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1. Introduction

Many phenomena in the nonlinear sciences and in the physics can be modeled by a various classes of integrable nonlinear
partial differential equations. Consequently, construction of wave solutions of nonlinear evolution equations plays a crucial
role in the study of nonlinear sciences and nonlinear phenomena. To obtain the traveling wave solutions for these equations,
especially for the higher-dimensional and the coupled nonlinear evolution equations, can make people know the described
physical phenomena. Besides traveling wave solutions, another set of interesting multi-exponential wave solutions [10,11] is
a linear combination of exponential waves. Nowadays, with the rapid software technology development, solving nonlinear
partial differential equations via explicit and symbolic computation is taking an increasing role due to its accuracy, efficiency
and its restrained use. To this end, in the open literature, a set of systematic methods have been developed to obtain explicit
solutions for nonlinear evolution equation, such as tanh–coth function, sine–cosine function, Jacobi elliptic function method,
symmetry method, Weierstrass function method, the F-expansion method, Homotopy perturbation method, variational iter-
ation method [31–33] and so on. However, all methods mentioned above have some restrictions in their applications.

On the other hand, the Hirota bilinear formalism [1,2] has been successfully used in the search for exact solutions of
continuous and discrete systems [20–22], and also in the search for new integrable equations by testing for multisoliton
solutions or Bäcklund transformations, and even used in constructing N-soliton solutions for integrable couplings by pertur-
bation [8]. It is now believed that most integrable systems if not all, could be transformed into bilinear forms by dependent
variable transformations. Therefore, one would expect to study most integrable systems within the bilinear formalism.
Moreover, various methods have been presented in the last four decades to construct exact solutions for many nonlinear
evolution equations, such as Grammian determinant approach [1,23], and Wronskian determinant approach [4,15].
Wronskian determinant, Grammian determinant and Pfaffian solutions to the (3+1)-dimensional generalized KP and BKP
equations were constructed in [6,7].
. All rights reserved.
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In this work, our aim is to investigate two well-known models that are of particular interest in science. The (3+1)-
dimensional Jimbo–Miwa equation [30]:
uxxxy þ 3uxxuy þ 3uxuyx þ 2uyt � 3uxz ¼ 0; ð1Þ
and the (3+1)-dimensional nonlinear evolution equation [16]:
3wxz � ð2wt þwxxx � 2wwxÞy þ 2ðwx@
�1
x wyÞx ¼ 0; ð2Þ
where
u ¼ uðx; y; z; tÞ; w ¼ wðx; y; z; tÞ; f x ¼
@f
@x

and @�1
x f ¼

Z
fdx:
Both of which can be written in terms of the Hirota bilinear operator. Moreover, Eq. (1) was firstly investigated by Jimbo–
Miwa and its soliton solutions were obtained in [30]. It is the second member in the entire Kadomtsev–Petviashvili hierar-
chy. Lately, Wazwaz [12,13] successfully studied one-soliton solutions to Eq. (1) by means of the Tanh–Coth method. He also
employed the Hirota’s bilinear method to the Jimbo–Miwa equation and confirmed that it is completely integrable and it
admits multiple-soliton solutions of any order. In fact Eq. (2) was firstly investigated by Geng (see [16], where it was decom-
posed into systems of solvable ordinary differential equations with the help of the (1+1)-dimensional AKNS equations and
algebraic-geometrical solutions for it were explicitly given in terms of the Riemann theta functions). Further, Geng and
Ma [14] derived an N-soliton solution of the equation and its Wronskian form by using the Hirota direct method and Wrons-
kian technique. Eq. (2) has Grammian determinant solution in [5] and Eq. (1) has Wronskian solution in [19].

In our present paper, we will show the above (3+1)-dimensional nonlinear evolution equations has a class of extended
Grammian determinant solutions, with all generating functions for matrix entries satisfying a linear system of partial differ-
ential equations involving variable-coefficient, which guarantee that the Grammian determinant solves the equation. The
Jacobi identity for determinants is the key to establish the Grammian formulation [18]. Moreover, a systematic analysis
of linear partial differential equations is used to solve the representative linear systems.

A theory of transformation of surfaces initiated by Bäcklund [24] and later developed by Loewner [25] has, in recent years,
proved to be of remarkable importance in the analysis of a wide range of physical phenomena, and the successful applica-
tions of this transformation theory to nonlinear evolution equations have led to a rekindling of interest in this topic. Perhaps
the simplest example of Bäcklund transformation is the Cauchy–Riemann relations. In particular, Bäcklund transformations
of the Sine-Gordon equation have generated results of interest in dislocation theory [26], in the study of long Josephson junc-
tions [27], and in the investigation of propagation of long optical pulses through a resonant laser medium [28]. The work by
Miura [29] on the Korteweg-de Vries equation has likewise involved the use of a Bäcklund transformation. In 1950, Loewner
[25] introduced an important generalization of the concept of Bäcklund transformation. This was in connection with the
reduction to canonical form of the well-known hodograph equations of gasdynamics. In Section 5, we would like to present
a bilinear Bäcklund transformation for the above (3+1)-dimensional Jimbo–Miwa Eq. (1) and the (3+1)-dimensional nonlin-
ear evolution Eq. (2). Furthermore, we will use the transformation to generate a new class of wave and rational solutions to
the same equation.
2. Pfaffian and bilinear form

2.1. Pfaffian

Pfaffians, which may be an unfamiliar word, are closely related to determinants. They are usually defined by the property
that the square of a Pfaffian is the determinant of an antisymmetric matrix. This feature leads often to the misunderstanding
that a Pfaffian is a special case of a determinant. In fact, it is easy to recognize that the Pfaffians are a generalization of deter-
minants. Therefore, Plücker relations and Jacobi identities, which are identities for determinants, also hold for Pfaffians.

In this paper, we will use Pfaffian identities [3] to search for exact solutions to the nonlinear partial differential equations:
(1) and (2).

Let us discuss some basics about the Pfaffian [3]. Let A ¼ ajk

� �
16j;k6m be a skew-symmetric matrix, in which aj;k ¼ �ak;j

for j; k ¼ 1;2; . . . ;m. It is known that detðAÞ of odd order vanishes but detðAÞ of even order m ¼ 2n is the square of a Pfaffian,
that is
detðAÞ ¼
0; if m is odd;
PfðajkÞ216j;k6m; if m is even:

(
ð3Þ
We can denote this Pfaffian Pf ðajkÞ16j;k62n by
PfðajkÞ16j;k62n ¼ ð1;2;3; . . . ;2nÞ: ð4Þ
Then, we have
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0 a12 a13 a14

�a12 0 a23 a24

�a13 �a23 0 a34

�a14 �a24 �a34 0

���������

���������
¼ a12a34 � a13a24 þ a14a23½ �2 ð5Þ

� ð1;2;3;4Þ2: ð6Þ
Therefore, a second-order (n ¼ 2) Pfaffian is given by
ð1;2;3;4Þ ¼ ð1;2Þð3;4Þ � ð1;3Þð2;4Þ þ ð1;4Þð2;3Þ; ð7Þ
where
ðj; kÞ ¼ aj;k for j < k: ð8Þ
Also, it should be noted that from the antisymmetric aj;k ¼ �ak;j, we have
ðj; kÞ ¼ �ðk; jÞ: ð9Þ
In general, we have an expansion rule for a Pfaffian (1;2; . . . ;2n) of order n:
ð1;2; . . . ;2nÞ ¼
X2n

j¼2

ð�1Þjð1; jÞð2;3; . . . ; ĵ; . . . ;2nÞ; ð10Þ
where the notation ĵ means that the index j is omitted. An alternative expansion reads
ð1;2; . . . ;2nÞ ¼
X2n�1

j¼1

ð�1Þj�1ð1;2; . . . ; ĵ; . . . ;2n� 1Þðj;2nÞ: ð11Þ
Repeating the above expansion, we arrive at the summation of products of first-order Pfaffians [3]:
ð1;2; . . . ;2nÞ ¼
X0ð�1ÞPði1; i2Þði3; i4Þði5; i6Þ . . . ði2n�1; i2nÞ; ð12Þ
where
P0 means the sum over all possible combinations of pairs selected from f1;2; . . . ;2ng that satisfy
i1 < i2; i3 < i4; i5 < i6 . . . ; i2n�1 < i2n; i1 < i3 < . . . < i2n�1:
These first-order Pfaffians ði; jÞ are called the entries in the Pfaffian. In the above equation,The factor ð�1ÞP ¼ þ1 or �1 if the
sequence ikf g2n

k¼1 is an even or odd permutation of 1;2; . . . ;2n.
Moreover, the Pfaffian ði1; i2; . . . ; i2nÞ vanishes if il ¼ im for any pair of m and l chosen from 1;2; . . . ;2n. Also, the inter-

change of labels il and im changes the parity of each permutation in the sum, and thus, the Pfaffian has the skew-symmetric
property
ði1; . . . ; il; . . . ; im; . . . ; i2nÞ ¼ �ði1; . . . ; im; . . . ; il; . . . ; i2nÞ; ð13Þ
where 1 6 l < m 6 2n. The Pfaffian also is denoted conventionally by Caianiello [17]
Pfðai;jÞ16i;j62n ¼

a1;2

�� a1;3 � � � a1;2n

a2;3 � � � a2;2n

. .
. ..

.

a2n�1;2n

����������
; ð14Þ
and when n ¼ 1, 2, the Pfaffian reads
Pfðai;jÞ16i;j62 ¼ a1;2 ¼ ð1;2Þ;
Pfðai;jÞ16i;j64 ¼ a1;2a3;4 � a1;3a2;4 þ a1;4a2;3 ¼ ð1;2;3;4Þ:
Moreover, the Pfaffian obeys an expansion rule
a1;a2; . . . ;a2Nð Þ ¼
X2N

j¼1

ðai;ajÞCði; jÞ; 1 6 i 6 2N; ð15Þ
with the cofactor Cði; jÞ being defined by
Cði; jÞ ¼ ð�1Þiþj�1 a2; . . . ; âi; . . . ; âj; . . . a2N
� �

; i < j;

Cðj; iÞ ¼ �Cði; jÞ; i > j; Cði; iÞ ¼ 0;
where âk means that the label ak is omitted. We have several expansion theorems on the Pfaffian. Below we describe two of
them, which are relevant to the present paper.
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Proposition 1 [1]. Let A be a 2n� 2n skew-symmetric matrix. Then
PfðAÞ ¼ ð1;2; . . . ;2nÞ ¼
X
r

sgnðrÞ
Yn

i¼1

ðrð2i� 1Þ;rð2iÞÞ; ð16Þ
where the summation is taken over all permutations
r ¼
1 2 . . . 2n
i1 i2 . . . i2n

� �
with
i1 < i2; i3 < i4; . . . ; i2n�1 < i2n; i1 < i3 < . . . < i2n�1;
and sgnðrÞ ¼ ð�1ÞinvðrÞ.
We have several expansion theorems on the Pfaffian. Below we describe two of them, which are relevant to the present

work.

Lemma 1 [3]. Let n be a positive integer. Then
a1;a2;1;2; . . . ;2nð Þ ¼
X2n

j¼2

ð�1Þj a1;a2;1; jð Þ½ð2;3; . . . ; ĵ; . . . 2nÞ þ 1; jð Þða1;a2;2;3; . . . ; ĵ; . . . 2nÞ�

� a1;a2ð Þ a1; a2;1;2; . . . ;2nð Þ; ð17Þ
and
b1;b2; c1; c2;1;2; . . . ;2nð Þ ¼
X2n

j¼1

X2n

k¼jþ1

ð�1Þjþk�1 b1;b2; j; kð Þ � ðc1; c2;1;2; . . . ; ĵ; . . . ; k̂; . . . 2nÞ; ð18Þ
provided that
ðbj; ckÞ ¼ 0; for j; k ¼ 1;2:
We shall use Eqs. (17) and (18) to express the derivatives of the Pfaffain by the Pfaffians of lower order. In the next lemma we
describe two of the identities of Pfaffians which correspond to the Jacobi identity of determinants.
Lemma 2 [3]. Let m and n be positive integers. Then
a1;a2; . . . ;a2m;1;2; . . . ;2nð Þ 1;2; . . . ;2nð Þ ¼
X2m

s¼2

ð�1Þs a1;as;1;2; . . . ;2nð Þ � ða1;a2; . . . ; âs; . . . ;a2m;1;2; . . . ;2nÞ; ð19Þ
and
ða1;a2; . . . ;a2m�1;1;2;3; . . . ;2n� 1Þ 1;2; . . . ;2nð Þ ¼
X2m�1

s¼1

ð�1Þs�1 as;1; . . . ;2n� 1ð Þ � ða1;a2; . . . ; âs; . . . ;a2m�1;1; . . . ;2nÞ:

ð20Þ
2.2. Bilinear form

In this subsection, we would like to transform the (3+1)-dimensional nonlinear evolution Eqs. (1) and (2) into the bilinear
forms by dependent variable transformations.

Through the dependent variable transformations:
u ¼ 2ðln f Þx and w ¼ �3ðln f Þxx; ð21Þ
the above (3+1)-dimensional nonlinear evolution Eqs. (1) and (2) are mapped into the Hirota bilinear equations:
ðD3
x Dy þ 2DyDt � 3DxDzÞf � f ¼ 0; ð22Þ
where the bilinear differential operator D is defined by
Dk
t Dn

x Dm
y uðt; x; yÞ � wðt; x; yÞ ¼ @t � @t0ð Þk @x � @x0ð Þnð@y � @y0 Þmuðt; x; yÞwðt0; x0; y0Þjt0¼t;x0¼x;y0¼y: ð23Þ
We can rewrite Eq. (22) in terms of f as follows
fxxxy þ 2f yt � 3f xz

� �
f � fxxxfy � 3f xxyfx þ 3f xxfxy � 2f yft þ 3f xfz ¼ 0: ð24Þ
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3. Sufficient conditions and Grammian solutions

3.1. Sufficient conditions

Let us introduce the following Grammian determinant:
fN ¼ detðaijÞ16i;j6N; ð25Þ
aij ¼ dij þ
Z x

/iwjdx; i; j ¼ 1;2; . . . ;N; dij ¼
0; i – j

1; i ¼ j
;

�
ð26Þ
and all the elements /i ¼ /iðx; y; z; tÞ and wj ¼ wjðx; y; z; tÞ satisfy the linear differential equations:
/i;y¼2nðtÞ/i;xx;

/i;z¼2nðtÞ/i;xxxxþ
XN

k¼1

kikðtÞ/k;

/i;t¼/i;xxxþ
XN

k¼1

gikðtÞ/k;

wj;y¼�2nðtÞwj;xx;

wj;z¼�2nðtÞwj;xxxxþ
XN

l¼1

ljlðtÞwl;

wj;t¼wj;xxxþ
XN

l¼1

qjlðtÞwl;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð27Þ
where nðtÞ, kikðtÞ, ljlðtÞ, gikðtÞ and qjlðtÞ are arbitrary differentiable functions in t, and kijðtÞ þ ljiðtÞ ¼ 0, gijðtÞ þ qjiðtÞ ¼ 0 for
i; j ¼ 1;2; . . . ;N. In what follows, as an application of the Pfaffian technique, we shall construct new Grammian solutions to
the (3+1)-dimensional Jimbo–Miwa Eq. (1) and the (3+1)-dimensional nonlinear evolution Eq. (2).

Theorem 3 (Sufficient condition). Let /iðx; y; z; tÞ and wjðx; y; z; tÞ, i; j ¼ 1;2; . . . ;N, satisfy (27), then the Grammian determinant
fN defined by (25) solves the Hirota bilinear Eq. (22) and the functions u ¼ 2ðln fNÞx and w ¼ �3ðln fNÞxx solves the (3+1)-
dimensional Jimbo–Miwa Eq. (1) and the (3+1)-dimensional nonlinear evolution Eq. (2) respectively.
Proof. Let us express the Grammian determinant fN by means of a Pfaffian as
fN ¼ ð1;2; � � � ;N;N�; � � � ;2�;1�Þ ¼ ð�Þ; ð28Þ
where ði; j�Þ ¼ aij and ði; jÞ ¼ ði�; j�Þ ¼ 0.
To compute the derivatives of the entries ði; j�Þ and the Grammian fN , we introduce new Pfaffian entries
ðdn; j
�Þ ¼ @n

@xn
wj; ðd�n; iÞ ¼

@n

@xn
/i;

ðdm;d
�
nÞ ¼ ðdn; iÞ ¼ ðd�m; j

�Þ ¼ 0; m;n P 0; ð29Þ
by using Eqs. (26) and (27), we can get
@

@x
ði; j�Þ ¼ /iwj ¼ ðd0; d

�
0; i; j

�Þ; ð30Þ

@

@y
ði;j�Þ¼

Z x

ð/i;ywjþ/iwj;yÞdx¼2nðtÞ
Z x

ð/i;xxwj�/iwj;xxÞdx¼2nðtÞð/i;xwj�/iwj;xÞ¼2nðtÞ½�ðd1;d
�
0;i;j

�Þþðd0;d
�
1;i;j

�Þ�; ð31Þ

@

@t
ði; j�Þ ¼

Z x

ð/i;twj þ /iwj;tÞdx ¼
Z x

/i;xxx þ
XN

k¼1

gik/k

 !
wj þ /i wj;xxx þ

XN

l¼1

qjlwl

 !" #
dx

¼
Z x

½/i;xxxwj þ /iwj;xxx�dxþ
XN

k¼1

gik dkj þ
Z x

/kwjdx
� �

þ
XN

l¼1

qjl dil þ
Z x

/iwldx
� �

�
XN

k¼1

gikdkj �
XN

l¼1

qjldil

¼ ð/i;xxwj � /i;xwj;x þ /iwj;xxÞ þ
XN

k¼1

gikakj þ
XN

l¼1

qjlail � gij � qji

¼ ½ðd2;d
�
0; i; j

�Þ � ðd1;d
�
1; i; j

�Þ þ ðd0;d
�
2; i; j

�Þ� þ
XN

k¼1

gikakj þ
XN

l¼1

qjlail; ð32Þ
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@

@z
ði; j�Þ ¼

Z x

2n/i;xxxx þ
XN

k¼1

kik/k

 !" #
wj þ /i �2nwj;xxxx þ

XN

l¼1

ljlwl

 !" #
dx ¼ 2nðtÞ

Z x

ð/i;xxxxwj � /iwj;xxxxÞdx

þ
XN

k¼1

kik dkj þ
Z x

/kwjdx
� �

þ
XN

l¼1

ljl dil þ
Z x

/iwldx
� �

�
XN

k¼1

kikdkj �
XN

l¼1

ljldil

¼ 2nðtÞð/i;xxxwj � /i;xxwj;x þ /i;xwj;xx � /iwj;xxxÞ þ
XN

k¼1

kikakj þ
XN

l¼1

ljlail � kij � lji

¼ 2nðtÞ½ðd0;d
�
3; i; j

�Þ � ðd1;d
�
2; i; j

�Þ þ ðd2;d
�
1; i; j

�Þ � ðd3;d
�
0; i; j

�Þ� þ
XN

k¼1

kikakj þ
XN

l¼1

ljlail: ð33Þ
Therefore, from the above results (30)–(33), we have the following differential formulae for fN:
fN;x ¼ d0;d
�
0; �

� �
; ð34Þ

fN;y ¼ 2n½�ðd1;d
�
0; �Þ þ ðd0;d

�
1; �Þ�; ð35Þ

fN;t ¼ ðd2; d
�
0; �Þ � ðd1;d

�
1; �Þ þ ðd0; d

�
2; �Þ þ

XN

l¼1

ðgll þ qllÞð�Þ; ð36Þ

fN;z ¼ 2n½ðd0; d
�
3; �Þ � ðd1;d

�
2; �Þ þ ðd2; d

�
1; �Þ � ðd3;d

�
0; �Þ� þ

XN

l¼1

ðkll þ lllÞð�Þ; ð37Þ

fN;xx ¼ ðd1;d
�
0; �Þ þ ðd0;d

�
1; �Þ; ð38Þ

fN;xy ¼ 2n½�ðd2; d
�
0; �Þ þ ðd0;d

�
2; �Þ�; ð39Þ

fN;xxx ¼ ðd2;d
�
0; �Þ þ 2ðd1;d

�
1; �Þ þ ðd0;d

�
2; �Þ; ð40Þ

fN;xxy ¼ 2n½ðd0;d
�
3; �Þ þ ðd1; d

�
2; �Þ � ðd2;d

�
1; �Þ � ðd3; d

�
0; �Þ�; ð41Þ

fN;xz ¼ 2n½ðd0; d
�
4; �Þ � ðd4;d

�
0; �Þ þ ðd2;d

�
1;d0;d

�
0; �Þ � ðd1;d

�
2; d0; d

�
0; �Þ� þ

XN

l¼1

ðkll þ lllÞ d0; d
�
0; �

� �
¼ 2n½ðd0; d

�
4; �Þ � ðd4;d

�
0; �Þ þ ðd2; d

�
1; d0; d

�
0; �Þ � ðd1;d

�
2;d0;d

�
0; �Þ�; ð42Þ

fN;yt ¼ 2n½ðd0; d
�
4; �Þ � ðd4;d

�
0; �Þ þ ðd3;d

�
1; �Þ � ðd1;d

�
3; �Þ þ ðd2;d

�
0;d0;d

�
1; �Þ � ðd0; d

�
2; d1; d

�
0; �Þ�

þ 2n
XN

l¼1

ðgll þ qllÞðd0; d
�
1; �Þ � 2n

XN

l¼1

ðgll þ qllÞðd1;d
�
0; �Þ

¼ 2n½ðd0; d
�
4; �Þ � ðd4;d

�
0; �Þ þ ðd3; d

�
1; �Þ � ðd1;d

�
3; �Þ þ ðd2;d

�
0;d0;d

�
1; �Þ � ðd0;d

�
2;d1;d

�
0; �Þ�; ð43Þ

fN;xxxy ¼ 2n½ðd0;d
�
4; �Þ � ðd4;d

�
0; �Þ � 2ðd3; d

�
1; �Þ þ 2ðd1;d

�
3; �Þ þ ðd2;d

�
0;d0;d

�
1; �Þ � ðd0; d

�
2; d1; d

�
0; �Þ�; ð44Þ
where we have used the abbreviated notation � ¼ 1;2; � � � ;N;N�; � � � ;2�;1�. We can now compute that
fN;xxxy þ 2f N;yt � 3f N;xz

� �
f ¼ 12n

1
2
ðd2; d

�
0; d0; d

�
1; �Þ �

1
2
ðd0; d

�
2; d1;d

�
0; �Þ �

1
2
ðd2;d

�
1;d0;d

�
0; �Þ þ

1
2
ðd1;d

�
2;d0;d

�
0; �Þ

� 	
ð�Þ

¼ 12n½ðd2;d
�
0;d0;d

�
1; �Þ � ðd0;d

�
2;d1;d

�
0; �Þ�ð�Þ;

ð�fN;xxxfy � 3f N;xxyfx � 2f N;yfN;t þ 3f N;xfN;zÞ

¼ 12n
1
2
ðd2;d

�
0; �Þðd1;d

�
0; �Þ �

1
2
ðd2; d

�
0; �Þðd0;d

�
1; �Þ þ

1
2
ðd0;d

�
2; �Þðd1;d

�
0; �Þ

�

�1
2
ðd0; d

�
2; �Þðd0;d

�
1; �Þ þ d0;d

�
0; �

� �
ðd2;d

�
1; �Þ � d0; d

�
0; �

� �
ðd1; d

�
2; �Þ

	
;

ð3f N;xxfN;xyÞ ¼ 12n �1
2
ðd2; d

�
0; �Þðd1;d

�
0; �Þ þ

1
2
ðd0;d

�
2; �Þðd1;d

�
0; �Þ �

1
2
ðd2; d

�
0; �Þðd0;d

�
1; �Þ þ

1
2
ðd0;d

�
2; �Þðd0; d

�
1; �Þ

� 	
:

Substituting the above derivatives of fN into the LHS of Eq. (24), we arrive at
fN;xxxy þ 2f N;yt � 3f N;xz

� �
f � fN;xxxfy � 3f N;xxyfx þ 3f N;xxfN;xy � 2f N;yfN;t þ 3f N;xfN;z

¼ 12n½ðd0;d
�
0;d2;d

�
1; �Þð�Þ � d0; d

�
0; �

� �
ðd2; d

�
1; �Þ � ðd

�
0;d2; �Þðd0; d

�
1; �Þ�

� 12n½ðd0;d
�
0;d1;d

�
2; �Þð�Þ � d0;d

�
0; �

� �
ðd1;d

�
2; �Þ � ðd

�
0;d1; �Þðd0; d

�
2; �Þ� ¼ 0; ð45Þ
where we have made use of the known Jacobi identities for determinants. This shows that the Grammian determinant fN ¼ ð�Þ,
with the conditions (27) solves the Hirota bilinear Eq. (22) and the functions u ¼ 2ðln fNÞx and w ¼ �3ðln fNÞxx solves the (3+1)-
dimensional Jimbo–Miwa Eq. (1) and the (3+1)-dimensional nonlinear evolution Eq. (2) respectively. This ends the proof. h
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From the above theorem, we can see that if a set of functions /iðx; y; z; tÞ and wjðx; y; z; tÞ, 1 6 i; j 6 N, satisfy the conditions
(27), then the determinant fN ¼ detðaijÞ is an exact solution to the Hirota bilinear Eq. (22), where the entry aij is defined in
(26). The conditions (27) consist of three linear systems of second-order, third-order and fourth-order partial differential
equations. It is rather difficult to solve those linear systems explicitly, but based on the idea used in [9], we can find some
special solutions to the present linear systems. Before we proceed to solve (27), let us observe the Grammian determinants
and solutions more carefully.

Remark 4. From the compatibility conditions /i;yt ¼ /i;ty, 1 6 i 6 N, we have the equality
2ntðtÞ/i;xx ¼ 0; 1 6 i 6 N: ð46Þ
Therefore, in the following discussion we assume that nðtÞ ¼ n0.
Remark 5. From the compatibility conditions /i;zt ¼ /i;tz, 1 6 i 6 N, we have the equality
XN

k¼1

kik;t/k ¼ 0; 1 6 i 6 N: ð47Þ
Therefore, we note that if there is one entry kij satisfying kij;t – 0, then /j ¼ 0. So in the following discussion, we assume that
the coefficient matrix K ¼ ðkijÞ is a real constant matrix.
Remark 6. If the coefficient matrix K ¼ ðkijÞ is similar to another matrix H ¼ ðhijÞ under an invertible constant matrix P, that
is P�1KP ¼ H, and if we take the notation U ¼ ð/1;/2; . . . ;/NÞ

T , then U ¼ P�1U solves
Uy ¼ 2n0Uxx; Uz � 2n0Uxxxx ¼ HU; Ut ¼ Uxxx: ð48Þ
The coefficient matrix H ¼ ðhijÞN�N is equal to �KT . If we take the notation W ¼ ðw1;w2; . . . ;wNÞ
T , then W ¼ PTW solves
Wy ¼ 2n0Wxx; Wz � 2n0Wxxxx ¼ �HTW; Wt ¼ Wxxx: ð49Þ
We can rewrite the Grammian matrix (26) to I þ A, where I is the identity matrix, and the element of matrix A is Aði; jÞ ¼R x/iwjdx. Noting that U ¼ P�1U and WT ¼ WT P, we have the following result:
detðdij þ
Z x

/iwjdxÞN�N ¼ detðI þ AÞ ¼ detðP�1ðI þ AÞPÞ ¼ detðI þ
Z x

/iwjdxÞ:
It follows that the resultant Grammian determinant solutions to the (3+1)-dimensional Jimbo–Miwa Eq. (1) and the (3+1)-
dimensional nonlinear evolution Eq. (2) keep the same under the similar transformation. Therefore, based on the above Re-
marks, in order to construct Grammian determinant solutions to the (3+1)-dimensional nonlinear partial differential Eq. (1),
we only need to consider the reduced case of (27) under n0 ¼ 1=2, gij ¼ qij ¼ 0 and dK=dt ¼ 0, i.e., the following conditions:
/i;y ¼ /i;xx;/i;z ¼ /i;xxxx þ
XN

k¼1

kik/k; /i;t ¼ /i;xxx;

wj;y ¼ �wj;xx;wj;z ¼ �wj;xxxx þ
XN

l¼1

ljlwl; wj;t ¼ wj;xxx;

kij þ lji ¼ 0; 1 6 i; j 6 N;

8>>>>>>><
>>>>>>>:

ð50Þ
where kij are arbitrary real constants. On the other hand, the Jordan form of a real matrix has the following types of the blocks:
ki 0
1 ki

. .
. . .

.

0 1 ki

0
BBBB@

1
CCCCA

ki�ki

; ð51Þ

Ni 0
I2 Ni

. .
. . .

.

0 I2 Ni

0
BBBB@

1
CCCCA

li�li

; Ni ¼
ai �bi

bi ai

� �
; I2 ¼

1 0
0 1

� �
; ð52Þ
where ki, ai and bi > 0 are all real constants. The first type of blocks has the real eigenvalue ki with algebraic multiplicity ki,
and the second type of blocks has the complex eigenvalues 	ki ¼ ai 	 bi

ffiffiffiffiffiffiffi
�1
p

with algebraic multiplicity li. We will construct
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solutions for the system of differential equations defined by (50), according to the situations of eigenvalues of the coefficient
matrix. Based on Remark 4.5.4, all we need to do is to solve a group of subsystems in the sufficient condition on the Gram-
mian determinant solutions, whose coefficient matrixes are of the forms (51) and (52).

4. Some solutions for the representative systems

In this section, we would like to construct some solutions to the associated system of differential equations defined by
(50). For a nonzero real eigenvalue ki, we start from the eigenfunction /iðkiÞ determined by
ð/iðkiÞÞy ¼ ð/iðkiÞÞxx;

ð/iðkiÞÞz � ð/iðkiÞÞxxxx ¼ ki/iðkiÞ;
ð/iðkiÞÞt ¼ ð/iðkiÞÞxxx:

8><
>: ð53Þ
Two special solutions to this system in two cases of ki > 0 and ki < 0 are
/iðkiÞ ¼ e
1
4d

2
i ð�2yþð1þd2

i ÞzÞðC1i sin#þ C2i cos#Þ; di ¼
ffiffiffiffi
ki

p
;

/iðkiÞ ¼ e
1
4d

2
i ð2y�ð1þd2

i ÞzÞðC1i sinh#þ C2i cosh#Þ; di ¼
ffiffiffiffiffiffiffiffi
�ki

p
;

where
# ¼ 1ffiffiffi
2
p dixþ

1
2
ffiffiffi
2
p d3

i t;
and C1i and C2i are arbitrary real constants. By an inspection, we find that
@z � @4
x

� �
/iðkiÞ

1
1!
@ki

/iðkiÞ

..

.

1
ðki�1Þ! @

ki�1
ki

/iðkiÞ

0
BBBBB@

1
CCCCCA ¼

ki 0
1 ki

. .
. . .

.

0 1 ki

0
BBBB@

1
CCCCA

ki�ki

/iðkiÞ
1
1!
@ki

/iðkiÞ

..

.

1
ðki�1Þ! @

ki�1
ki

/iðkiÞ

0
BBBBB@

1
CCCCCA;

1
j!
@j

ki
/iðkiÞ

� �
y
¼ 1

j!
@ j

ki
/iðkiÞ

� �
xx
; 0 6 j 6 ki�1;
and
1
j!
@j

ki
/iðkiÞ

� �
t
¼ 1

j!
@ j

ki
/iðkiÞ

� �
xxx
; 0 6 j 6 ki�1;
where @ki
denotes the derivatives with respect to ki and ki is an arbitrary non-negative integer. Noting that the coefficient

matrix ðlijÞ of wi satisfies lij þ kij ¼ 0, we take
ðwiðkiÞÞy ¼ �ðwiðkiÞÞxx;

ðwiðkiÞÞz þ ðwiðkiÞÞxxxx ¼ �kiwiðkiÞ;
ðwiðkiÞÞt ¼ ðwiðkiÞÞxxx:

8><
>: ð54Þ
Two special solutions to this system in two cases of ki > 0 and ki < 0 are
wiðkiÞ ¼ e
1
4d

2
i ð2y�ð1þd2

i ÞzÞðD1i sin#þ D2i cos#Þ; di ¼
ffiffiffiffi
ki

p
;

wiðkiÞ ¼ e
1
4d

2
i ð�2yþð1þd2

i ÞzÞðD1i sinh#þ D2i cosh#Þ; di ¼
ffiffiffiffiffiffiffiffi
�ki

p
;

where
# ¼ 1ffiffiffi
2
p dixþ

1
2
ffiffiffi
2
p d3

i t;
and D1i and D2i are arbitrary real constants. Then we can find that
ð@z þ @4
x Þ

1
ðki�1Þ! @

ki�1
ki

wiðkiÞ

..

.

1
1!
@ki

wiðkiÞ
wiðkiÞ

0
BBBBB@

1
CCCCCA ¼

�ki �1 0

�ki
. .

.

. .
.

�1
0 �ki

0
BBBBB@

1
CCCCCA

ki�ki

1
ðki�1Þ! @

ki�1
ki

wiðkiÞ

..

.

1
1!
@ki

wiðkiÞ
wiðkiÞ

0
BBBBB@

1
CCCCCA
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Therefore, through these two sets of eigenfunctions, we can construct Grammian determinant entry and then obtain solu-
tions to the bilinear Eq. (22). For the second type of Jordan blocks of the coefficient matrix, we set a pair of eigenfunctions:
Uiðai;biÞ ¼ ð/i1ðai; biÞ;/i2ðai;biÞÞ
T
;

is determined by
Uiz �Uixxxx ¼ NUi; Ui ¼
/i1ðai;biÞ
/i2ðai;biÞ

� �
; Ni ¼

ai �bi

bi ai

� �
; ð55Þ
and
/ijðai;biÞ
� �

y
¼ /ijðai;biÞ
� �

xx
; /ijðai;biÞ
� �

t
¼ /ijðai;biÞ
� �

xxx
; j ¼ 1;2:
Again by inspection, one can see that
@z � @4
x

� �
Ui

1
1!
@ai

Ui

..

.

1
ðli�1Þ! @

ki�1
ai

Ui

0
BBBBB@

1
CCCCCA ¼

Ni 0
I2 Ni

. .
. . .

.

0 I2 Ni

0
BBBB@

1
CCCCA

li�li

Ui

1
1!
@ai

Ui

..

.

1
ðli�1Þ! @

ki�1
ai

Ui

0
BBBBB@

1
CCCCCA:
Similarly, if
Wiðai;biÞ ¼ ðwi1ðai; biÞ;wi2ðai;biÞÞ
T
;

is determined by
Wiz þWixxxx ¼ �NWi; Wi ¼
wi1ðai; biÞ
wi2ðai; biÞ

� �
; Ni ¼

ai �bi

bi ai

� �
; ð56Þ
and
wijðai;biÞ
� �

y
¼ wijðai;biÞ
� �

xx
; wijðai;biÞ
� �

t
¼ wijðai;biÞ
� �

xxx
; j ¼ 1;2:
Again by inspection, one can see that
@z þ @4
x

� �
Wi

1
1!
@ai

Wi

..

.

1
ðli�1Þ! @

ki�1
ai

Wi

0
BBBBB@

1
CCCCCA ¼

�Ni �I2 0

�Ni
. .

.

. .
.

�I2

0 �Ni

0
BBBBB@

1
CCCCCA

li�li

Wi

1
1!
@ai

Wi

..

.

1
ðli�1Þ! @

ki�1
ai

Wi

0
BBBBB@

1
CCCCCA:
One special solution to Eqs. (55) and (56) are given as follows
/i1 ¼ expðxþ yþ t þ ð1þ aiÞzÞ cosðbizÞ;
/i2 ¼ expðxþ yþ t þ ð1þ aiÞzÞ sinðbizÞ;
wi1 ¼ expðxþ yþ t � ð1þ aiÞzÞ cosðbizÞ;

wi2 ¼ � expðxþ yþ t � ð1þ aiÞzÞ sinðbizÞ;

8>>><
>>>:

ð57Þ
where the parameters ai and bi are arbitrary constants.

5. Bilinear Bäcklund transformation

5.1. Bäcklund transformation

The Bäcklund transformations are essentially defined as a pair of partial differential relations involving two independent
variables and their derivatives which together imply that each one of the dependent variables satisfies separately a partial
differential equation. Thus, for example, the transformation
L1ðu;ut ;ux;uy;uxx; . . .Þ and L2ðv; v t ;vx; vy;vxx; . . .Þ;
would imply that u and v satisfy partial differential equations of the operational form,
PðuÞ ¼ 0 and QðvÞ ¼ 0:
In this paper we would like to present a bilinear Bäcklund transformation for the above (3+1)-dimensional nonlinear evolu-
tion equations (1) and (2).

Let us suppose that we have another solution f 0 to the generalized bilinear Eq. (22):
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ðD3
x Dy þ 2DyDt � 3DxDzÞf 0 � f 0 ¼ 0; ð58Þ
and then we introduce the key function
P ¼ ½ðD3
x Dy þ 2DyDt � 3DxDzÞf � f �f 02 � ½ðD3

x Dy þ 2DyDt � 3DxDzÞf 0 � f 0�f 2: ð59Þ
If P ¼ 0 then f solves the bilinear Eq. (22) if and only if f 0 solves the bilinear Eq. (22), that is
f is a solution of ð22Þ () f 0 is a solution of ð22Þ:
Therefore, if we can obtain, from P ¼ 0 by interchanging the dependent variables f and f 0, a system of bilinear equations that
guarantees P ¼ 0:
F1ðDt ;Dx;Dy;DzÞf � f 0 ¼ 0;
F2ðDt ;Dx;Dy;DzÞf � f 0 ¼ 0;

..

.

FMðDt;Dx;Dy;DzÞf � f 0 ¼ 0;
where the F 0is are polynomials in the indicated variables and M is natural number depending on the complexity of the equa-
tion. It is known that the identities of Hirota’s bilinear operators are necessarily to split P into a system of polynomials F 0is.

Let us now introduce the following useful identities for Hirota’s bilinear operators:
DgðDfa � bÞ � ba ¼ DfðDga � bÞ � ba; ð60Þ
Dgab � cd ¼ ðDga � dÞcb� adðDgc � bÞ; ð61Þ
b2ðD2

f a � aÞ � ðD2
f b � bÞa2 ¼ 2DfðDfa � bÞ � ba; ð62Þ

b2ðDgDfa � aÞ � ðDgDfb � bÞa2 ¼ 2DfðDga � bÞ � ba; ð63Þ
and
b2ð2D3
gDfa � aÞ � a2ð2D3

gDfb � bÞ ¼ Dgð3D2
gDfa � bÞ � baþ Dgð3D2

ga � bÞ � ðDfb � aÞ þ Dgð6DgDfa � bÞ � ðDgb � aÞ

þ DfðD3
ga � bÞ � baþ Dfð3D2

ga � bÞ � ðDgb � aÞ: ð64Þ
Noting that, the above identities (60)–(63) can be found in [1], and the identity (64) can be obtained by making the indepen-
dent variable transformation Dg ! Dg þ �Df in the bilinear identity [1]
b2ðD4
ga � aÞ � a2ðD4

gb � bÞ ¼ 2Dg½ðD3
ga � bÞ � baþ 3ðD2

ga � bÞ � ðDgb � aÞ�;
and comparing the coefficient of �. In the above identities a, b are arbitrary continuous functions of the independent variables
g, f. For more identities and general exchange formulas you may see [1]. Applying the above identities on Eq. (59) we can
obtain
f 02ð4DyDtf � f Þ � f 2ð4DyDtf 0 � f 0Þ ¼ 8DyðDtf � f 0Þ � f 0f ; ð65Þ
f 2ð6DxDzf 0 � f 0Þ þ f 02ð6DxDzf � f Þ ¼ �12DxðDzf � f 0Þ � f 0f ; ð66Þ
and
f 02ð2D3
x Dyf � f Þ � f 2ð2D3

x Dyf 0 � f 0Þ ¼ Dxð3D2
x Dyf � f 0Þ � f 0f þ Dxð3D2

x f � f 0Þ � ðDyf 0 � f Þ þ Dxð6DxDyf � f 0Þ � ðDxf 0 � f Þ

þ DyðD3
x f � f 0Þ � f 0f þ Dyð3D2

x f � f 0Þ � ðDxf 0 � f Þ: ð67Þ
Substituting the above results into the right-hand side of Eq. (59) we may obtain
2P ¼ 8DyðDtf � f 0Þ � f 0f þ DyðD3
x f � f 0Þ � f 0f � 12DxðDzf � f 0Þ � f 0f þ Dxð3D2

x Dyf � f 0Þ � f 0f þ Dxð3D2
x f � f 0Þ � ðDyf 0 � f Þ

þ Dxð6DxDyf � f 0Þ � ðDxf 0 � f Þ þ Dyð3D3
x f � f 0Þ � ðDxf 0 � f Þ: ð68Þ
Lemma 7. Let f and f 0 be arbitrary continuous functions of independent variables x; y; z; t. Then DxðDzf � f 0Þ � ðDxf � f 0Þ ¼
DzðD2

x f � f 0Þ � ff 0 � DxðDxDzf � f 0Þ � ff 0.
Let us now introduce new arbitrary parameters k, l, n, # and ei, (i ¼ 1;2;3), into Eq. (68) to obtain
2P	 ¼ Dy½ð8Dt þ D3
x 	 lD2

x 	 kDx 	 e1Þf � f 0� � f 0f þ Dx½ð3D2
x Dy � 12Dz 
 lDxDy 
 kDy 	 e2Þf � f 0� � f 0f þ Dx½ð3D2

x

	 #Dy 	 e3Þf � f 0� � ðDyf 0 � f Þ þ Dx½ð6DxDy 
 lDyÞf � f 0� � ðDxf 0 � f Þ þ Dy½ð3D2
x 	 nDx 
 e3Þf � f 0� � ðDxf 0 � f Þ: ð69Þ
This is possible because the coefficients of k, l, n, # and ei, (i ¼ 1;2;3),
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k : 	Dy½Dxf � f 0� � f 0f 
 Dx½Dyf � f 0� � f 0f ;
l : 	DxðDzf � f 0Þ � ðDxf � f 0Þ 
 DzðD2

x f � f 0Þ � ff 0 	 DxðDxDzf � f 0Þ � ff 0

n : 	Dy½Dxf � f 0� � ðDxf 0 � f Þ;
# : 	Dx½Dyf � f 0� � ðDyf 0 � f Þ;
e1 : 	Dy½ff 0� � f 0f ;
e2 : 	Dx½ff 0� � f 0f ;
e3 : 	Dx½ff 0� � ðDyf 0 � f Þ 
 Dy½ff 0 � ðDxf 0 � f Þ;
are all equal to zero because of Lemma 5, and the properties
Dff � f ¼ 0; ð70Þ
Dff � g ¼ �Dfg � f ; ð71Þ
DgðDff � gÞ � gf ¼ DfðDgf � gÞ � gf : ð72Þ
Then P	 ¼ 0 if Fif � f 0 ¼ 0;1 6 i 6 5, where F 0is can be found from Eq. (69) as follows
F1f � f 0 � ð8Dt þ D3
x 	 lD2

x 	 kDx 	 e1Þf � f 0 ¼ 0;

F2f � f 0 � ð3D2
x Dy � 12Dz 
 lDxDy 
 kDy 	 e2Þf � f 0 ¼ 0;

F3f � f 0 � ð3D2
x 	 #Dy 	 e3Þf � f 0 ¼ 0;

F4f � f 0 � ð6DxDy 
 lDyÞf � f 0 ¼ 0;

F5f � f 0 � ð3D2
x 	 nDx 
 e3Þf � f 0 ¼ 0:

8>>>>>>><
>>>>>>>:

ð73Þ
Since the coefficients of k, l, n, #, e1, e2 and e3 are zero because of Eqs. (70)–(72) and Lemma 5, this shows that Eqs. (73)
presents a Bäcklund transformation for the (3+1)-dimensional nonlinear evolution Eqs. (1) and (2).

5.2. Traveling wave solutions

In what follows, as an application of the bilinear Bäcklund transformation (73), we shall construct new solutions to the
(3+1)-dimensional soliton Eqs. (2) and (1). For this purpose, we start with f ¼ 1, which is the trivial solution of Eq. (22) obvi-
ously. Noting that
Dn
f / � 1 ¼

@n

@fn /; n P 1; ð74Þ
then, the bilinear Bäcklund transformation (73) associated with f ¼ 1 becomes a system of linear partial differential
equations
8 @f 0

@t þ
@3f 0

@x3 	 l @2 f 0

@x2 	 k @f 0

@x 	 e1f 0 ¼ 0;

3 @3f 0

@x2@y� 12 @f 0

@z 
 l @2 f 0

@x@y
 k @f 0

@y 	 e2f 0 ¼ 0;

3 @2 f 0

@x2 	 # @f 0

@y 	 e3f 0 ¼ 0;

6 @2 f 0

@x@y
 l @f 0

@y ¼ 0;

3 @2 f 0

@x2 	 n @f 0

@x 
 e3f 0 ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð75Þ
Let us consider a class of exponential wave solutions of the form
f 0 ¼ 1þ eekxþlyþmz�xtþf0
; f0 ¼ const; ð76Þ
where e, k, l, m and x are constants to be determined. Upon selecting
e1 ¼ 0; e2 ¼ 0; e3 ¼ 0: ð77Þ
After tedious but straightforward calculations we get
m
 ¼ � 1
12 lð3k2 
 kÞ; x	 ¼ 1

8 kð7k2 	 kÞ;
l	 ¼ 	6k; n
 ¼ 
3k; #
 ¼ 
3 k2

l :

(
ð78Þ
Therefore, we obtain a class of exponential wave solutions to the (3+1)-dimensional bilinear Eq. (22):
f 0	 ¼ 1þ e exp kxþ ly� lð3k2 
 kÞ
12

z� kð7k2 	 kÞ
8

t þ f0

 !
; ð79Þ
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where e, k, l, k and f0 are arbitrary constants; and
u ¼ 2ðln f 0	Þx; ð80Þ
solves the (3+1)-dimensional Jimbo–Miwa Eq. (1), and
w ¼ �3ðln f 0	Þxx; ð81Þ
solves the (3+1)-dimensional nonlinear evolution Eq. (2).
Let us second consider a class of first-order polynomial solutions
f 0 ¼ kxþ lyþmz�xt; ð82Þ
where k, l, m and x are constants to be determined. Similarly Upon selecting
e1 ¼ 0; e2 ¼ 0; e3 ¼ 0; ð83Þ
a direct computation shows that the system (75) becomes
�8x	 kk ¼ 0;
�12m
 kl ¼ 0;
#l ¼ 0; ll ¼ 0; nk ¼ 0:

8><
>: ð84Þ
Again after straightforward calculations we get
m
 ¼ 

1

12
kl; x	 ¼ 	

1
12

kk: ð85Þ
Therefore, we obtain a class of solutions to the (3+1)-dimensional bilinear Eq. (22):
f 0	 ¼ kxþ ly
 kl
12

z
 1
12

kkt þ f0; ð86Þ
where k, l, k and f0 are arbitrary constants; and
u ¼ 2ðln f 0	Þx ¼
2k

kxþ lyþ
 kl
12 z
 1

12 kkt þ f
; ð87Þ
produces a class of rational solutions to the (3+1)-dimensional Jimbo–Miwa Eq. (1), and
w ¼ �3ðln f 0	Þxx ¼
�3k2

kxþ ly
 kl
12 z
 1

12 kkt þ f0� �2 ; ð88Þ
produces a class of rational solutions to the (3+1)-dimensional nonlinear evolution Eq. (2).

6. Conclusions and remarks

We have built an extended Grammian formulation for the (3+1)-dimensional nonlinear evolution equations:
uxxxy þ 3uxxuy þ 3uxuyx þ 2uyt � 3uxz ¼ 0;
and
3wxz � ð2wt þwxxx � 2wwxÞy þ 2ðwx@
�1
x wyÞx ¼ 0;
The facts used in our construction are the Jacobi identity for determinants. Theorem 3 presents the main results on Gram-
mian solutions, which say that
u ¼ 2
@

@x
ðln fNÞ; f N ¼ detðaijÞ16i;j62N ;

w ¼ �3
@2

@x2 ðln fNÞ; f N ¼ detðaijÞ16i;j62N;
where the elements of fN are defined by aij ¼ dij þ
R x/iwjdx, i; j ¼ 1;2; . . . ;2N, with /i and wj satisfying
/i;y ¼ 2n/ð2Þi ; /i;z ¼ 2n/ð4Þi þ
X2N

k¼1

kik/k; /i;t ¼ /ð3Þi þ
X2N

k¼1

gik/k;

wj;y ¼ �2nwð2Þj ; wj;z ¼ �2nwð4Þj þ
X2N

l¼1

ljlwl; wj;t ¼ wð3Þj þ
X2N

l¼1

qjlwl;
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where n, k, l, g and q are arbitrary continuous function in t, solves the above (3+1)-dimensional nonlinear evolution equa-
tions. In Theorem 3, we only considered specific sufficient conditions: (27), though, there is a free set of continuous functions
in the conditions. In Section 4, we constructed some solutions for the representative systems of sufficient conditions (27),
The conditions (27) are a generalization to one given in [5], which deal with Eq. (2) only, but in this work, we deal with both
Eqs. (1) and (2). Actually if nðtÞ ¼ 1=2 and the coefficient matrix ¼ ðkijÞ and the coefficient matrix ¼ ðgijÞ are zero, then the
result of the above theorem boils down to result in [5] on the study of Eq. (2). The bilinear Bäcklund transformations were
furnished for the (3+1)-dimensional nonlinear evolution Eqs. (1) and (2), based on the existence of exchange identities for
Hirota bilinear operators. In Section 5.2, We constructed a new class of exact wave solutions and a new class of rational solu-
tions to the above (3+1)-dimensional nonlinear evolution Eqs. (1) and (2) of the forms
u ¼ 2
@

@x
ðln f 0	Þ and w ¼ �3

@2

@x2 ðln f 0	Þ;
respectively.
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