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Abstract
In this paper, we analyze the extended Bogoyavlenskii-Kadomtsev-Petviashvili (eBKP) equation
utilizing the condensed Hirota’s approach. In accordance with a logarithmic derivative
transform, we produce solutions for single, double, and triple M-lump waves. Additionally, we
investigate the interaction solutions of a single M-lump with a single soliton, a single M-lump
with a double soliton, and a double M-lump with a single soliton. Furthermore, we create
sophisticated single, double, and triple complex soliton wave solutions. The extended
Bogoyavlenskii-Kadomtsev-Petviashvili equation describes nonlinear wave phenomena in fluid
mechanics, plasma, and shallow water theory. By selecting appropriate values for the related free
parameterswe also create three-dimensional surfaces and associated counter plots to simulate the
dynamical characteristics of the solutions offered.

Keywords: simplified Hirota’s method, lump solution, mixed solution, complex multiple soliton,
eBKP equation

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear partial differential equations (NPDEs) are used to
explain diverse significant nonlinear phenomena in nature that
demonstrate significant properties, such as the existence of
numerous conservation laws, soliton solutions, bi-Hamilto-
nian structures, and various symmetries [1]. The quest for
analytical solutions to nonlinear partial differential equations
is essential in scientific and engineering applications since it
provides a wealth of information on the mechanisms of
complicated physical phenomena. Numerous effective

methods have been devised to seek exact solutions for NPDEs
in mathematical physics, such as the Burgan et al method [2],
the similarity transformations [3], the parabolic equation
method [4], the new modified unified auxiliary equation
method [5], the G1( )¢ - expansion method [6, 7], Jacobi
elliptic function expansion (JEFE) method [8], the simplified
Hirotaʼs method [9], the Kudrayshov approach and its mod-
ified version [10, 11], the modified auxiliary expansion
method [12], and the generalized exponential rational func-
tion method and its modified version [13, 14], as well as some
numerical methods [15–18]. Each of these methods has its
characteristics, and the simplified Hirota method is commonly
used owing to its efficiency and directness. In [19–28], the
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authors have constructed multiple solitons, complexiton
solutions, fusions, breather solutions, lump solutions, and
mixed kink-lump and periodic lump solutions of some
NPDEs by using the simplified Hirota’s method. The
Bogoyavlenskii-Kadomtsev-Petviashvili (BKP) equation is
given by [29]

u u u u

u u u u u

12

8 4 , 1
xxt xxxy xx xy

x xxy xxx y yyy ( )a
+ +

+ + =

Equation (1) represents nonlinear wave phenomena in fluid
mechanics, plasma physics, and shallow water theory. The
solution function u x y t, ,( ) stands for the wave amplitude.
When α= 0, equation (1) reduces to the Calogero-Bogoyav-
lenskii-Schiff (CBS) equation. When α≠ 0, equation (1)
represents a modification of the CBS equation, often known as a
modification to the Kadomtsev-Petviashvili (KP) equation [30].
Equation (1) was actually extracted in [31–33] by reducing the
renowned (3 + 1)-dimensional KP equation. Equation (1)
represents the spread of non-linear waves in several scientific
fields, like fluid mechanics, plasma, and shallow waves.

Wazwaz developed an extended form of the BKP
equation (1). The Painlevé analysis has been used to explore
the integrability of the eBKP equation. The eBKP has the
following form [34]:

u u u u u u

u u u u u

12 8

4 . 2
xxt xxxxy xx xy x xxy

xxx y yyy xxx xxy ( )a b g
+ + +

+ = + +

Equivalently, it reads

u u u u u u

u u u

8 4

. 3
xt xxxy x xy xx y x

yyy x y xx

( )
( ) ( )a b g

+ + +
= + +

It is clear that the extended form equation (3) acknowledges
two extra weak terms of dispersion, namely uxxx and uxxy.
When α= β= γ= 0, equation (3) is simplified to the CBS
equation [34]

u u u u u u8 4 0. 4xt xxxy x xy xx y ( )+ + + =

Nevertheless, for β= γ= 0, equation (3) is reduced to the
BKP equation (1). More specifically, for α= 0 the eBKP

equation (3) can be simplified to [34]:

u u u u u u u u8 4 . 5xt xxxy x xy xx y x y x( ) ( )b g+ + + = +

In [34], multiple soliton solutions of equation (2) have been
extracted via the Hirota approach. In this paper, we will
study multiple M-lump waves and their interactions with
single, and double soliton solutions. Also, we will derive
complex single, double, and triple soliton solutions. Lump
waves are rational solutions that locate in all directions of
space [35–39]. For the first time, Hirota used a direct method
to obtain a soliton solution [40, 41]. Manakov et al were the
first to discover the lump wave solutions [42]. Then, Sat-
suma and Ablowitz et al developed the long-wave limit
method to construct the multiple lump (M-lump) waves
solutions [43]. Zhang et al, developed the extended long-
wave limit method to study the high-order M-lump solutions
[44]. Subsequently, the interaction of lump waves and soli-
tons has developed and so have many interactive solutions,
including lump-kink and lump-strip solutions [45, 46]. Ma
used the positive quadratic function to construct the single
lump wave of the KP equation [47]. Thereupon, several
functions are used to construct different types of rational
solutions [48, 49].

2. Rational solutions to the eBKP equation

In this part, we propose to provide single, double, and triple
M-lump solutions and also generate single, double, and triple
complex soliton solutions to the eBKP equation. We also
investigate the mixed single M-lump wave with single and
double soliton solutions from the perspective of the suggested
equation.

Consider the following transformation:

u x y t f x y t, , ln , , . 6x( ) ( ( )) ( )=

Figure 1. 3D profile and counter plot of equation (15) using t= 1, b= 1.2 a= 0.1, β= 2, α= 2 and γ= 2.
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Plugging equation (6) into equation (2), we obtain

7
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Motivated by Hirota’s bilinear method, the N-soliton solution
in general form is given by [50]

⎛

⎝
⎜

⎞

⎠
⎟f f A vexp 8N

i j

N

i j ij
i

N

i i
0,1 1 1

( )å å åm m m= = +
m= < =

where
v q x r y s t , 9i i i i i( ) ( )a= + + +

q q

q q r r
e 1

4
. 10A i j

i j i j
2 2

ij

( ) ( )
( )

a
= -

+ + -

The ∑μ=0,1 notation indicates summing over all possible
combinations of μ1= 0, 1, μ2= 0, 1,K,μN= 0, 1; the i j

N( )å <
summation is over all possible combinations of the N ele-
ments with the specific condition i< j.

The first three terms of equation (8) have the following
forms:

f 1 e , 11v
1

1 ( )= +
f 1 e e e , 12v v v v A
2

1 2 1 2 12 ( )= + + + + +

f

c
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2.1. M-lump solutions

We explore a single, double, and triple M-lump solution of
equation (2) in this portion. To obtain one M-lump solution,
the long-wave limit method will be used, and
takingq O0, 1 ,i

q

q
1

2
( ) = and e 1i = -a , i 1, 2 ,( )= so

equation (11) reduces to

f B , 142 1 2 12 ( )f f= +

where f1= x+ r1y+ s1t,f2= x+ r2y+ s2t, B
r r12

4

1 2
2( )

= -
a-
,

s r r1 1
3

1a b g= + + , and s r r2 2
3

2a b g= + + ,
Plugging equation (14) in equation (6), one M-lump

solution will be obtained,

where r1= a+ ib, and r2= a− ib. equation (15) represents a
one M-lump solution of equation (2) as shown in figure 1.

To obtain a 2-M-lump solution of equation (2), we take
q i0, 1 1, 2, 3, 4m i ( )a = - = in equation (7), and we get

f B B B

B B B B

B B B B , 16
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x r y s t, 17i i i ( )f = + +

B
r r

4
, 18ij

i j
2( )

( )
a

= -
-

and

s r r . 19i i i
3 ( )a b g= + +

Using equation (16) into equation (6), we have a two M-lump
solution of equation (2) as given in figure 2.

To generate a 3-M-lump solution of equation (2), we take
q i0, 1 1, 2, 3, 4, 5, 6m i ( )a = - = in equation (7),
which give

20
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where Bij, fi, and si are given in the earlier steps.
Plugging equation (20) into equation (6), we have a three

M-lump solution of equation (2) as seen in figure 3.

2.2. Mixed between one M-lump solution and one soliton
solution

We generate the mixed single M-lump solution with a single
soliton solution in this part. To do that, we will take

u x y t
x r y r y t r r t r r

x r y t r r x r y t r r
, ,

2
, 15

r r

1 2 1
3

1 2
3

2
4
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1 2 2
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2
1 2

2

( ) ( ) ( )
( ( ))( ( ))
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( )

a b g a b g

a b g a b g
=

+ + + + + + + +

- + + + + + + + + +
a-
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equation (12) into account and use the limit
q 0, 1, 2( )d =d and O 1

q

q
1

2
( )= . Then f3 can be rewritten

as follows:

f B B C

C C e , 21v
3 1 2 12 1 2 12 23 1

13 2 13 3

(
) ( )

f f f f f
f

= + + + +
+ +

where B12 is given in the previous subsection, and v3 is given
in equation (8). The constants C13 andC23 are given as fol-
lows

C
q

q r r r r

C
q

q r r r r

4

2
,

4

2
. 22

13
3

3
2

1
2

1 3 3
2

23
3

3
2

2
2

2 3 3
2

( )

a a a

a a a

= -
+ - +

= -
+ - +

Using equation (21) into equation (6), we get mixed of single

M-lump solution with a single soliton solution as seen in
figure 4.

2.3. Mixed solutions between single M-lump solution and
double soliton solution

We provide the mixed single M-lump solution and double
soliton solution in this part. For this purpose, we take
equation (7) into account and take qn→ 0, (n= 1, 2, and

O 1 .
q

q
1

2
( ))= Then f4 may be rewritten as follows

23

f B

A B C C C C

e e

e ,

v v

v v

4 1 2 12 1 2

34 1 2 1 2 12 13 24 14 23

3 4

3 4

( )
( )

f f

f f

= + + W + W

+ W + W - + + ++

where B C C C C2 1 2 12 24 1 14 2 14 24( )f f f fW = + + + + , f1,
f2, and B12 are given in the previous section, v3, v4 are given

Figure 2. 3D profile and counter plot of equation (2) using t= 2, a1 = 0.1, b1 = 1.2, β= 1.5, a2 = 0.2, b2 = 3, γ= 0.5 and α= 1.

Figure 3. 3D profiles and counter plot of equation (2), using t= 2, a1 = 0.1, b1 = 1.52, a2 = 0.2, b2 = 31.9, γ= 2, β= 1.5, α= 3, a3 = 0.5
and b3 = 1.
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in equation (8), and Cj4, ( j= 1, 2) is given as follows

C
q

q r r r r

4

2
. 24j

j j
4

4

4
2 2

4 4
2

( )
a a a

= -
+ - +

The interaction between a single M-lump solution and a
double soliton solution is presented in figure5.

2.4. Mixed between a two M-lump solution and a one soliton
solution

Here, we extract the mixed two M-lump solution and one
soliton solution motivated by [23], we use

f B B

B B B

B Q B B

B B B B

e

, 25

q x r y s t

5 1 2 3 4 34 1 2 24 1 3

23 1 4 14 2 3 13 2 4
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( )

( )

f f f f f f f f
f f f f f f
f f

= + +
+ + +

+ + +
+ +
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where r3 = e + if, r4 = e − if, and Q = f1f2f3f4 +
C45f1f2f3 + C15f2f3f4 + C25f1f3f4 + C35f1f2f4 +
B C C34 35 45 1 2( )f f+ + B C C24 25 45 1 3( )f f+ + B C C14 15 45 2 3( )f f+ +
B C C23 25 35 1 4( )f f+ + B C C13 15 35 2 4( )f f+ + B C C12 15 25 3 4( )f f+
+ B C B C B C C C C34 25 24 35 23 45 25 35 45 1( )f+ + +
+ B C B C B C C C C34 15 14 35 13 45 15 35 45 2( )f+ + +
+ B C B C B C C C C24 15 14 25 12 45 15 25 45 3( )f+ + +
+ B C B C B C C C C B B23 15 13 25 12 35 15 25 35 4 14 23( )f+ + + +
+ B13B24 + B12B34 + B34C15C25 + B24C15C35 + B14C25C35 +
B23C15C45 + B13C25C45 + B12C35C45 + C15C25C35C45.

Plugging equation (25) into equation (6), we get the mix
between the two M-lump solution and the one soliton wave
solution as presented in figure 6.

2.5. Complex soliton solutions

In this subsection, we generate complex multiple soliton
solutions of equation (2). Rotschild et al illustrated

experimentally that the lone range of nonlocality enables the
formation of several scalar solitons possessing complex fea-
tures from dipole tripolesto quadrupoles, to necklaces [51].
Wazwaz introduced a complex algorithm of Hirota’s simple
method in order to determine multiple complex solu-
tions [52].

To derive mentioned solutions, one may use

s q r r r n, 1, 2, 3. 26n n n n n
2 3 ( )a b g= - + + + =

To identify complex single, double, and triple soliton solu-
tions, one uses

f i e , 27q x r y s t
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f i e e e , 28v v v v A
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q q
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e

4i
i, and i 1. 30A i j

i j i j
2 2

ij

( ) ( )
( )

a
=

+ + -
- = -

Inserting equation (27) in equation (6), we have a complex
1-soliton solution as shown in figure 7.

u x y t
q

, ,
e

i e
. 31

q x r y t q r r r
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1
1 1 1

2
1 1

3
1

1 1 1
2

1 1
3

1
( ) ( )

( ( ))

( ( ))
=

+

a b g

a b g

+ + - + + +

+ + - + + +

Inserting equation (28) into equation (6), we have a
complex two-soliton solution, as seen in figure 8.

Using equation (29) in equation (6), we have a complex
three-soliton solution, as given in figure 9.

Figure 4. 3D profile of mixed of single M-lump solution with single soliton solution of equation (2) for the values of t= 2, a 1
2

= , b= 2,

q3 = 2, r3 = 2, γ= 3, β= 1 and 1
2

a = - .
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3. Conclusion

In this study, we analyze the extended Bogoyavlenskii-
Kadomtsev-Petviashvili equation using the streamlined Hir-
ota’s approach. First, we turn the suggested equation into a
quadratic form using a logarithmic derivative transformation.
Then, we produce M-lump solutions with one, two, and three
lumps. The interactions between a single M-lump wave and a
single soliton solution, a single M-lump wave, and a double
soliton solution, and a double M-lump wave and a single

soliton solution are also investigated. Furthermore, we have
developed sophisticated single, double, and triple solitons. The
created 3D profiles and associated contour plots help to better
comprehend the dynamical properties of the built solutions. All
built-in solutions, to the best of our knowledge, satisfy
equation (2). In future work, some new features and physical
patterns for the governing equation will be considered from a
different point of view such as fractional calculus and some
extended classical derivatives which include M-truncated,
conformable, and beta derivatives among others.

Figure 5. 3D profile and their counter plot of the mixed of single M-lump wave and double soliton solution, for the values of t a1, 1
2

= = ,

b= 3, r3 = 1, q3 = 4, r4 = 1, q4 = 3, γ= 1, β= 1 and 1
2

a = .

Figure 6. 3D profile and counter plot of the mixed double M-lump solution and single soliton solution, when a1
1
2

= , b1 = 2, q5 = 2, r5 = 2,

a2
1
4

= , b2 = 2, γ = 1, 1
2

b = , t = 1 and α = 1.
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Figure 7. 3D profile and counter plot of complex one soliton solution of equation (31) when t = 2, γ = −2, β = 2, r1 = 1, q1 = 0.5,
and α = 1.
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Figure 8. 3D profile and their counter plot of complex two soliton solution of equation (2) of the values of t = 2, q1 = − 2, q2 = 2, r1 = 1,
r2 = 0.5, α1 = −1.5, α2 = 2, ò = 0.5, γ = 2, β = 3 and α = 0.5.
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