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1. Introduction

The integrable equation known as short pulse (SP) equation is introduced by Schafer

and Wayne, given by

uxt = u+
1

6
(u3)xx, (1.1)

having real-valued function u = u(x, t) for the propagation of ultra-short waves in

nonlinear media which can be associated with pseudo spherical surfaces [1–4]. By

using hodograph transformation SP equation can be transformed into sine-Gordon

equation, coupled dispersionless equation and modified Korteweg–de Vries (mKdV)

equation [5–7]. The integrability of SP equation has been studied through different

points of view, such as conservation laws [8, 9] existence of bi-Hamiltonian structure

[10], existence of Lax pair of Wadati–Konno–Ichikawa (WKI) type [11], soliton

solutions, etc. [12–15].

In this paper, we study the Lax pair for semi-discrete SP equation and then

study the two Darboux as well as binary Darboux transformation of SP equation.

For this purpose, we apply the Darboux matrix on Lax pair of SP equation for

both direct and adjoint space to obtain the multi-soliton solutions. Through the

iteration of binary Darboux transformation, we derive the general expressions of

multi-quasi-Grammian solutions and represent these solutions by using quaside-

terminant approach. Finally, we calculate the exact solutions for the grammians,

bright and dark double breathers and peak solutions for semi-discrete SP equation.

2. Lax Pair

The Lax pair for SP equation is given by

∂xΨ = UΨ = λ

(
1 ux

ux −1

)
Ψ, (2.1)

∂tΨ = VΨ =
λ

2

(
u2 u2ux

u2ux −u2

)
Ψ +

1

2

(
0 −u
u 0

)
Ψ +

1

4λ

(
1 0

0 −1

)
Ψ, (2.2)

where Ψ is an eigenmatrix of 2 × 2 order. An appropriate hodograph transforma-

tion is applied which transforms the independent variables (x, t) into new variables

(X,T ), i.e.

dX = ωdx+
1

2
u2ωdt, dT = dt. (2.3)

Also the old dynamical variable u transforms into new dynamical variable related by

ω2 = 1 + (ux)2, (2.4)

which transforms (1.1) into the new form

xXT = −1

2
(u2)X , (2.5)

uXT = xXu, (2.6)
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where X,T represent the derivatives with respect to X and T . Equations (2.5)

and (2.6) can be expressed as the compatibility condition for the following linear

system:

ΨX = E(X,T ;λ)Ψ = (λ∂XP )Ψ, (2.7)

ΨT = F (X,T ;λ)Ψ =

(
Q+

1

λ
R

)
Ψ, (2.8)

where the matrices P,Q and R are given by

P =

(
x u

u −x

)
, Q =

1

2

(
0 −u
u 0

)
, R =

1

4

(
1 0

0 −1

)
. (2.9)

The compatibility condition ET −FX + [E,F ] = 0, of the linear system (2.7), (2.8)

gives the zero-curvature equation which is equivalent to (2.5), (2.6). Now, the Lax

pair of semi-discrete version of (2.5), (2.6) is given by

Ψσ+1(λ) = Eσ(λ)Ψσ(λ), (2.10)

d

dT
Ψσ(λ) = Fσ(λ)Ψσ(λ), (2.11)

where the matrices Eσ and Fσ are

Eσ = I + λ(Pσ+1 − Pσ) =

(
1 0

0 1

)
+ λ

(
xσ+1 − xσ uσ+1 − uσ
uσ+1 − uσ −(xσ+1 − xσ)

)
, (2.12)

Fσ = Qσ + λ−1R =

 0 −uσ
2

uσ
2

0

+ λ−1


1

4
0

0 −1

4

, (2.13)

where Ψσ(λ) is the eigenmatrix of order 2×2 depending on continuous independent

variable T and spectral parameter λ, σ in the subscript is discrete index and xσ(T )

and uσ(T ) are the scalar functions. The compatibility condition of the linear system

(2.10), (2.11), i.e. d
dT Eσ + EσFσ − Fσ+1Eσ = 0, gives the semi-discrete version of

(2.5), (2.6), as

d

dT
(xσ+1 − xσ) +

uσ+1 + uσ
2

(uσ+1 − uσ) = 0, (2.14)

d

dT
(uσ+1 − uσ)− uσ+1 + uσ

2
(xσ+1 − xσ) = 0. (2.15)

For the continuum limit, lima→0
xσ+1−xσ

a = xX , lima→0
uσ+1−uσ

a = uX , so Eqs.

(2.14) and (2.15) reduces to (2.5), (2.6). Further, from the determinant of matrix

(2.12), if we take the first integral (xσ+1−xσ)2+(uσ+1−uσ)2 = constant, then sdSP

equations (2.14), (2.15) can be equivalent to a chain of Backlund transformations

2550002-3



October 31, 2025 11:56 WSPC/S0129-055X 148-RMP J070-2550002

Z. Amjad, W.-X. Ma & R. M. Zulqarnain

for the mKdV equation

d

dT
(uσ+1 − uσ) =

1

2

√
c− (uσ+1 − uσ)2(uσ+1 + uσ). (2.16)

Matrix (2.13) is traceless and used for the mKdV zero curvature representation.

Similarly, one can show the transformation of sdSP into sine-Gordon equation by

introducing the variables

xσ = x0 + 2
σ−1∑
b=0

cos
θb+1 + θb

2
, uσ = − d

dT
θσ. (2.17)

By using the transformation (2.17), Eqs. (2.14), (2.15) can be converted into a chain

of Backlund transformations of sine-Gordon equation

d

dT
(θσ+1 − θσ) = 2 sin

θσ+1 + θσ
2

. (2.18)

3. Darboux Transformation

Darboux transformation is an important technique to calculate solutions of inte-

grable systems (for detail see [14, 16–25]). Now, we define the Darboux transforma-

tion on the linear system (2.10), (2.11) by using Darboux matrix Dσ(λ) to obtain

the solitonic solutions. The Darboux matrix transforms the matrix solution from

the space V to new space Ṽ , i.e.

Dσ(λ) : V → Ṽ (3.1)

: Ψσ → Ψ̃σ.

The one-fold Darboux transformation on matrix solution Ψσ is given by

Ψσ[1] = Dσ(λ)Ψσ, (3.2)

where Dσ(λ) is the Darboux matrix. The new transformed solution Ψσ[1] satisfies

the following linear system (2.10), (2.11) as

Ψσ+1[1] = Eσ[1]Ψσ[1],

d

dT
Ψσ[1] = Fσ[1]Ψσ[1],

(3.3)

having Eσ[1] and Fσ[1] as,

Eσ[1] = I + λ(Pσ+1[1]− Pσ[1]),

Fσ[1] = Qσ[1] + λ−1R[1].
(3.4)

Now, we define the Darboux matrix as

Dσ(λ) = λ−1I −Nσ, (3.5)

where Nσ is the auxiliary matrix of order 2× 2 which is yet to be obtain and I is

the 2× 2 identity matrix. The choice for Nσ is Nσ = ΘσΛ−1Θ−1σ , where Θσ is the

distinct matrix solution of the linear system (2.10), (2.11) having order 2×2 which
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can be calculated by using j-eigenvector functions Ψσ(λj) evaluated at λj , j = 1, 2,

whereas the matrix Λ is a diagonal matrix of order 2× 2 having eigenvalues λ1, λ2.

Therefore, the matrix Θσ can be defined as

Θσ = (Ψσ(λ1)|e〉1,Ψσ(λ2|e〉2)), (3.6)

evaluated at

Λ = diag(λ1, λ2). (3.7)

By using (3.6), (3.7), the linear system (2.10), (2.11) can be expressed in the matrix

form as

Θσ+1 = Θσ + (Pσ+1 − Pσ)ΘσΛ, (3.8)

d

dT
Θσ = QσΘσ +RΘσΛ−1. (3.9)

Based upon the above consequences, we can prove the following theorems.

Theorem 1. Under the action of Darboux transformation (3.5), the new solution

(3.4) has the same form as that of Pσ in (2.10), (2.11), provided that the matrix Nσ
has to fulfill the following conditions:

Pσ[1] = Pσ −Nσ, (3.10)

(Nσ+1 −Nσ)Nσ = (Pσ+1 − Pσ)Nσ −Nσ+1(Pσ+1 − Pσ). (3.11)

Proof. The relation between the Darboux transformed solution Pσ[1] and the

untransformed solution Pσ is obtained and expressed in Eq. (3.10). Now, we have

to verify that the choice of matrix Nσ = ΘσΛ−1Θ−1σ satisfies the condition given

by (3.11), i.e.

(Nσ+1 −Nσ)Nσ = Θσ+1Λ−1Θ−1σ+1ΘσΛ−1Θ−1σ −ΘσΛ−1Θ−1σ ΘσΛ−1Θ−1σ

+ Θσ+1Λ−1Θ−1σ ΘσΛ−1Θ−1σ −Θσ+1Λ−1Θ−1σ+1Θσ+1Λ−1Θ−1σ ,

= (Θσ+1Λ−1Θ−1σ −ΘσΛ−1Θ−1σ )ΘσΛ−1Θ−1σ

−Θσ+1Λ−1Θ−1σ+1(Θσ+1Λ−1Θ−1σ −ΘσΛ−1Θ−1σ ),

= (Pσ+1 − Pσ)Nσ −Nσ+1(Pσ+1 − Pσ),

which is Eq. (3.11). So, the proof is complete.

Theorem 2. Under the action of Darboux transformation (3.5), the new solution

(3.4) has the same form as that of Qσ, R in (2.10), (2.11), provided that the matrix

Nσ has to fulfill the following conditions:

Qσ[1] = Qσ + [R,Nσ], (3.12)

R[1] = R, (3.13)

d

dT
Nσ = [Qσ, Nσ] + [R,Nσ]Nσ. (3.14)
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Proof. The relation between the Darboux transformed solution Qσ[1], R[1] and

the untransformed solution Qσ, R is obtained and expressed in Eqs. (3.12) and

(3.13). Now, we have to verify that the choice of matrix Nσ = ΘσΛ−1Θ−1σ satisfies

the condition given by (3.14). For this, we operate d
dT on matrix Nσ, as

d

dT
Nσ =

(
d

dT
Θσ

)
Λ−1Θ−1σ + ΘσΛ−1

(
d

dT
Θ−1σ

)
,

=

(
d

dT
Θσ

)
Λ−1Θ−1σ + ΘσΛ−1Θ−1σ

(
d

dT
Θσ

)
Θ−1σ ,

= (QσΘσ +RΘσΛ−1)Λ−1Θ−1σ −ΘσΛ−1Θ−1σ (QσΘσ +RΘσΛ−1)Θ−1σ ,

= [Qσ, Nσ] + [R,Nσ]Nσ.

which is Eq. (3.11). So, the proof is complete.

Remark 1. Thus, the matrix Nσ = ΘσΛ−1Θ−1σ is the good choice which satisfies

the conditions imposed by the Darboux transformation. So, the Darboux transfor-

mation preserves the system i.e. if Ψσ, Pσ, Qσ and R, respectively, are the solutions

of the linear system (2.10), (2.11), therefore Ψσ[1], Pσ[1], Qσ[1] and R[1] are also

the solutions of the same equations.

By using (3.10), the Darboux transformation on solutions xσ and uσ can be

expressed as

xσ[1] = xσ −Nσ,11, uσ[1] = uσ −Nσ,12. (3.15)

Now, further we present the solutions by using quasideterminants (for detail see

[33, 34]) defined as ∣∣∣∣∣Z11 Z12

Z21 Z22

∣∣∣∣∣ = Z22 − Z21Z
−1
11 Z12.

So, we can express the Darboux matrix on solution Ψσ as

Ψσ[1] ≡ Dσ(λ)Ψσ = (λ−1I −ΘσΛ−1Θ−1σ )Ψσ,

=

∣∣∣∣∣∣
Θσ Ψσ

ΘσΛ−1 λ−1Ψσ

∣∣∣∣∣∣ . (3.16)

For the next iteration of Darboux transformation, take Θσ,1, Θσ,2 are the two

distinct solutions of the linear system (3.8), (3.9) at Λ = Λ−11 and Λ = Λ−12 ,

respectively. The two-fold Darboux transformation on Ψσ[2] is given as

Ψσ[2] = (λ−1I −Nσ[2])(λ−1I −Nσ[1])Ψσ,

= (λ−1I −Nσ[2])Ψσ[1], (3.17)
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where one- and two-fold Darboux transformed matrix Nσ[1], Nσ[2] in terms of

one- and two-fold Darboux transformed particular matrix solution Θσ[1], Θσ[2],

respectively, are given by Nσ[1] = Θσ[1]Λ−11 (Θσ[1])−1, Nσ[2] = Θσ[2]Λ−12 (Θσ[2])−1.

Also, Θσ[2] is written as

Θσ[2] = (Θσ,2Λ−12 −Nσ[1]Θσ,2),

=

∣∣∣∣∣∣
Θσ,1 Θσ,2

Θσ,1Λ−11 Θσ,2Λ−12

∣∣∣∣∣∣ . (3.18)

By using (3.16), (3.18) in (3.17), we get

Ψσ[2] = λ−1

∣∣∣∣∣∣
Θσ,1 Ψσ

Θσ,1Λ−11 λ−1Ψσ

∣∣∣∣∣∣−
∣∣∣∣∣∣

Θσ,1 Θσ,2

Θσ,1Λ−11 Θσ,2Λ−12

∣∣∣∣∣∣Λ−12

×

∣∣∣∣∣∣
Θσ,1 Θσ,2

Θσ,1Λ−11 Θσ,2Λ−12

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣

Θσ,1 Ψσ

Θσ,1Λ−11 λ−1Ψσ

∣∣∣∣∣∣ ,
=

∣∣∣∣∣∣
Θσ,1Λ−11 λ−1Ψσ

Θσ,1Λ−21 λ−2Ψσ

∣∣∣∣∣∣−
∣∣∣∣∣∣
Θσ,1Λ−11 Θσ,2Λ−12

Θσ,1Λ−21 Θσ,2Λ−22

∣∣∣∣∣∣
×

∣∣∣∣∣∣
Θσ,1Λ−11 Θσ,2Λ−12

Θσ,1 Θσ,2

∣∣∣∣∣∣
−1 ∣∣∣∣∣Θσ,1Λ−11 λ−1Ψσ

Θσ,1 Ψσ

∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣∣
Θσ,1 Θσ,2 Ψσ

Θσ,1Λ−11 Θσ,2Λ−12 λ−1Ψσ

Θσ,1Λ−21 Θσ,2Λ−22 λ−2Ψσ

∣∣∣∣∣∣∣∣ ,
where we have used homological relation in second step and noncommutative Jacobi

identity in the last step.a Similarly, K-fold Darboux transformation is given by

aFor a general quasideterminant expanded about N ×N matrix D, we have∣∣∣∣∣∣
E F G

H A B

J C D

∣∣∣∣∣∣ =

∣∣∣∣E G

J D

∣∣∣∣− ∣∣∣∣E F

J C

∣∣∣∣ ∣∣∣∣E F

H A

∣∣∣∣−1 ∣∣∣∣E G

H B

∣∣∣∣ .
From the noncommutative Jacobi identity, we get the homological relation∣∣∣∣∣∣
E F G

H A B

J C D

∣∣∣∣∣∣ =

∣∣∣∣∣∣
E F O

H A O

J C I

∣∣∣∣∣∣
∣∣∣∣∣∣
E F G
H A B

J C D

∣∣∣∣∣∣ ,
where O and I denote the null and identity matrices, respectively.
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Ψσ[K] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θσ,1 Θσ,2 · · · Θσ,K Ψσ

Θσ,1Λ−11 Θσ,2Λ−12 · · · Θσ,KΛ−1K λ−1Ψσ

...
...

. . .
...

...

Θσ,1Λ
−(K−1)
1 Θσ,2Λ

−(K−1)
2 · · · Θσ,KΛ

−(K−1)
K λ−(K−1)Ψσ

Θσ,1Λ−K1 Θσ,2Λ−K2 · · · Θσ,KΛ−KK λ−KΨσ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.19)

Now, Eq. (3.10) can be written as

Pσ[1] = Pσ −ΘσΛ−1Θ−1σ ,

= Pσ +

∣∣∣∣∣ Θσ I

ΘσΛ−1 O

∣∣∣∣∣ . (3.20)

The result can be generalized to K-times Darboux transformation as

Pσ[K] = Pσ +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θσ,1 Θσ,2 · · · Θσ,K O

Θσ,1Λ−11 Θσ,2Λ−12 · · · Θσ,KΛ−1K O

...
...

. . .
...

...

Θσ,1Λ
−(K−1)
1 Θσ,2Λ

−(K−1)
2 · · · Θσ,KΛ

−(K−1)
K I

Θσ,1Λ−K1 Θσ,2Λ−K2 · · · Θσ,KΛ−KK O

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.21)

In soliton theory, we have also used the adjoint pair of matrix eigenvalue problems.

So, for the adjoint pair taking adjoint of the linear system (2.10) and (2.11), we get

Φσ+1 = Φσ(I + µ(P †σ+1 − P †σ)), (3.22)

d

dT
Φσ = Φσ(Q†σ + µ−1R†), (3.23)

In Eqs. (3.22) and (3.23) µ is a spectral parameter and Φσ represents an adjoint

matrix eigenfunction defined by adjoint Lax pair (3.22) and (3.23). The compatibil-

ity condition of this adjoint Lax pair does not generate any new conditions except

the original zero curvature equation. Such type of connection has also been used in

Riemann–Hilbert problems [32]. The Darboux matrix Dσ(µ) transforms the matrix

solution Φσ in space V † to new matrix field solution Φ̃σ in adjoint space Ṽ †, i.e.

Dσ(µ) : V † → Ṽ † (3.24)

: Φσ → Φ̃σ.

Now, we can write Darboux transformation on matrix solution Φσ as

Φσ[1] ≡ Dσ(µ)Φσ = (µ−1I −Mσ)Φσ, (3.25)
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where Mσ is the 2×2 matrix which is to be determined and I is 2×2 identity matrix.

The covariance of the linear system under the Darboux transformation requires

that the new solution Φ̃σ satisfies the linear system (3.22) and (3.23), given by

Φσ+1[1] = Φσ[1](I + µ(P †σ+1[1]− P †σ [1])),

d

dT
Φσ[1] = Φσ[1]

(
Q†σ[1] +

1

µ
R†[1]

)
.

(3.26)

Now, applying the Darboux transformation (3.25) on (3.26), we get the Darboux

transformed matrix functions P †σ , Q
†
σ and R† as

P †σ [1] = P †σ −Mσ,

Q†σ[1] = Q†σ + [R†,Mσ],

R†[1] = R†.

(3.27)

The matrix Mσ can be constructed from the eigenmatrices of the linear system and

we take Mσ as Mσ = Ωσz−1Ω−1σ , where z = diag(µ1, µ2) is the eigenmatrix. The

particular matrix solution Ωσ of the linear system (3.22) and (3.23) is an invertible

2× 2 matrix which is given as

Ωσ = (Φσ(µ1)|e〉1, Φσ(µ2|e〉2)). (3.28)

Each column |Φσ〉j = Φσ(µj)|ej〉 in Ωσ is a column solution of the linear system

(3.22), (3.23). The K-fold Darboux transformation on matrix solution and matrix

function Φσ, P
†
σ can be expressed as

Φσ[K] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ωσ,1 Ωσ,2 · · · Ωσ,K Φσ

Ωσ,1z−11 Ωσ,2z−12 · · · Ωσ,Kz−1K µ−1Φσ

Ωσ,1z−21 Ωσ,2z−22 · · · Ωσ,Kz−2K µ
−2Φσ

...
...

. . .
...

...

Ωσ,1z−K1 Ωσ,2z−K2 · · · Ωσ,Kz−KK µ−KΦσ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.29)

Similarly, the quasideterminants of P †σ [K] is written as

P †σ [K] = Pσ +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ωσ,1 Ωσ,2 · · · Ωσ,K O

Ωσ,1z−11 Ωσ,2z−12 · · · Ωσ,Kz−1K O

...
...

. . .
...

...

Ωσ,1z−(K−1)1 Ωσ,2z−(K−1)2 ... Ωσ,Kz−(K−1)K I

Ωσ,1z−K1 Ωσ,2z−K2 · · · Ωσ,Kz−KK O

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.30)

Equations (3.29) and (3.30) are the Kth quasideterminant solutions of the SP

equation for the adjoint space.
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4. Binary Darboux Transformation

For the binary Darboux transformation (for detail see [26–31]), consider the hat

space V̂ which is the copied version of direct space V , so that the corresponding

solutions are Ψ̂σ ∈ V̂ . Therefore, the linear system can be written as

Ψ̂σ+1 = Ψ̂σ + λ(P̂σ+1 − P̂σ)Ψ̂σ,

d

dT
Ψ̂σ = Q̂σΨ̂σ + λ−1R̂σΨ̂σ,

(4.1)

where the matrices P̂σ, Q̂σ and R̂σ are given by

P̂σ =

(
x̂σ ûσ

ûσ −x̂σ

)
, Q̂σ =

1

2

(
0 −ûσ
ûσ 0

)
, R̂ =

1

4

(
1 0

0 −1

)
. (4.2)

The particular solutions for the direct and adjoint spaces are Θσ,Ωσ, respectively.

So, the corresponding solutions for hat space are Θ̂σ ∈ V̂ and Φ̂σ ∈ V̂ †. Also

assuming that i(Θ̂σ) ∈ Ṽ †, then one can write the transformation as

D(−1)†
σ (λ) : V † → Ṽ †. (4.3)

Since Φσ ∈ V †, we have

i(Θ̂σ) = D(−1)†
σ (λ)Φσ. (4.4)

Also from D†σ(λ)(i(Θσ)) = 0, we obtain i(Θσ) = Θ
(−1)†
σ and similarly i(Θ̂σ) =

Θ̂
(−1)†
σ . So, we can write

Θ̂(−1)†
σ = D(−1)†

σ (λ)Φσ,

and

Θ̂σ = (D(−1)†
σ (λ)Φσ)(−1)†, (4.5)

where Dσ(λ) = λ−1I−ΘσΛ−1Θ−1σ . By using the value of Dσ(λ) in Eq. (4.5), we get

Θ̂σ = ((λ−1I−ΘσΛ−1Θ−1σ )(−1)†Φσ)(−1)†,

= (λ−1I−ΘσΛ−1Θ−1σ )Φ(−1)†
σ ,

= Θσ(λ−1I − Λ−1)Θ−1σ Φ(−1)†
σ ,

= Θσ(λ−1I − Λ−1)(Φ†σΘσ)−1,

= Θσ∆(Θσ,Φσ)−1, (4.6)

where the algebraic potential ∆(Θσ,Φσ) is defined as

∆(Θσ,Φσ) = (Φ†σΘσ)(λ−1I − Λ−1)−1. (4.7)

Similarly, for the adjoint space the matrix Ω̂σ can be written as

Ω̂σ = Ωσ∆(Ψσ,Ωσ)
(−1)†

, (4.8)
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where

∆(Ψσ,Ωσ) = −(λ−1I −z(−1)†)−1(Ω†σΨσ). (4.9)

By expressing Eqs. (4.7) and (4.9) in the form of matrix for the solutions Θσ and

Ωσ, we get

z(−1)†∆(Θσ,Ωσ)−∆(Θσ,Ωσ)Λ−1 = Ω†σΘσ, (4.10)

where ∆ matrix is given by

∆(Θσ,Ωσ) =
〈Θσ |Ωσ〉

z(−1)† − Λ−1
. (4.11)

Now, we define Darboux transformation in hat space

D̂σ(λ) ≡ (λ−1I − N̂σ) = (λ−1I − Θ̂σz(−1)†Θ̂−1σ ), (4.12)

where the action of Darboux transformation is

D̂σ(λ)Ψ̂σ = Ψσ[1], (4.13)

which is equivalent to the Darboux transformation in direct space. Now, we use the

definition of binary Darboux transformation which relates two solutions Ψ̂σ and

Ψσ as

D̂σ(λ)Ψ̂σ = Dσ(λ)Ψσ, (4.14)

Based upon the above results, we can prove the following theorems.

Theorem 3. Under the action of binary Darboux transformation (4.14) and by

using (4.12), the new transformed matrix solution Ψ̂σ has the following form:

Ψ̂σ = Ψσ −Θσ∆(Θσ,Ωσ)−1∆(Ψσ,Ωσ), (4.15)

Proof. The definition of binary Darboux transformation (4.14) implies

Ψ̂σ = D̂−1σ (λ)Dσ(λ)Ψσ,

Now, using the values of D̂σ(λ) and Dσ(λ), we get

Ψ̂σ = (λ−1I − Θ̂σz(−1)†Θ̂−1σ )−1(λ−1I −ΘσΛ−1Θ−1σ )Ψσ,

= Θ̂σ(λ−1I −z(−1)†)−1Θ̂−1σ Θσ(λ−1I − Λ−1)Θ−1σ Ψσ,

using Eq. (4.6) in above expression, we get

Ψ̂σ = Θσ∆(Θσ,Φσ)−1(λ−1I −z(−1)†)−1

×∆(Θσ,Φσ)Θ−1σ Θσ(λ−1I − Λ−1)Θ−1σ Ψσ,

= Θσ∆(Θσ,Φσ)−1(λ−1I −z(−1)†)−1 (4.16)

× (λ−1∆(Θσ,Φσ)−∆(Θσ,Φσ)Λ−1)Θ−1σ Ψσ,
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by substituting the value of ∆(Θσ,Φσ)Λ−1 from Eq. (4.10) in expression (4.16),

we get

Ψ̂σ = Θσ∆(Θσ,Φσ)−1(λ−1I −z(−1)†)−1

× (λ−1∆(Θσ,Φσ)Θ−1σ −z(−1)†∆(Θσ,Φσ)Θ−1σ + Ω†σ)Ψσ,

= (λ−1I −z(−1)†)−1(λ−1I −z(−1)†)

(
I +

Θσ∆(Θσ,Φσ)−1Ω†σ
λ−1I −z(−1)†

)
Ψσ,

= Ψσ + Θσ∆(Ωσ,Φσ)−1(λ−1I −z(−1)†)−1Ω†σΨσ.

Using Eq. (4.9)

Ψ̂σ = Ψσ −Θσ∆(Θσ,Ωσ)−1∆(Ψσ,Ωσ),

which is Eq. (4.15). So, the proof is complete.

Theorem 4. Under the action of binary Darboux transformation (4.14) and by

using (4.12), the new transformed matrix solution Ψ̂σ has the following form:

P̂σ = Pσ + Θσ∆(Θσ,Ωσ)−1Ω†σ. (4.17)

Proof. Applying the definition of binary Darboux transformation (4.14) on the

solution of sdSP equation Pσ, written as

P̂σ − Θ̂σz(−1)†Θ̂−1σ = Pσ −ΘσΛ−1Θ−1σ ,

P̂σ = Pσ −ΘσΛ−1Θ−1σ + Θ̂σz(−1)†Θ̂−1σ ,

by using Eq. (4.6), we get

P̂σ = Pσ −ΘσΛ−1Θ−1σ + Θσ∆−1z(−1)†∆Θ−1σ ,

by substituting Eq. (4.10), we get

P̂σ = Pσ −ΘσΛ−1Θ−1σ + Θσ∆−1(Ω†σΘσ + ∆Λ−1)Θ−1σ ,

= Pσ −ΘσΛ−1Θ−1σ + Θσ∆−1Ω†σΘσΘ−1σ + Θσ∆−1∆Λ−1Θ−1σ ,

= Pσ −ΘσΛ−1Θ−1σ + Θσ∆−1Ω†σ + ΘσΛ−1Θ−1σ ,

= Pσ + Θσ∆−1Ω†σ,

which is Eq. (4.17). So, the proof is complete.

Now, expression (4.15) can be expressed in terms of quasideterminant as

Ψ̂σ =

∣∣∣∣∣∆(Θσ,Ωσ) ∆(Ψσ,Ωσ)

Θσ Ψσ

∣∣∣∣∣. (4.18)
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This is known as the quasi-Grammian solution of the system. Similarly, expression

(4.17) can be written in the form of quasideterminant as

P̂σ = Pσ − (O −Θσ∆(Θσ,Ωσ)−1Ω†σ),

= Pσ −

∣∣∣∣∣∆(Θσ,Ωσ) Ω†σ

Θσ O

∣∣∣∣∣ .
We can calculate the Kth iteration of P̂σ through the iteration of binary Darboux

transformation given by

P̂σ = Pσ −

∣∣∣∣∣∣∣∣∣∣∣∣

∆(Θσ,1,Ωσ,1) · · · ∆(Θσ,K ,Ωσ,1) Ω†σ,1
... · · ·

...
...

∆(Θσ,1,Ωσ,K) · · · ∆(Θσ,K ,Ωσ,K) Ω†σ,K

Θσ,1 · · · Θσ,K I

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.19)

The quasideterminant solutions (4.19) are called the quasi-Grammian solutions of

sdSP equation.

Remark 2. Therefore, by the use of binary Darboux transformation, we can derive

the quasi-grammian solutions for the semi-discrete SP equation. Also, the poten-

tial ∆ can be written in terms of quasideterminants. So, by developing the binary

Darboux transformation in terms of spectral parameters, we can obtain the expres-

sion of matrix solutions in terms of Grammian-type quasideterminants, which have

different forms as we have derived by elementary Darboux transformation. Applica-

tions of binary Darboux transformation are to calculate the exact solutions, lump

and breather solutions can significantly improve our understanding of nonlinear

waves.

5. Exact Solutions

In this section, we calculate the expressions for the grammian and peak soliton

solutions of sdSP equation by using binary Darboux transformation. To obtain an

explicit expression, we define a gauge transformation on linear system (2.10) and

(2.11) which is a constant matrix has the form

W =
1√
2

(
1 1

−i i

)
, (5.1)

also the matrices Eσ and Fσ transforms as

Eσ → Ẽσ = W−1EσW = I + λ(P̃σ+1 − P̃σ),

Fσ → F̃σ = W−1FσW = Q̃σ + λ−1R̃,
(5.2)
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where

P̃σ =

(
0 xσ + iuσ

xσ − iuσ 0

)
,

Q̃σ =

−
uσ
2

0

0
uσ
2

, R̃ =
1

4

(
0 1

1 0

)
.

(5.3)

By using gauge transformation, the linear system (2.10) and (2.11) becomes(
Uσ+1

Vσ+1

)
=

(
1 0

1 1

)(
Uσ

Vσ

)

+λ

(
0 xσ+1 − xσ + i(uσ+1 − uσ)

xσ+1 − xσ − i(uσ+1 − uσ) 0

)(
Uσ

Vσ

)
,

(5.4)

d

dT

(
Uσ

Vσ

)
=

−
uσ
2

0

0
uσ
2

(Uσ
Vσ

)
+
λ−1

4

(
0 1

1 0

)(
Uσ

Vσ

)
. (5.5)

To compute expressions for the solution, we take a seed solution, i.e. xσ+1 − xσ =

a 6= 0 and uσ = 0, where a is a real constant, so the solutions Uσ and Vσ of the

linear system (5.4) and (5.5) can be computed as

Uσ(λ) = (1 + aλ)σeT/4λ + i(1− aλ)σe−T/4λ,

Vσ(λ) = (1 + aλ)σeT/4λ − i(1− aλ)σe−T/4λ.

Now, we define the particular matrix solution Θσ to the linear system (5.4) and

(5.5) of sdSP equation for Λ =

(
λ 0

0 λ

)
can be written as

Θσ =

(
Uσ(λ) Uσ(λ)

Vσ(λ) −Vσ(λ)

)
. (5.6)

Similarly, for the adjoint space, Ωσ can be defined as

Ωσ =

(
Yσ(µ) Yσ(µ)

Zσ(µ) −Zσ(µ)

)
, (5.7)

where

Yσ(µ) = (1 + aµ)σeT/4µ + i(1− aµ)σe−T/4µ,

Zσ(µ) = (1 + aµ)σeT/4µ − i(1− aµ)σe−T/4µ.
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Starting from the definition of ∆(Θσ,Ωσ) given in (4.11) and using (5.6) and (5.7),

we get

N̂σ = Θσ∆−1(Θσ ,Ωσ)Ω†σ =
1

Kσ

(
N̂σ,11 N̂σ,12

N̂σ,21 N̂σ,22

)
,

=
1

Kσ



AσUσ(λ)Zσ(µ)

µ− λ
+
CσUσ(λ)Zσ(µ)

λ− µ

AσUσ(λ)Yσ(µ)

µ− λ
−
CσUσ(λ)Yσ(µ)

λ− µ

+
BσUσ(λ)Zσ(µ)

λ− µ
+
DσUσ(λ)Zσ(µ)

µ− λ
+
BσUσ(λ)Yσ(µ)

λ− µ
−
DσUσ(λ)Yσ(µ)

µ− λ

AσVσ(λ)Zσ(µ)

µ− λ
−
CσVσ(λ)Zσ(µ)

λ− µ

AσVσ(λ)Yσ(µ)

µ− λ
+
CσVσ(λ)Yσ(µ)

λ− µ

+
BσVσ(λ)Zσ(µ)

λ− µ
−
DσVσ(λ)Zσ(µ)

µ− λ
+
BσVσ(λ)Yσ(µ)

λ− µ
+
DσVσ(λ)Yσ(µ)

µ− λ


,

(5.8)

where

Aσ = Zσ(µ)Uσ(λ) + Yσ(µ)Vσ(λ),

Bσ = Zσ(µ)Uσ(λ)− Yσ(µ)Vσ(λ),

Cσ = Zσ(µ)Uσ(λ)− Yσ(µ)Vσ(λ),

Dσ = Zσ(µ)Uσ(λ) + Yσ(µ)Vσ(λ).

Kσ =
(Zσ(µ)Uσ(λ) + Yσ(µ)Vσ(λ))(Zσ(µ)Uσ(λ) + Yσ(µ)Vσ(λ))

(µ− λ)(µ− λ)

− (Zσ(µ)Uσ(λ)− Yσ(µ)Vσ(λ))(Zσ(µ)Uσ(λ)− Yσ(µ)Vσ(λ))

(µ− λ)(µ− λ)
.

The expressions (5.8) are presented in Figs. 1 and 2, which represent the travel-

ing of two double breather, bright and dark breather together and their interaction.

Further, we reduce the expressions of binary Darboux transformation into elemen-

tary Darboux transformation.

5.1. Reduction

Now, for reduction substitute µ = λ, µ = λ̄, then Aσ = Dσ = Uσ(λ)Vσ(λ) +

Uσ(λ)Vσ(λ), Bσ = 0 = Cσ. Also, Kσ = A2
σ/(λ− λ)2. So, expression (5.8) becomes

N̂σ =
1

Kσ

×


AσUσ(λ)Vσ(λ)

λ− λ
+
AσUσ(λ)Vσ(λ)

λ− λ
2AσUσ(λ)Uσ(λ)

λ− λ

2AσVσ(λ)Vσ(λ)

λ− λ
AσUσ(λ)Vσ(λ)

λ− λ
+
AσUσ(λ)Vσ(λ)

λ− λ

.
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Fig. 1. Dynamics of N̂σ,11=N̂σ,22: for numerical values λ = 1.9 + 0.71i, µ = 1.8 + 0.5i, a = 2

Parallel traveling of two double breathers, interaction and after interaction.

(5.9)

The expressions (5.9) represent the double bright and dark breathers shown in

Figs. 3 and 4.

Now, further substituting λ = −λ, we get the solutions of the elementary Dar-

boux transformation as

N̂σ,11 = −N̂σ,22 =
2(Uσ(λ)Uσ(λ)− Vσ(λ)Vσ(λ))

Uσ(λ)Uσ(λ) + Vσ(λ)Vσ(λ)
,

N̂σ,12 = N̂σ,21 =
4λUσ(λ)Vσ(λ)

Uσ(λ)Uσ(λ) + Vσ(λ)Vσ(λ)
.

By using Eq. (3.15), we can express

xσ[1] = xσ −
2(Uσ(λ)Uσ(λ)− Vσ(λ)Vσ(λ))

Uσ(λ)Uσ(λ) + Vσ(λ)Vσ(λ)
,

uσ[1] = − 4λUσ(λ)Vσ(λ)

Uσ(λ)Uσ(λ) + Vσ(λ)Vσ(λ)
.
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Fig. 2. Dynamics of N̂σ,21 = N̂σ,12: for numerical values λ = 2.9 + 0.71i, µ = 1.8 + 0.5i, a = 2,

Traveling of bright and dark breather together, interaction and after interaction.

Fig. 3. Dynamics of double bright breather: for numerical values λ = 2.9 + 0.71i, a = 2.

The above expressions represent the bright and dark together breather, peak

soliton solutions depicted in Figs. 5 and 6. Thus, we have derived the expressions

for two double bright and dark breathers solutions by using binary Darboux trans-

formation and reduced them to elementary Darboux transformation and obtain the

peak solutions for the sdSP equation.
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Fig. 4. Dynamics of double dark breather: for numerical values λ = 2.9 + 0.71i, a = 2.

Fig. 5. Dynamics of breather solution: for numerical values λ = 0.9, a = 2.

Fig. 6. Dynamics of peak solutions: for numerical values λ = 1.9, a = 3.
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6. Conclusion

In this paper, we studied the Lax pair for a semi-discrete SP equation using a

suitable hodograph transformation. By applying appropriate transformations, we

converted the semi-discrete SP equation into semi-discrete versions of the mKdV

and sine-Gordon equations. We then developed two types of Darboux transforma-

tions, including the binary Darboux transformation, and applied them to calculate

peak and quasi-Grammian solutions. The explicit expressions for these solutions

were derived. Finally, we reduced the binary Darboux transformation solutions to

elementary Darboux transformation solutions. The bright and dark double breather

solutions and peak solutions for the semi-discrete SP equation were plotted.

The breather solutions may play an important role in studying the propagation

of ultra-SPs in optical fibers. This work can be extended in various interesting direc-

tions, such as studying the discrete SP equation and other semi-discrete integrable

systems to calculate multi-Grammian, breather, and soliton solutions. It would also

be interesting to study discrete rogue and hump wave solutions for semi-discrete

integrable systems. Additionally, extending the theory of binary Darboux transfor-

mation to nonlocal integrable models would be valuable.
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