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Abstract
In this paper, we propose the discrete and two semi-discrete versions of negative
order AKNS equation through the discretization of associated Lax pair of continuous
negative order AKNS equation. Discrete and semi-discrete multi-soliton solutions
are computed by using Darboux transformation and are presented in the form of
quasideterminants. Thedynamics of one soliton and interactionof two soliton solutions
for negative order AKNS equation are presented in the end.

Keywords Discrete integrable systems · Darboux transformation · Negative order
AKNS · Soliton solution

1 Introduction

Many integrable systems, such as Korteweg-de Vries (KdV), modified KdV (mKdV),
and so on admit their own hierarchy

ut = Tmk0(u) = km, m = . . . , −1, 0, 1, . . . (1.1)
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where T is referred as a recursion operator, whereasm with positive values correspond
to positive flowandmwith negative values referred to as negative flowof hierarchy. For
example, the sine-Gordon equation is the well-studied equation (which has potential
applications in Josephson transmission line [1, 2], ultrashort pulse propagation in a
resonant medium [3]) that can be derived as negative order of the mKdV hierarchy
[4]. The coupled integrable dispersionless equations are derived from the first negative
flow of the nonlinear Schrödinger (NLS) hierarchy [5]. Numerous integrable systems
such as Degasperis-Procesi equation [6], Camassa-Holm equation [7–9] and the short
pulse equation [10, 11] are referred to as the negative order equations by reciprocal
transformations. The importance to study the negative order equations is that one can
construct infinitely many symmetries for nonisospectral Ablowitz-Ladik hierarchy
[12]. Another fact is that it results in determining the time dependence in the phases of
solitons. Therefore, the negative order flowequations givemany interesting new results
not only from the integrability point of view but also provide interesting information
dynamically (both physically and mathematically).

The study of discrete integrable systems are of particular importance in various
fields not only as a physical model but also for numerical analysis. Discrete integrable
systems are the systems which have their own independent variables defined over
lattice point rather than the systems with their independent variables having contin-
uous values have received much attention by the researchers working in the field of
mathematical and applied sciences.

Many techniques such as Bäcklund transformation, Inverse scattering transform,
Hirota method, Darboux transformation, binary Darboux transformation etc., have
been employed to obtain exact solutions of many nonlinear partial differential equa-
tions [13–23]. Among all of the above techniques, Darboux transformation is a very
effective tool for soliton generation of nonlinear evolution equations. Also, the soliton
solutions can be expressed in terms of quasi-Grammian, quasi-Wronskian, quasi-
determinants and Wronskian [21–27]. Integrable discrete analogues of negative order
AKNS were considered in [30].

The present work is devoted for the study of Darboux transformation (DT) of
the discrete negative order AKNS (nAKNS) equation. Like the continuous nAKNS
equation which exhibits numerous aspects of integrability, discrete nAKNS equation
also preserves the integrability. The DT of continuous nAKNS equation is presented
in [28]. The breathers of nAKNS equation and its multi-component generalizations
have been investigated and soliton solutions have been obtained [29–32].

In this paper, we discuss discrete (difference-difference) nAKNS equation. We
present the Lax pair of the discrete nAKNS (dnAKNS) equation, whereas both the
space and time variables are defined by the discrete steps on the lattice. The DT is
applied on discrete Lax pair, the solutions of the matrix field equations are calculated
in terms of quasi-determinants. By iterating the DT, we get the K -soliton solutions.
Further, the explicit one and two soliton solutions are calculated for dnAKNS equation.
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2 Lax Pair

In this section, we present the discrete generalization of nAKNS equation. We know
that the Lax pair of continuous nAKNS equation can be written as [28]

∂x� ≡ A� = ( − 2λV (0) + V
)
�, (2.1)

∂t� ≡ B� = − 1

2λ

(
V (0) + ∂tW

)
�, (2.2)

where the matrices W , V , V (0) are defined as

W =
(

w −u
−v −w

)
, V =

(
0 −u
v 0

)
, V (0) = 1

2

(−1 0
0 1

)
. (2.3)

In Eq. (2.3), u(x, t) and v(x, t) are the scalar functions and w(x, t) = ∂−1
x (uv).

The compatibility condition (∂x∂t� = ∂t∂x�) for the Lax pair (2.1), (2.2) yields the
zero-curvature condition i.e., At − Bx + [A, B] = 0, gives the equation of motion

∂x∂tW = [V , ∂tW ] +
[
V , V (0)

]
. (2.4)

The Eq. (2.4) is known as the matrix nAKNS equation. Now, we derive the discretize
version of the nAKNS equation by discretization of linear system given by (2.1)
and Eq. (2.2) for both space and time. The Lax pair of difference-difference nAKNS
equation is given by

Tn�n,m ≡ �n+1,m = An,m�n,m, (2.5)

Tm�n,m ≡ �n,m+1 = Bn,m�n,m, (2.6)

with the matrices An,m and Bn,m given as

An,m = I + a
(
Vn,m − 2λ−1V (0)

)
, (2.7)

Bn,m = I − λ

2

(
bV (0) + Wn,m+1 − Wn,m

)
, (2.8)

where �n,m ≡ �n,m(λ) is an N × N eigen matrix which depends upon variables m
and n written in subscripts defined over a lattice. Also note that a and b in Eqs. (2.7)
and (2.8) represent the lattice parameters along n and m respectively. The consistency
condition (TnTm�n,m = TmTn�n,m) of difference-difference Lax pair (2.5), (2.6)
leads to the discrete zero-curvature condition i.e., An,m+1Bn,m − Bn+1,m An,m = 0,
which is equivalent to dnAKNS equation of motion:

Wn+1,m+1 − Wn+1,m − Wn,m+1 + Wn,m − abVn,m+1V
(0) + abV (0)Vn,m

= +aVn,m+1
(
Wn,m+1 − Wn,m

) − a
(
Wn+1,m+1 − Wn+1,m

)
Vn,m . (2.9)
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The Eq. (2.9) is the discrete version of the matrix nAKNS equation.
In order to calculate the semi-discrete (difference-differential) version of nAKNS

equation, taking t continuous
(
limb→0

gn,m+1−gn,m
b = dg

dt

)
and x is discrete and is

given by

d

dt
(Wn+1 − Wn) = aVnV

(0) − aV (0)Vn + aVn
d

dt
Wn − a

d

dt
(Wn+1)Vn . (2.10)

Similarly, the linear system (2.5), (2.6) can be converted into semi-discrete version as

�n+1 = An�n =
(
I + a

(
Vn − 2λ−1V (0)

))
�n, (2.11)

d

dt
�n = Bn�n = −λ

2

(
V (0) + ∂tWn

)
�n, (2.12)

where the equation of motion can be calculated by d
dt An + AnBn − Bn+1An = 0,

which is equivalent to Eq. (2.9). Now if we take lattice parameter a → 0, we get Eq.
(2.4) from Eq. (2.9). Also, we get Eqs. (2.1), (2.2) from Eqs. (2.11), (2.12).

We can easily derive the semi-discrete version of nAKNS equation which is contin-

uous in x and discrete in t by taking the continuum limit
(
lima→0

gn+1,m−gn,m
a = dg

dx

)
,

i.e.,

d

dx
(Wm+1 − Wm) = bVm+1V

(0) − bV (0)Vm + Vm+1 (Wm+1 − Wm)

− (Wm+1 − Wm) Vm . (2.13)

Similarly, the Lax pair (2.5), (2.6) can be converted into semi-discrete version as

d

dx
�m = Am�m =

(
Vm − 2λ−1V (0)

)
�m, (2.14)

�m+1 = Bm�m =
(
I − λ

2

(
bV (0) + Wm+1 − Wm

))
�m, (2.15)

where the equation of motion can be obtained by d
dx Bm + Bm Am − Am+1Bm = 0,

which is equivalent to equation (2.13). Further, if we take the lattice parameter b → 0,
we obtain Eq. (2.4) from Eq. (2.13). Also, we can obtain Eqs. (2.1), (2.2) from Eq.
(2.14), (2.15).

3 Discrete Darboux Transformation

Now, we define DT on discrete Lax pair given by Eqs. (2.5), (2.6) to calculate the
soliton solutions in terms of quasi-determinants. The Darboux matrix Dn,m(λ) acts on
the seed solution �n,m and gives the transformed solution �n,m[1]. The one-fold DT
on the solution �n,m is defined as
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�n,m[1] = Dn,m(λ)�n,m, (3.1)

where the Darboux matrix is defined as

Dn,m(λ) = λ−1 I − Qn,m . (3.2)

Note that in Eq. (3.2) I is the N ×N identity matrix and Qn,m is another N ×N matrix
which is yet to be evaluated. From the covariance of Lax pair (2.5 ), (2.6) under DT,
we conclude

Vn,m[1] = Vn,m + 2Qn+1,mV
(0) − 2V (0)Qn,m, (3.3)

V (0)[1] = V (0), (3.4)

Wn,+m+1[1] − Wn,m[1] = Wn,m+1 − Wn,m − 2Qn,m+1 + 2Qn,m . (3.5)

Equation (3.5) can be re-written as

Wn,m[1] = Wn,m − 2Qn,m . (3.6)

Similarly the covariance of equations (2.5) and (2.6) underDT shows that the following
conditions on Qn,m should be satisfied at every point of lattice

Qn+1,m − Qn,m = a
(
Vn,mQn,m − Qn+1,mVn,m

)

+2a
(
Qn+1,mV

(0) − V (0)Qn,m

)
Qn,m, (3.7)

Qn,m+1 − Qn,m = 1

2

{
bV (0)Qn,m − bQn,m+1V (0) + (

Wn,m+1 − Wn,m
)
Qn,m

−Qn,m+1
(
Wn,m+1 − Wn,m

)
}

Q−1
n,m . (3.8)

Now, we develop the matrix Qn,m for the dnAKNS equation. Let us define N constant
parameters (real/complex) λ1, λ2, . . . , λN . For each value of parameter, there exists a
particular column vector solution |σi 〉n,m for the linear system ( 2.5), (2.6) i.e.,

|σ 〉n+1,m =
(
1 + a

(
Vn,m − 2λ−1V (0)

))
|σ 〉n,m , (3.9)

|σ 〉n,m+1 =
(
1 − λ

2

(
bV (0) + Wn,m+1 − Wn,m

))
|σ 〉n,m . (3.10)

We now need to define Qn,m so that Eqs. (3.7) and (3.8) are satisfied. Therefore, we
choose

Qn,m = �n,m�−1�−1
n,m . (3.11)

By taking � = diag(λ1, λ2, . . . , λN ), the Lax pair (3.9), (3.10) can be written in the
form of matrix as

�n+1,m = �n,m + a
(
Vn,m�n,m − 2V (0)�n,m�−1

)
, (3.12)
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�n,m+1 = �n,m − 1

2

(
bV (0)�n,m + Wn,m+1�n,m − Wn,m�n,m

)
�. (3.13)

Now, we will show when we operate difference operator �n and �m on Qn,m given
by Eq. (3.11), we get Eqs. (3.7) and (3.8), as

�nQn,m = Qn+1,m − Qn,m,

= �n+1,m�−1�−1
n+1,m − �n,m�−1�−1

n,m + �n+1,m�−1�−1
n,m�n,m�−1

n,m

−�n+1,m�−1�−1
n+1,m�n+1,m�−1

n,m,

= �n+1,m�−1�−1
n+1,m

(
I − �n+1,m�−1

n,m

)
+ (

�n+1,m − �n,m
)
�−1�−1

n,m,

= Qn+1,m

(
I −

(
�n,m + aVn,m�n,m − 2aV (0)�n,m�−1

)
�−1

n,m

)

+
(
�n,m + aVn,m�n,m − 2aV (0)�n,m�−1 − �n,m

)
�−1�−1

n,m,

= a
(
Vn,mQn,m − Qn+1,mVn,m

) + 2a
(
Qn+1,mV

(0) − V (0)Qn,m

)
Qn,m,

which is similar to Eq. (3.7). Similarly, by operating �m on Qn,m , we get

�mQn,m = Qn,m+1 − Qn,m,

= �n,m+1�
−1�−1

n,m+1 − �n,m�−1�−1
n,m + �n,m+1�

−1�−1
n,m�n,m�−1

n,m

−�n,m+1�
−1�−1

n,m+1�n,m+1�
−1
n,m,

= �n,m+1�
−1�−1

n,m+1

(
I − �n,m+1�

−1
n,m

) + (
�n,m+1 − �n,m

)
�−1�−1

n,m,

= Qn,m+1

(
I −

{
�n,m − b

2
V (0)�n,m� − 1

2

(
Wn,m+1 − Wn,m

)
�n,m�

}
�−1

n,m

)

+
(

�n,m − b

2
V (0)�n,m� − 1

2

(
Wn,m+1 − Wn,m

)
�n,m� − �n,m

)
�−1�−1

n,m,

= 1

2

{
bV (0)Qn,m − bQn,m+1V (0) + (

Wn,m+1 − Wn,m
)
Qn,m

−Qn,m+1
(
Wn,m+1 − Wn,m

)
}
Q−1

n,m,

which is same as Eq. (3.8). Therefore, we can write the DT on matrix solution �n,m

and also the matrix solutions Vn,m , Wn,m as

�n,m[1] =
(
λ−1 I − �n,m�−1�−1

n,m

)
�n,m, (3.14)

Vn,m[1] = Vn,m + 2�n+1,m�−1�−1
n+1,mV

(0) − 2V (0)�n,m�−1�−1
n,m, (3.15)

Wn,m[1] = Wn,m − 2�n,m�−1�−1
n,m . (3.16)

Now, we express the solutions in terms of quasideterminants (for detail see [33, 34]).
The one-fold Darboux matrix transformed solution (3.14) can be written as
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�n,m[1] ≡ Dn,m(λ)�n,m =
(
λI − �n,m�−1�−1

n,m

)
�n,m,

=
∣∣∣∣∣

�n,m �n,m

�n,m�−1 λ−1 I

∣∣∣∣∣
. (3.17)

The result (3.17) can be extended by repeating iterations of Darboux matrix and can
be generalized to K -fold DT. For this, we define the particular matrix solution �k

n,m
of the Lax pair for � = �k where k = 1, 2, . . . , K . So, the K -fold DT is given by

�[K ]
n,m =

∣
∣∣∣∣∣∣
∣∣∣∣∣

�n,m,1 �n,m,2 · · · �n,m,K �n,m

�n,m,1�
−1
1 �n,m,2�

−1
2 · · · �n,m,K�−1

K λ−1�n,m
...

...
. . .

...
...

�n,m,1�
−(K−1)
1 �n,m,2�

−(K−1)
2 · · · �n,m,K�

−(K−1)
K λ−(K−1)�n,m

�n,m,1�
−K
1 �n,m,2�

−K
2 · · · �n,m,K�−K

K λ−K�n,m

∣
∣∣∣∣∣∣
∣∣∣∣∣

.

(3.18)

The expression (3.15) can also be expressed as

Vn,m[1] = Vn,m − 2[V (0), Qn,m],
= Vn,m + 2[V (0), (O − �n,m�−1�−1

n,m)],
= Vn,m + 2

[
V (0),

∣∣
∣∣

�n,m I
�n,m�−1 O

∣∣
∣∣

]
. (3.19)

Similarly, expression (3.16) can be written as

Wn,m[1] = Wn,m + 2(O − �n,m�−1�−1
n,m),

= Wn,m + 2

∣∣
∣∣

�n,m I
�n,m�−1 O

∣∣
∣∣ . (3.20)

The K -times DT on Vn,m , V (0)and Wn,m can be written as

V [K ]
n,m = Vn,m + 2

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

V0,

∣∣
∣
∣∣
∣
∣∣
∣
∣∣
∣

�n,m,1 �n,m,2 · · · �n,m,K O
�n,m,1�

−1
1 �n,m,2�

−1
2 · · · �n,m,K�−1

K O
...

...
. . .

...
...

�n,m,1�
−(K−1)
1 �n,m,2�

−(K−1)
2 · · · �n,m,K�

−(K−1)
K I

�n,m,1�
−K
1 �n,m,2�

−K
2 · · · �n,m,K�−K

K O

∣∣
∣
∣∣
∣
∣∣
∣
∣∣
∣

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

,

(3.21)

V (0)[K ] = V (0), (3.22)
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W [K ]
n,m = Wn,m + 2

∣
∣∣
∣
∣∣
∣
∣∣
∣
∣∣

�n,m,1 �n,m,2 · · · �n,m,K O
�n,m,1�

−1
1 �n,m,2�

−1
2 · · · �n,m,K�−1

K O
...

...
. . .

...
...

�n,m,1�
−(K−1)
1 �n,m,2�

−(K−1)
2 · · · �n,m,K�

−(K−1)
K I

�n,m,1�
−K
1 �n,m,2�

−K
2 · · · �n,m,K�−K

K O

∣
∣∣
∣
∣∣
∣
∣∣
∣
∣∣

.

(3.23)

The expressions given by equations (3.18), (3.21), (3.22) and (3.23) are the K th solu-
tions of discrete nAKNS equation and these results can be easily derived by induction.

3.1 Semi-Discrete Darboux transformation

3.1.1 Continuous in t-Variable

The one-fold DT on the solution �n is defined as

�n[1] = Dn(λ)�n, (3.24)

where the Darboux matrix is defined as

Dn(λ) = λ−1 I1 − Qn . (3.25)

Note that in Eq. (3.25) I1 is the N × N identity matrix and Qn is a N × N matrix.
From the covariance of Lax pair (2.11), (2.12) under DT, we conclude

Vn[1] = Vn + 2Qn+1V
(0) − 2V (0)Qn, (3.26)

V (0)[1] = V (0), (3.27)

Wn[1] = Wn − 2Qn . (3.28)

Similarly the covariance of equations (2.11) and (2.12) under DT shows that the
following conditions on Qn should be satisfied at every lattice point

Qn+1 − Qn = a (VnQn − Qn+1Vn) + 2a
(
Qn+1V

(0) − V (0)Qn

)
Qn, (3.29)

d

dt
Qn = 1

2

(
[V (0), Qn] + [∂tWn, Qn]

)
. (3.30)

By putting a → 0, the solutions reduce to continuous nAKNS solutions calculated in
[28].

3.1.2 Continuous in x-Variable

The one-fold DT on the solution �m is defined as

�m[1] = Dm(λ)�m, (3.31)
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where the Darboux matrix is defined as

Dm(λ) = λ−1 I2 − Qm . (3.32)

Note that in Eq. (3.32), I2 is the N × N identity matrix and Qm is a N × N matrix.
From the covariance of Lax pair (2.14 ), (2.15) under DT, we conclude

Vm[1] = Vm + 2[Qm, V 0], (3.33)

V (0)[1] = V (0), (3.34)

Wm[1] = Wm − 2Qm . (3.35)

Similarly the covariance of equations (2.14) and (2.15) under DT shows that the
following conditions on Qm should be satisfied at every lattice point

Qm+1 − Qm = 1

2

{
bV (0)Qm − bQm+1V (0) + (Wm+1 − Wm) Qm

−Qm+1 (Wm+1 − Wm)

}
Q−1

m ,

(3.36)
d

dt
Qm = [Vm, Qm] + 2[Qm, V (0)]Qm . (3.37)

By putting b → 0, the solutions reduce to continuous nAKNS solutions presented in
[28].

4 Explicit Solutions

In this section, we calculate soliton solutions from a trivial (seed) solution by solving
the Lax pair (2.5), (2.6) of dnAKNS equation. For this, we re-write the matrix Q(K )

n,m
from (3.23) in a more appropriate form as follows

Q(K )
n,m =

∣∣
∣∣
�n,m I(K )

�̃n,m O

∣∣
∣∣ , (4.1)

where I (K ), �̃n,m and �n,m are NK × N , N × NK and NK × NK matrices
respectively. These matrices are given by

I(K ) = (
I O · · · O )T

,

�̃n,m = (
�n,m,1�

−K
1 �n,m,2�

−K
2 · · · �n,m,K�−K

K

)
,

�n,m =

⎛

⎜⎜
⎜
⎝

�n,m,1 �n,m,2 · · · �n,m,K

�n,m,1�
−1
1 �n,m,2�

−1
2 · · · �n,m,K�−1

K
...

...
. . .

...

�n,m,1�
−(K−1)
1 �n,m,2�

−(K−1)
2 · · · �n,m,K�

−(K−1)
K

⎞

⎟⎟
⎟
⎠

. (4.2)
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The elements of Q(K )
n,m can be written as

Q(K )
n,m i j =

(∣∣∣∣
�n,m I(K )

�̃n,m O

∣∣∣∣

)

i j

=
∣∣∣∣∣

�n,m I
(K )
j(

�̃n,m
)
i 0

∣∣∣∣∣
,

= (−1)i+ j det(�n,m)i j

det(�n,m)
, i, j = 1, 2, . . . , K , (4.3)

where (�̃n,m)i and I
(K )
j represent the i-th row and j-th column of the matrices �̃n,m

and I(K ) respectively. Let us now consider the simplest case for N = 2. The matrix
Q(K )

n,m can be written as

Q(K )
n,m ≡

(
Q(K )

n,m 11 Q(K )
n,m 12

Q(K )
n,m 21 Q(K )

n,m 22

)

=
∣∣∣
∣∣
�n,m I(K )

�̃n,m O2

∣∣∣
∣∣
,

where

Q(K )
n,m i j =

∣∣
∣∣∣∣

�n,m I
(K )
j

(�̃n,m)i 0

∣∣
∣∣∣∣
= (−1)i+ j det(�n,m)i j

det(�n,m)
, i, j = 1, 2. (4.4)

For one soliton K = 1, we have

I(1) = I2 =
(
1 0
0 1

)
,

�n,m, 1 =
(

π
(1)
n,m, 11 π

(2)
n,m, 12

π
(1)
n,m, 21 π

(2)
n,m, 22

)

, �1 =
(

λ1 0
0 λ̄1

)
,

�̃n,m = �n,m, 1�
−1
1 ,

=
(

λ−1
1 π

(1)
n,m, 11 λ̄−1

1 π
(2)
n,m 12

λ−1
1 π

(1)
n,m 21 λ̄−1

1 π
(2)
n,m, 22

)

. (4.5)

Substituting Eq. (4.5) in Eq. (4.4), the matrix element Q(1)
n,m, 12 of the matrix Q(1)

n,m can
be obtained as

Q(1)
n,m 12 =

∣
∣∣∣∣

�n,m I
(1)
2

(�̃n,m)1 O2

∣
∣∣∣∣
=

∣∣
∣∣∣∣∣

π
(1)
n,m, 11 π

(2)
n,m, 12 0

π
(1)
n,m, 21 π

(2)
n,m, 22 1

λ−1
1 π

(1)
n,m, 11 λ̄−1

1 π
(2)
n,m 12 0

∣∣
∣∣∣∣∣
,

= −
det

(
π

(1)
n,m, 11 π

(2)
n,m, 12

λ−1
1 π

(1)
n,m, 11 λ̄−1

1 π
(2)
n,m 12

)

det

(
π

(1)
n,m, 11 π

(2)
n,m, 12

π
(1)
n,m, 21 π

(2)
n,m, 22

) . (4.6)
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Similarly, we have

Q(1)
n,m, 21 =

∣∣∣∣
∣∣

�n,m I
(1)
1

(�̃n,m)2 O2

∣∣∣∣
∣∣
=

∣∣∣∣∣
∣∣∣∣

π
(1)
n,m, 11 π

(2)
n,m, 12 1

π
(1)
n,m, 21 π

(2)
n,m, 22 0

λ−1
1 π

(1)
n,m 21 λ̄−1

1 π
(2)
n,m, 22 0

∣∣∣∣∣
∣∣∣∣

,

= −
det

(
λ−1
1 π

(1)
n,m 21 λ̄−1

1 π
(2)
n,m, 22

π
(1)
n,m, 21 π

(2)
n,m, 22

)

det

(
π

(1)
n,m, 11 π

(2)
n,m, 12

π
(1)
n,m, 21 π

(2)
n,m, 22

) . (4.7)

Similarly, the other two terms can also be obtained. In order to get an explicit expression
of the soliton solution, let us take u, v = 0 as the seed solution, so that the dnAKNS
Lax pair (2.5), (2.6) reduces to

�n+1,m = I − 2aλ−1V (0)�n,m, (4.8)

�n,m+1 = I − λ

2
bV (0)�n,m . (4.9)

Therefore, Eqs. (4.8), (4.9) give the matrix solution �n,m of the Lax pair (2.5), (2.6)
having the following form

(
Xn+1,m
Yn+1,m

)
=

(
1 + aλ−1

1 − aλ−1

) (
Xn,m

Yn,m

)
. (4.10)

Also

(
Xn,m+1
Yn,m+1

)
=

(
1 + λb

4
1 − λb

4

) (
Xn,m

Yn,m

)
. (4.11)

The solution of Lax pair (4.10), (4.11) yields

Xn,m =
(
1 + aλ−1

)n (
1 + λb

4

)m

, (4.12)

Yn,m =
(
1 − aλ−1

)n (
1 − λb

4

)m

. (4.13)

Now substituting the choice π
(1)
n,m, 11 = π

(1)
n,m, 22 = Xn,m , π

(2)
n,m, 12 = −Yn,m ,

π
(2)
n,m, 21 = Yn,m and λ1 = λ, λ̄1 = −λ in Eqs. (4.6) and (4.7), we get

Q(1)
n,m 12 = −2λ−1Xn,mYn,m

X2
n,m + Y 2

n,m
, (4.14)
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Fig. 1 Discrete one-soliton: for numerical values λ = 5, a = 1, b = 2
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Fig. 2 Discrete travelling one-soliton: for numerical values λ = 5, a = 1, b = 2.

Q(1)
n,m, 21 = −2λ−1Xn,mYn,m

X2
n,m + Y 2

n,m
. (4.15)

Expressions (4.14), (4.15) are identical and represent the one soliton solution which
is shown in Figs. 1 and 2.

For two soliton solution, substitute K = 2 in Eq. (4.4). The corresponding matrices
are given below

�1 =
(

λ1 0
0 −λ1

)
, �2 =

(
λ2 0
0 −λ2

)
,

I(2) =

⎛

⎜⎜
⎝

0 0
0 0
1 0
0 1

⎞

⎟⎟
⎠ ,

�̃n,m =
(

�n,m, 1�
−2
1

... �n,m, 2�
−2
2

)
,

=
⎛

⎝λ−2
1 Xn,m, 1 −λ−2

1 Yn,m, 1
... λ−2

2 Xn,m, 2 −λ−2
1 Yn,m, 2

λ−2
1 Yn,m, 1 λ−2

1 Xn,m, 1
... λ−2

2 Yn,m, 2 λ−2
2 Xn,m, 2

⎞

⎠ ,

�n,m =
(

�n,m, 1 �n,m, 2

�n,m, 1�
−1
1 �n,m, 2�

−1
2

)
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Fig. 3 Discrete two-soliton: for numerical values λ = 3.1, η = 2.6, a = 1, b = 2.
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Fig. 4 Discrete two-soliton: left figure shows the interaction and right shows after the interaction, for
numerical values λ = 3.2 + 0.8i, η = 2.6 + 1.02i, a = 1, b = 2.

=

⎛

⎜
⎜
⎝

Xn,m, 1 −Yn,m, 1 Xn,m, 2 −Yn,m, 2
Yn,m, 1 Xn,m, 1 Yn,m, 2 Xn,m, 2

λ−1
1 Xn,m, 1 λ−1

1 Yn,m, 1 λ−1
2 Xn,m, 2 λ−1

2 Yn,m, 2

λ−1
1 Yn,m, 1 −λ−1

1 Xn,m, 1 λ−1
2 Yn,m, 2 −λ−1

2 Xn,m, 2

⎞

⎟
⎟
⎠ .

The matrix Q(2)
n,m 21 can be calculated as

Q(2)
n,m 21 = −

det

⎛

⎜⎜
⎝

Xn,m, 1 −Yn,m, 1 Xn,m, 2 −Yn,m, 2
Yn,m, 1 Xn,m, 1 Yn,m, 2 Xn,m, 2

λ−2
1 Yn,m, 1 λ−2

1 Xn,m, 1 λ−2
2 Yn,m, 2 λ−2

2 Xn,m, 2

λ−1
1 Yn,m, 1 −λ−1

1 Xn,m, 1 λ−1
2 Yn,m, 2 −λ−1

2 Xn,m, 2

⎞

⎟⎟
⎠

det

⎛

⎜⎜
⎝

Xn,m, 1 −Yn,m, 1 Xn,m, 2 −Yn,m, 2
Yn,m, 1 Xn,m, 1 Yn,m, 2 Xn,m, 2

λ−1
1 Xn,m, 1 λ−1

1 Yn,m, 1 λ−1
2 Xn,m, 2 λ−1

2 Yn,m, 2

λ−1
1 Yn,m, 1 −λ−1

1 Xn,m, 1 λ−1
2 Yn,m, 2 −λ−1

2 Xn,m, 2

⎞

⎟⎟
⎠

. (4.16)

The two soliton and also the interaction of two solitons are depicted in Figs. 3, 4
and 5.



  280 Page 14 of 20 Z. Amjad et al.

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

m

n

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

n

m

Fig. 5 Discrete two-soliton: left figure presents the interaction with same velocities and right presents the
interaction with different velocities, for numerical values λ = 3.1 + 0.6i, η = 2.6 − 1.02i, a = 1, b = 2.

4.1 Continuous in t-Variable

In this case, the explicit solution of semi-discrete nAKNS (sdnAKNS) Lax pair (2.11),
(2.12) for the seed solution reduces to

�n+1 =
(
I − 2aλ−1V (0)

)
�n, (4.17)

d

dt
�n = −λ

2
V (0)�n . (4.18)

Therefore, Eqs. (4.17), (4.18) give the matrix solution�n of the Lax pair (2.11), (2.12)
having the following form

(
Xn+1
Yn+1

)
=

(
1 + aλ−1

1 − aλ−1

) (
Xn

Yn

)
. (4.19)

Also

(
∂
∂t Xn
∂
∂t Yn

)
=

(
λ
4 −λ

4

) (
Xn

Yn

)
. (4.20)

The solution of Lax pair (4.19), (4.20) yields

Xn =
(
1 + aλ−1

)n
exp

(
λ

4
t

)
, (4.21)

Yn =
(
1 − aλ−1

)n
exp

(−λ

4
t

)
. (4.22)



Integrable Discretization and Multi-soliton... Page 15 of 20   280 

−20

−10

0

10

20

−20

−10

0

10

20

0

2

4

t
n

w
n

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

n

t

Fig. 6 Semi-Discrete one-soliton: for numerical values λ = 2.9, a = 1.
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Fig. 7 Semi-Discrete two soliton: left figure shows before interaction and right shows interaction, for
numerical values λ = 1.4, η = 1.9, a = 1.

Now substituting the choice π
(1)
n, 11 = π

(1)
n, 22 = Xn , π

(2)
n, 12 = −Yn , π

(2)
n, 21 = Yn and

λ1 = λ, λ̄1 = −λ in Eqs. (4.6) and (4.7), we get

Q(1)
n 12 = −2λ−1XnYn

X2
n + Y 2

n
, (4.23)

Q(1)
n, 21 = −2λ−1XnYn

X2
n + Y 2

n
. (4.24)

Expressions (4.23), (4.24) are identical and represent the one soliton solution which
is shown in Fig. 6.

Similarly, the two soliton solution can be calculated by using the relation (4.16)
which is depicted in Fig. 7.
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4.2 Continuous in x-Variable

In this case, the explicit solution of sdnAKNS Lax pair (2.14), (2.15) for the seed
solution reduces to

�m+1 =
(

I − bλV (0)

2

)

�m, (4.25)

d

dx
�m = −2V 0

λ
�m . (4.26)

Therefore, the Eqs. (4.25), (4.26) give the matrix solution �m of the Lax pair (2.14),
(2.15) which has the following expression

(
Xm+1
Ym+1

)
=

(
1 + bλ

4
1 − bλ

4

) (
Xm

Ym

)
. (4.27)

Also

(
∂
∂x Xm
∂
∂x Ym

)
=

(
λ−1

−λ−1

) (
Xm

Ym

)
. (4.28)

The solution of Lax pair (4.27), (4.28) yields

Xm =
(
1 + bλ

4

)m

exp
(
λ−1x

)
, (4.29)

Ym =
(
1 − bλ

4

)m

exp
(
−λ−1x

)
. (4.30)

Now, substituting the choice π
(1)
m, 11 = π

(1)
m, 22 = Xm , π

(2)
m, 12 = −Ym , π

(2)
m, 21 = Ym and

λ1 = λ, λ̄1 = −λ in Eqs. (4.6) and (4.7), we get

Q(1)
m, 12 = −2λ−1XmYm

X2
m + Y 2

m
, (4.31)

Q(1)
m, 21 = −2λ−1XmYm

X2
m + Y 2

m
. (4.32)

Expressions (4.31), (4.32) are identical and represent the one soliton solution which
is presented in Fig. 8.

Similarly, the two soliton solution can be calculated by using the relation (4.16)
which is depicted in Fig. 9.

In the continuum limit b → 0, Eqs. (4.29), (4.30) becomes

X = exp

(
λ−1x + λ

4
t

)
, (4.33)
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Fig. 8 Semi-Discrete one-soliton: for numerical values λ = 4, b = 3.
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Fig. 9 Discrete two soliton: left figure showing before interaction and right presenting interaction, for
numerical values λ = 1.4, η = 1.9, b = 1.

Y = exp

(
−λ−1x − λ

4
t

)
, (4.34)

which leads the solutions (4.31), (4.32) as

Q(1)
12 = −2λ−1XY

X2 + Y 2 , (4.35)

Q(1)
21 = −2λ−1XY

X2 + Y 2 , (4.36)

represents the one soliton solution for vanishing background (u, v = 0) as a seed
solution presented in Fig. 10.

Now, for nonvanishing background seed solution (u = v = 3) result (4.35), (4.36)
gives rogue type solutions shown in Fig. 11.

The results obtained can be used to derive conserved quantities and other useful
properties. It has been shown that, each soliton able to resume its original shape after
collision which shows that the collision between solitons is elastic.
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Fig. 10 One soliton: for
numerical values
λ = 0.9 + 0.0002i .

Fig. 11 Rogue solution: for numerical values λ = 0.9 + 1.0002i .

5 Conclusion

In this paper, we developed the discrete version of nAKNS and two sdnAKNS equa-
tions. We also presented that how this model reduces to the continuous equation under
continuum limits. Darboux transformation was developed and applied to obtain the
discrete soliton solutions. The one and two solitons (interactions) for the dnAKNS and
sdnAKNS equation were plotted. Also, we discussed the nonvanishing background
seed solution case and calculate the rogue type solutions. This work can also be
extended in a variety of interesting directions, for example, one can study discrete and
semi-discrete versions of multi-component nAKNS equation and study their multi-
soliton solutions. It would also be interesting to study discrete rogue, breather and
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lump wave solutions for the discrete and two semi-discrete versions of negative order
AKNS equation.
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