — (1,3)(2,4) + (1,4)(2,3), (7)
where
(. k)= o, forj<k. (8)

Also, it should be noted that from the antisymmetric o, = —oj, we have

(k) = —(k.j). 9)

In general, we have an expansion rule for a Pfaffian (1,2,...,2n) of order n:
(1727 et 72n) = Z(i‘l)j(17j)(2737"'7]7"'72n)7 (10)

where the notation j means that the index j is omitted. An alternative expansion reads

2n-1 R

(1,2,....2n) = > (=1Y71(1,2,... j,....2n = 1)(j, 2n). (11)

=

Repeating the above expansion, we arrive at the summation of products of first-order Pfaffians [3]:

(1,2,...,2n) = > (=1)"(ir, i) (i3, 1a) (i, I6) . . . (fan—1, fan), (12)
where Y~' means the sum over all possible combinations of pairs selected from {1,2,...,2n} that satisfy
i] < l.z,l.g < i4,i5 < 1'5...,1.2",1 < izmil < i3 <. < i2n—1-

These first-order Pfaffians (i, j) are called the entries in the Pfaffian. In the above equation,The factor (—1)" = +1 or —1 if the
sequence {ik}il] is an even or odd permutation of 1,2,...,2n.

Moreover, the Pfaffian (iy,i,,...,i2,) vanishes if ij = i, for any pair of m and I chosen from 1,2,...,2n. Also, the inter-
change of labels i; and i,;, changes the parity of each permutation in the sum, and thus, the Pfaffian has the skew-symmetric

property
ity yity iy e sion) = — (1o ey ooyl o), (13)

where 1 < I < m < 2n. The Pfaffian also is denoted conventionally by Caianiello [17]

|061‘2 %13 -0 ®12n
03 - 02.2n
PE(0ij)1<ijeon = ) . ) (14)
Oon-12n

and when n = 1, 2, the Pfaffian reads

Pf(aij)]gi_jgz =012 = (172)7

Pf(aij)]giljgzl = 0120034 — 0130024 + 0140023 = (1,2,3,4).
Moreover, the Pfaffian obeys an expansion rule

2N
(O(],OQ,...,MZN) :Z(Oci7aj)r(i7j)7 1 < l< 2N> (15)
j=1

with the cofactor I'(i,j) being defined by
T(i.J) = (=1 (0,0 8 By o), 0 <,
r(]>l) = 71—‘(1’]) l >J r(17 l) = 07

where &, means that the label o, is omitted. We have several expansion theorems on the Pfaffian. Below we describe two of
them, which are relevant to the present paper.
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Proposition 1 [1]. Let A be a 2n x 2n skew-symmetric matrix. Then

n
Pf(A) = (1,2,...,2n) =) sgn(0)[ [(a(2i - 1),0(21)), (16)
T i=1
where the summation is taken over all permutations
< 1 2 ... 2n>
o=1(. . .
W I ... 1y
with
I <y, i3 <lg,...,0n1 <im, i1 <i3<...<iz1,

inv(o)

and sgn(o) = (—1)
We have several expansion theorems on the Pfaffian. Below we describe two of them, which are relevant to the present
work.

Lemma 1 [3]. Let n be a positive integer. Then

2n . R R
(01,02,1,2,...,2n) = (=1 (a1, 00, 1.1)[(2,3, . J, ... 20) + (1) (o, %2,2, 3, ], ... 2n)]
j=2
—(0617062)((117(12,172,‘..,2n)7 (17)
and
2n 2n ke R R
(ﬁ]vﬁZ?V]vVZvlvza---azn) :ZZ (71)"4”7 (ﬁ17[))21j7k) X (y17y27]727'"7]7"'7k7"'2n)7 (18)
Jj=1k=j+1

provided that
(ﬂja?k) :07 fol‘j,ki ]72

We shall use Egs. (17) and (18) to express the derivatives of the Pfaffain by the Pfaffians of lower order. In the next lemma we
describe two of the identities of Pfaffians which correspond to the Jacobi identity of determinants.

Lemma 2 [3]. Let m and n be positive integers. Then

2m
(01,00, ...,00m, 1,2,...,2n)(1,2,...,2n) :Z(—l)s(ocl,ocs,l,Z,.‘.,Zn) X (001,00, .oy Olgy ooy Olam, 1,2,...,20), (19)
s=2
and
2m-1
(a17a27~~~7a2m717172737"'szn_])(]727"'32“) = Z(_1)571(a5317“'72n_1) X (OC],(Xz,...7&5,“.70(2,”,],17...,2”).
s=1

(20)

2.2. Bilinear form

In this subsection, we would like to transform the (3+1)-dimensional nonlinear evolution Eqs. (1) and (2) into the bilinear
forms by dependent variable transformations.
Through the dependent variable transformations:

u=2(Inf), and w=-3(Inf),,, (21)
the above (3+1)-dimensional nonlinear evolution Eqs. (1) and (2) are mapped into the Hirota bilinear equations:
(D2Dy + 2D,D; — 3D,D,)f -f = 0, (22)

where the bilinear differential operator D is defined by
D’:DQD;H(p(tvxvy) : l//(t7X>.V) = (at - 8f’)k(ax - BX’)n(ay - a}")mq)(tX7y)!//(t/7X’?Y’)'[’:t‘x’:x\y’:y_ (23)
We can rewrite Eq. (22) in terms of f as follows

(oo + 2y = 3F o) — foody — 3fafs + 3Fufiy — 2 fe + 3ff = 0. (24)
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3. Sufficient conditions and Grammian solutions
3.1. Sufficient conditions

Let us introduce the following Grammian determinant:
n= det(aij')lgijng (25)
0, i#j

X
ag:5g+/¢i1//jdx, i,j=1,2,...,N, 5ij:{1 i)’ (26)
and all the elements ¢; = ¢;(x,y,z,t) and y; = y;(x,y,z, t) satisfy the linear differential equations:

¢i.y = Zé(t)d)i.xm
N
d)i.z = Zé(t) ¢Lxxxx + Z;~il<(t)¢k¢
k=1
N
Pie =i+ Znik (O)x,
k=1
lpj.y = 725(t)‘//j,xx7

N
Vjz=—28(O); 0 + Zﬂjl(t)‘//h
=1

27)

N
Vit =Vt ijl(t)lﬁzﬁ
=1

where &(t), i (£), 1:(E), My (t) and p;(t) are arbitrary differentiable functions in ¢, and /;(t) + w;(t) = 0, 17;(t) + p;(t) = O for
i,j =1,2,...,N. In what follows, as an application of the Pfaffian technique, we shall construct new Grammian solutions to
the (3+1)-dimensional Jimbo-Miwa Eq. (1) and the (3+1)-dimensional nonlinear evolution Eq. (2).

Theorem 3 (Sufficient condition). Let ¢;(x,y,z,t) and y;(x,y,z,t),1,j =1,2,...,N, satisfy (27), then the Grammian determinant
fn defined by (25) solves the Hirota bilinear Eq. (22) and the functions u = 2(Infy), and w = —3(Infy),, solves the (3+1)-
dimensional Jimbo-Miwa Eq. (1) and the (3+1)-dimensional nonlinear evolution Eq. (2) respectively.

Proof. Let us express the Grammian determinant fy by means of a Pfaffian as
fn=01,2,--- NN ... 2" 17) = (o), (28)

where (i,j°) = a; and (i,j) = (i",j7) = 0.
To compute the derivatives of the entries (i,j*) and the Grammian fy, we introduce new Pfaffian entries

L 0" oo O
(dm] )7W¢]a (dnvl)fﬁ(ﬁi?
(dm,dy) = (dn, i) = (dyy,j") =0, m,n >0, (29)
by using Eqs. (26) and (27), we can get
&(17] ) = ql’ilpj = (d07d0717] )7 (30)

%(11*) = / (d)i‘yl//j + ¢iwj.y)dx: 25([’)/ (d’i‘xij - ¢i‘pj‘xx)dxz 25(t)(¢1xd/] - ¢i¢j.x) = 2é(t)[_(d1 davl.lx) + (dCHd;F 71.7].*)]7 (31)

o X X N N
7t (ij") = / (PieWj + dithj,)dx = / [<¢i,m + Z’?ik‘ﬁk) v+ ¢ (Wj,xxx + ijﬂ/ﬂ)] dx
k=1 =1
"X N "X N X N N
= / [Di ool + Pith ] AX + Z’?ik <5kj +/ ¢k%dx) + Zpﬂ (51‘1 + / ¢i‘ﬁ1dx) - Znikékj - ijzéil
. k=1 =1 . k=1 =1

N N
= (ixxj — PixVix + Pithjxx) + Z’?ikakj + ijla” =Ny — Piji
P =1

N N
= [(da,dg,1,§") = (dv, dy,1,5") + (do, dy, 1,1)] + D M + >_ PG, (32)
[

k=1
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d ,. . x B N
&(17] ) = / |:<2C¢i,xxxx + ;;vikd)k)

N X N X N N
+ Z/lik <5kj +/ ¢k‘//jdx) + Z#jz <5il +/ ¢’il//ldx> - Zﬂw‘kékj - Zﬂjzéil
p

( )(d’xxxxp (ﬁleXl//jX + d’le//] XX d’ l//]xxx + lekak} + Z.uﬂall - /“l] iu_n

Y+ b

N X
<_25¢j‘xxxx + Zuj1¢l>:| dx = Zf(t)/ (¢,Mlﬁ] - ¢il//j‘xxxx)dx
=1

=2¢(0)[(do. d3,1,j) — (di,dyi.J7) + (da, d},1,57) — (3, dg, i, j° 1+szak, +Zuﬂau (33)

k=1

Therefore, from the above results (30)-(33), we have the following differential formulae for fy:

fux = (do, dy, e), (34)
fuy = 2¢[~(dy, dy, ®) + (do.dj, @), (35)
N
fue=(da,dy, @) — (di,d}, @) + (do,d;, @) + Z Hy + pu)( (36)
=1
N
fuz = 2¢[(do, d3,0) — (di,d3, 0) + (da,d;, @) — (ds, dg, @)] + > (lu+ f1y)(o (37)
=1

fuw = (dhd:;?’) + (dO’d;7°)v (
fuy = 2¢[~(da,dy, ) + (do, 3, @), (
Sy = (da,dy, @) + 2(dq,d7, @) + (do, d;, ), (40
ooy = 2&[(do, 3, 0) + (d1,d3,0) — (da,d}, 8) — (d3,dy, ®)], (

N
fN‘xZ:25[(d07d:‘1>.)_(d47d67.)+(d27d%{7d0ad87 ) (dhd;dOv 0:® +Z}ll+lull d07 0 )
I=1

=2¢[(do, dy, 8) — (da, dy, 8) + (d2,d}, do, dy, @) — (di,d;. do., g, ®)], (42)

fuye = 2¢[(do, dy, 0) — (da, dy, @) + (d3,d}, 8) — (di,d5, @) + (d2,dy, do, d}, 8) — (do, d5, dy,dg, e)]

N N
+252(7111+P11)(d0,d§7') *zfz(nlﬂrpll)(dlvdéz')
=1 =1
= 2¢[(do, dy, 8) — (dg,dp, @) + (d3,d7, @) — (d1,d3, 8) + (da,dy, do, dy, ®) — (do, d5,d1,dy, )], (43)
Sy = 2&[(do, dy, @) — (ds, dy, ®) — 2(d3, d}, @) + 2(dy,d3, 8) + (dz,dy, do, dy, 8) — (do, d;, dy, dy, )], (44)

where we have used the abbreviated notation e = 1,2,---,N,N*,---,2",1". We can now compute that

1 . 1 " . 1 . . 1 . .
(fN,xxxy + 2fN_yt - 3fN_xz)f = 125|:j (d27d0,d07d],') - j(do’d27d15d07.) - i(d27d1,d07d0,‘) +i(d1ad27d0’d07.) (‘)
=12¢[(da, dy, do, dy, @) — (do, dy, dy, dy, @)](e),

(~fnafy — 3fN,xxny - 2fN\ny‘t + 3fnafnz)
1 . . 1 . . 1 . .
= 126 |:§ (d27 doa .)(d1 5 d07 .) - i (d27 d()-, .)(d07 d] ’ .) + i (d07 d27 .)(dl ) d07 .)

1 + + " " * "
—i(d07d2,°)(do,d1,°) + (do,dy, @) (dz,d7, @) — (do,dp, @) (d1,d5, 8) ],

1 . . 1 . . 1 . " 1 . .
(3fN,xfo-Xy) = 125 |:_ E (d27 d07 .)(dl ) d07 .) + j (d07 d2= .)(dl ) do» .) - E (dZ» d07 .)(d07 dl ) .) + i (d07 d27 .)(d07 dlﬂ .) .
Substituting the above derivatives of fy into the LHS of Eq. (24), we arrive at
(fN,my + 2fN‘yt - 3fN‘xz)f _fN.xxxfy - 3fN.xxyfx + 3fN‘xfo.xy - szny,t + 3fN_fo.z
= 126[((10‘ dS’ dz, d; .)(.) - (d07 d(*h .) (dzv d;* .) - (dzh d27 .)(d07 d; ’ .)}
—12¢[(do, dy, dv, d3, @) (e) — (do, dg, ®)(d1,d5, 8) — (dy, dv, e)(do, d5, 8)] =0, (45)
where we have made use of the known Jacobi identities for determinants. This shows that the Grammian determinant fy = (e),

with the conditions (27) solves the Hirota bilinear Eq. (22) and the functions u = 2(Infy), and w = —3(Infy),, solves the (3+1)-
dimensional Jimbo-Miwa Eq. (1) and the (3+1)-dimensional nonlinear evolution Eq. (2) respectively. This ends the proof. O
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From the above theorem, we can see that if a set of functions ¢;(x,y,z, t) and y;(x,y,z,t), 1 <1i,j < N, satisfy the conditions
(27), then the determinant fy = det(a;) is an exact solution to the Hirota bilinear Eq. (22), where the entry a; is defined in
(26). The conditions (27) consist of three linear systems of second-order, third-order and fourth-order partial differential
equations. It is rather difficult to solve those linear systems explicitly, but based on the idea used in [9], we can find some
special solutions to the present linear systems. Before we proceed to solve (27), let us observe the Grammian determinants
and solutions more carefully.

Remark 4. From the compatibility conditions ¢;,. = ¢;s, 1 < i< N, we have the equality
26 ()i =0, 1<i<N. (46)

Therefore, in the following discussion we assume that &(t) = &.

Remark 5. From the compatibility conditions ¢;,, = ¢;,,, 1 <i < N, we have the equality
N
> ke =0, 1<i<N. (47)
k=1

Therefore, we note that if there is one entry 2; satisfying ;. > 0, then ¢; = 0. So in the following discussion, we assume that
the coefficient matrix A = (/) is a real constant matrix.

Remark 6. If the coefficient matrix A = (Z;) is similar to another matrix ® = (6;) under an invertible constant matrix P, that
is P"'AP = @, and if we take the notation ® = (¢, ¢5,...,¢y)", then ® = P~' @ solves

6y = 2506»(7 62 - zéo6xxxx = 66 6t = 6xxx- (48)
The coefficient matrix © = (0;)y, is equal to —A’. If we take the notation ¥ = (y;,, ..., yy)", then ¥ = P"¥ solves

Wy = Zéowxm Wz - Ziowxxxx = _®T?7 Wt = Wxxx- (49)

We can rewrite the Grammian matrix (26) to I + A, where [ is the identity matrix, and the element of matrix A is A(i,j) =
J¥¢:pdx. Noting that @ = P~'® and ¥" = PP, we have the following result:

X X
det(5; + / bijdx)y,y = det(I + A) = det(P™' (I + A)P) = det(I + / diidx).
It follows that the resultant Grammian determinant solutions to the (3+1)-dimensional Jimbo-Miwa Eq. (1) and the (3+1)-
dimensional nonlinear evolution Eq. (2) keep the same under the similar transformation. Therefore, based on the above Re-

marks, in order to construct Grammian determinant solutions to the (3+1)-dimensional nonlinear partial differential Eq. (1),
we only need to consider the reduced case of (27) under & = 1/2, n; = p; = 0 and dA/dt = 0, i.e., the following conditions:

N
biy = B iz = P + D _Jikbs Die = Piamc
k=1

N

l//j,y = _‘//j.xxa l,bj.z = _l//j.xxxx + Z:ujll//h l//j,t = ll/j,xxxa
=1

i+ =0, 1 <1i,j <N,

where /J; are arbitrary real constants. On the other hand, the Jordan form of a real matrix has the following types of the blocks:

2i 0

b (51)
0 1 i) o

g 0

R N CI ) TP} &
0 L &/,

where 4;, o; and B; > 0 are all real constants. The first type of blocks has the real eigenvalue 4; with algebraic multiplicity k;,
and the second type of blocks has the complex eigenvalues +/; = o; + ;v/—1 with algebraic multiplicity [;. We will construct
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solutions for the system of differential equations defined by (50), according to the situations of eigenvalues of the coefficient
matrix. Based on Remark 4.5.4, all we need to do is to solve a group of subsystems in the sufficient condition on the Gram-
mian determinant solutions, whose coefficient matrixes are of the forms (51) and (52).

4. Some solutions for the representative systems

In this section, we would like to construct some solutions to the associated system of differential equations defined by
(50). For a nonzero real eigenvalue 4;, we start from the eigenfunction ¢;(4;) determined by

(9i(4i)y = (Di( i)
(i(40)); = (Di(4i))orx = 4ibi(4i) (33)
(qﬁi(;‘i))t = (d’i(;“i))xxx'

Two special solutions to this system in two cases of /; > 0 and /; < 0 are

bi(2) = e TN (Cpisin g + Coyc089), 6 = /i,

bi(2) = e @-(1+902(Cyisinh ) + Cycosh ), & = /— i,

where
1 3
Y =—0X+ —(3
V2 T2
and Cy; and Cy; are arbitrary real constants. By an inspection, we find that
Bi(%) Ai 0 $i(4)
, $:0,,0:(%) 1 & %3;.1.(1)1‘(/11)
(82 - ax) : = . . ;
(ki11)18§;71¢i(}~i) 0 1 i ki xk; (kx ) /, ¢( )
e ) (o) - 0<i<ho
an
a1 /,¢ /Ll) i ,,d) Az) . 0<j<kiy,

where 9,, denotes the derivatives with respect to 4; and k; is an arbitrary non-negative integer. Noting that the coefficient
matrix (4;) of ; satisfies u; + 4; = 0, we take

Wi (Z))y = = (Wi(4i) )
Wi (2)); + (Wi (2)) e = —2iti(40), (54)
Wi(4i)e = (i(%)) -

Two special solutions to this system in two cases of /; > 0 and /; < 0 are

Yi(4) = e @=1+902(Dysin ) + Dy; cosd), & = /7,

i(4) = el 14902 (D sinh 9 + Dojcosh ), & = /— i,
where
1 3¢
9= 5X-|-7(3
V2 2v2!

and Dy; and Dy; are arbitrary real constants. Then we can find that
i 3 _ i~
i i) 4 -1 0 i i)

(0 +ab) : =
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Therefore, through these two sets of eigenfunctions, we can construct Grammian determinant entry and then obtain solu-
tions to the bilinear Eq. (22). For the second type of Jordan blocks of the coefficient matrix, we set a pair of eigenfunctions:

Di(ct, Bi) = (¢ (%3, B1), dia (011, B))

is determined by

[11

. a,. .
Dy, — Opx = ZD;, D; = (d)ﬂ( "ﬁ‘)>,

b0 (0%, By) " <Z: ;/ji) (55)

(0, B1)), = (3500, Bi)) o (3500, B1)) = (D50 i) J=1.2.

Again by inspection, one can see that

and

(Di Ei 0 (Di
4 %8a,-q)i 12 Ei %amlq)i
(82_8x) . =
1 oki—1¢p. =. 1 gki-1¢p.
(l.-fl)!aix @ 0 L & lixl; (lifl)!aot,- @;

Similarly, if
Wilou, Bi) = (Wi (o, Bi) Wi (o3, B1)

is determined by

[x]

i (X,‘, i
Wiz + Wi = ~E'i, ‘P,-=<“ ﬂ')>,

Volon ) T (; _ocﬁ> (56)

(l//ij('xbﬂi))y = (l//ij(ochﬂi))xxv (‘//ij(“iaﬂi))t = (l//y(“i>/5i))xxx> i=12

Again by inspection, one can see that

and

¥ -5 -l 0 ¥;
e _ 10,
(0, +8%) _ =
: A :
ki—1 ki—1
ﬁaz, ¥ 0 -5 ﬁa; i

i/ xl
One special solution to Eqs. (55) and (56) are given as follows
¢in =exp(x+y+t+ (14 o4)z) cos(p;z),
¢ =exp(x+y+t+ (1+ o)z2) sin(fiz),

Yin = exp(x +y +t — (1+ a)z) cos(p;z),
Yip = —exp(x+y +t — (1+04)z) sin(f;2),

(57)

where the parameters o; and f; are arbitrary constants.
5. Bilinear Backlund transformation
5.1. Bdcklund transformation

The Backlund transformations are essentially defined as a pair of partial differential relations involving two independent
variables and their derivatives which together imply that each one of the dependent variables satisfies separately a partial
differential equation. Thus, for example, the transformation

Li(u,ue, uy, Uy, Uy, ...) - and - Ly (v, v, vx, Uy, Uxs, .- ),
would imply that u and v satisfy partial differential equations of the operational form,
P(u)y=0 and Q(v)=0.

In this paper we would like to present a bilinear Backlund transformation for the above (3+1)-dimensional nonlinear evolu-
tion equations (1) and (2).
Let us suppose that we have another solution f’ to the generalized bilinear Eq. (22):
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(DD, +2D,D, — 3D:D,)f" - f' = 0, (58)
and then we introduce the key function

P = [(DzDy +2D,D; — 3D:D;)f - fIf** — [(D;Dy + 2D,D; - 3D,D;)f - f'f*. (59)
If P = 0 then f solves the bilinear Eq. (22) if and only if f’ solves the bilinear Eq. (22), that is

f is a solution of (22) <= f’ is a solution of (22).

Therefore, if we can obtain, from P = 0 by interchanging the dependent variables f and f’, a system of bilinear equations that
guarantees P = 0:

F1(D¢,Dx, Dy, D)f - f' =0,
FZ(DtmeDy«,DZ)f _f/ — 07

FM(DtsDan}MDZ)f 'f’ = 07

where the Fis are polynomials in the indicated variables and M is natural number depending on the complexity of the equa-
tion. It is known that the identities of Hirota’s bilinear operators are necessarily to split P into a system of polynomials F;s.
Let us now introduce the following useful identities for Hirota’s bilinear operators:

D,(D:a-b)-ba=D;(Dya-b)-ba, (
Dyab - cd = (Dya - d)cb — ad(D,c - b), (
b*(D?a-a) — (D?b-b)a? = 2D,(D.a - b) - ba, (62
b*(D,D:a-a) — (D,D:b - b)a*> = 2D,(D,a - b) - ba, (
and
b2(2D,37D;a -a) — (2D, D;b - b) = D, (3D}Da - b) - ba + D,(3D}a- b) - (D;b - a) + D, (6D,D.a-b) - (Db - a)
+D;(Dya-b)-ba+D;(3Dya-b)- (Dyb-a). (64)

Noting that, the above identities (60)-(63) can be found in [1], and the identity (64) can be obtained by making the indepen-
dent variable transformation D, — D, + €D; in the bilinear identity [1]

b*(Dja-a) — a*(Djb - b) = 2D,[(Dya - b) - ba+ 3(D}a-b) - (D,b - a)],

and comparing the coefficient of €. In the above identities g, b are arbitrary continuous functions of the independent variables
1, {. For more identities and general exchange formulas you may see [1]. Applying the above identities on Eq. (59) we can
obtain

f2(4DyDif - f) — f*(4D,D.f' - f') = 8Dy(D,f - f') - f'f, (65)
f*(6DDof" - f') + f2(6D:D,f - f) = =12Dx(Dof - f') - f'f, (66)
and
F22DDyf - ) — f*(2D;Dyf - f') = Dx(3D;Dyf - f') - f'f + Dx(3D5f - f') - (Dyf - f) + Du(6DxDyf - f') - (Duf' - f)
+Dy(Df -f) - ff +Dy(3D;f - f) - (DS - f). (67)
Substituting the above results into the right-hand side of Eq. (59) we may obtain
2P = 8D,(Dif -f') - ff + Dy(DXf -f)-ff ~12Do(Def - ') -ff + Dy(3DEDyf - ') -£'f + Dy(3DEf -f') - (Df - f)
+Dy(6DDyf - f) - (Df" - f) + Dy(3D;f - f') - (D" - f). (68)

Lemma 7. Let f and f' be arbitrary continuous functions of independent variables x,y,z,t. Then Dx(D,f -f')- (Dxf - f") =
D;(Dif -f') - ff' — Dx(DxDf - f') - fF.
Let us now introduce new arbitrary parameters 4, y, &, 9 and &, (i = 1,2,3), into Eq. (68) to obtain
2P, = Dy[(8D; + D} + uD? + 2D, + &))f - f'] - f'f + Dy[(3D?D, — 12D, T uDD, ¥ /D, + &)f - f'] - f'f + D [(3D?
+ 9Dy + &)f - f'] - (Dyf - ) + Dx[(6D<Dy F UDy)f - f'] - (Duf - f) + Dy[(3D; + &Dx F &3)f - f'] - (Df - ). (69)

This is possible because the coefficients of 4, i, & 9 and ¢;, (i =1,2,3),
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A 2Dy [Df - f]-ff +DuDyf - f]- I,
(s EDDof - f') - (Duf - f') F Do(Df - ') - ff + Du(DuDof - f') - fF

¢ £Dy[Dif - f]- (Df' - ),
0 : £D:[Dyf - f]- (Dyf" - f),
e D) [ff'] - ff,
& £D[ff'] - ff,

[s2)

3 £D] - (Dyf - f) F Dyff" - (Df" - ),

are all equal to zero because of Lemma 5, and the properties

Df-f=0, (70)
Df-g=-Dg-f, (71)
Dy(Df -g) - & =D.(Dyf -8) - &f - (72)
Then P, = 0 if Ff - f' = 0,1 < i < 5, where F;s can be found from Eq. (69) as follows
F1f~f’—(8D¢+D3ﬁ:,uDZi)Dxisl)f f =0,
Fof -f' = (3D2Dy — 12D, 7 uD,D, F /Dy + &)f - f' = 0,
Faof -f = (3D2 iq9Dy +e)f - f =0, (73)
Faf - f* = (6DxDy + uDy)f - f' =

Fsf -f = BDiicDx:Fs;)ﬁf =

Since the coefficients of 7, u, ¢, 9, &, & and &; are zero because of Egs. (70)-(72) and Lemma 5, this shows that Eqgs. (73)
presents a Backlund transformation for the (3+1)-dimensional nonlinear evolution Eqs. (1) and (2).

5.2. Traveling wave solutions
In what follows, as an application of the bilinear Biacklund transformation (73), we shall construct new solutions to the
(3+1)-dimensional soliton Eqgs. (2) and (1). For this purpose, we start with f = 1, which is the trivial solution of Eq. (22) obvi-
ously. Noting that
an
Dl¢p-1=—4 nx=1i, 74
1= g, (74)

then, the bilinear Backlund transformation (73) associated with f =1 becomes a system of linear partial differential
equations

' 31 /
S(gt gx);iiuf) %iglf,:

Pf o' 2 f ,
3 oy 12 oz TH Xy T z)y L+ &f =

300 9%+ esf = (75)

ox2

6«)x<)y + I“?ny =0,
300+ L Feaf =0
Let us consider a class of exponential wave solutions of the form
fr=1+getlyrmeont® 0 _ congt, (76)
where ¢, k, I, m and w are constants to be determined. Upon selecting
e1=0, &=0, &=0 (77)

After tedious but straightforward calculations we get

me = - 516K F1), o, =L1k(TK +2), 78)
=46k, & =F3k, 9. =F3K.
Therefore, we obtain a class of exponential wave solutions to the (3+1)-dimensional bilinear Eq. (22):
2 2 1
fi=1+cexp (kx +ly - 1(3k1 ;F Ay k(7k8i 2P £°> , (79)
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where ¢, k, I, 2 and (° are arbitrary constants; and

u=2(Inf),, (80)
solves the (3+1)-dimensional Jimbo-Miwa Eq. (1), and
w=-3(Inf}),,, (81)
solves the (3+1)-dimensional nonlinear evolution Eq. (2).
Let us second consider a class of first-order polynomial solutions
fr=kx+1ly+mz- ot (82)
where k, [, m and o are constants to be determined. Similarly Upon selecting
=0, =0, &=0, (83)
a direct computation shows that the system (75) becomes
—8w+ k=0,
-12m= =0, (84)
=0, w=0, ¢&k=0.
Again after straightforward calculations we get
m; = :Fll—zil, W = ill—zik. (85)
Therefore, we obtain a class of solutions to the (3+1)-dimensional bilinear Eq. (22):
f;:kx+ly:pilzzplzkt+g°, (86)
127 12
where k, I, 2 and ¢° are arbitrary constants; and
uzz(lnﬁ)x:l<x+ly+zp§;¢%).kt+<:’ ®7)
produces a class of rational solutions to the (3+1)-dimensional Jimbo-Miwa Eq. (1), and
W= -3(In ), ~ =l (88)

(kx + ly ¥ Az 5 Lkt +°)°

produces a class of rational solutions to the (3+1)-dimensional nonlinear evolution Eq. (2).
6. Conclusions and remarks

We have built an extended Grammian formulation for the (3+1)-dimensional nonlinear evolution equations:
Uy + lxxlly + 3Ulyy + 2y — 3Uy, = 0,
and
Wy — (W + Wa — 2WW4), + 2(Wid,, 'wy), = 0,

The facts used in our construction are the Jacobi identity for determinants. Theorem 3 presents the main results on Gram-
mian solutions, which say that

0
u= Za(lan)v fn= det(aij)lgugzm
P
w= *3ﬁ(lan)a fn= dEt(aii)lgi.ngNv

where the elements of fy are defined by ay = 5; + [“¢y;dx, i,j =1,2,...,2N, with ¢; and y; satisfying

N N
biy =287, ¢, =287 + > i i = ¢ + > M
k=1 k=1

2N 2N
Yy = *25%(-2)7 Y. = *25‘/’;4) + Z:ujlwh Yje = 1/1;3) + ijl‘/’u
=1 I=1
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where ¢&, 4, i, 7 and p are arbitrary continuous function in t, solves the above (3+1)-dimensional nonlinear evolution equa-
tions. In Theorem 3, we only considered specific sufficient conditions: (27), though, there is a free set of continuous functions
in the conditions. In Section 4, we constructed some solutions for the representative systems of sufficient conditions (27),
The conditions (27) are a generalization to one given in [5], which deal with Eq. (2) only, but in this work, we deal with both
Egs. (1) and (2). Actually if £(t) = 1/2 and the coefficient matrix = (4;) and the coefficient matrix = (1;;) are zero, then the
result of the above theorem boils down to result in [5] on the study of Eq. (2). The bilinear Bicklund transformations were
furnished for the (3+1)-dimensional nonlinear evolution Eqgs. (1) and (2), based on the existence of exchange identities for
Hirota bilinear operators. In Section 5.2, We constructed a new class of exact wave solutions and a new class of rational solu-
tions to the above (3+1)-dimensional nonlinear evolution Egs. (1) and (2) of the forms

u= ZQ(lnf’) and w= —Ba—z(lnf’)
T Tox T Toxrt UED
respectively.
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