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a b s t r a c t 

This work aims to present nonlinear models that arise in ocean engineering. There are many models 

of ocean waves that are present in nature. In shallow water, the linearization of the equations requires 

critical conditions on wave capacity than it make in deep water, and the strong nonlinear belongings 

are spotted. We use Lie symmetry analysis to obtain different types of soliton solutions like one, two, 

and three-soliton solutions in a (2 + 1) dimensional variable-coefficient Bogoyavlensky Konopelchenko 

(VCBK) equation that describes the interaction of a Riemann wave reproducing along the y-axis and a 

long wave reproducing along the x-axis in engineering and science. We use the Lie symmetry analysis 

then the integrating factor method to obtain new solutions of the VCBK equation. To demonstrate the 

physical meaning of the solutions obtained by the presented techniques, the graphical performance has 

been demonstrated with some values. The presented equation has fewer dimensions and is reduced to 

ordinary differential equations using the Lie symmetry technique. 

© 2021 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The Bogoyavlensky Konopelchenko models have many valu- 

ble applications in physical systems, physiology, mathematical sci- 

nce problems, engineering areas and the chemical reaction of 

pecies in the porous catalyst particle. The historical Bogoyavlensky 

onopelchenko models has great significance and importance due 

o the singularity at the origin. Investigation of the nonlinear par- 

ial differential equations (NLPDEs) has involved the attention of 

he author’s sets because they represent pertinent nonlinear events 

n several Engineering and Science [1–10] . The study of the sym- 

etry approach and other correlating properties of the NLPDEs is 

onstantly expanding its dimensions in various fields of research 

nd technology. The primary role of the symmetry approach is 

o reduce the dimensions of NLPDEs to an ordinary differential 
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quation. The Lie symmetry approach is the widest approach for 

he authors [11–15] in mathematical Engineering and sciences. The 

ain target, of the present study deals with an investigation of the 

2 + 1) dimensional Bogoyavlensky Konopelchenko (BK) equation 

16–19] ; 

 t + αw xxx + βw xxy + 6 αw w x + 4 βw w y + 4 βw x ∂ 
−1 
x w y = 0 . (1)

here ∂ −1 
x is the integral concerning x and α and β are arbitrary 

onstants. Substituting w ( x, y, t ) = νx to get the following simple 

quation; 

xt + ανxxxx + βνxxxy + 6 ανx νxx + 4 βνx νxy + 4 βνy νxx = 0 . (2) 

Many kinds of research such as in [16] depicted that 

( x, y, t ) describes the interaction of a Riemann wave propagating 

long the y-axis and x-axis. From our fast review, there are many 

resented solutions for (2). Authors in [ 16 , 17 ], apply the Lie sym-

etry analysis to present some generators through the prolonga- 

ion theorem and the geometric approach, respectively, to reduce 

2) to ODEs and generate exact solutions. Also, the authors in [24] , 

pply Lie point symmetry to (2) and investigate its conservation 
access article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.joes.2021.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/joes
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joes.2021.08.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mohamed.reda@bhit.bu.edu.eg
mailto:mawx@cas.usf.edu
mailto:r.mosa@zu.edu.eg
https://doi.org/10.1016/j.joes.2021.08.006
http://creativecommons.org/licenses/by-nc-nd/4.0/


M.R. Ali, W.-X. Ma and R. Sadat Journal of Ocean Engineering and Science 7 (2022) 248–254 

Fig. 1. Three dimensional plots for v ( x, y, t ) at c = 1 , c 2 = 0 , c 4 = 1 , (a) t = 0 , (b) y = 0 and (c) x = 1 . 
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aws. Some Lump solutions and interacted soliton solutions had 

een obtained using the Hirota bilinear method in [20–25] . On the 

ther hand, some authors studied the VCBK equation [24] ; 

νxt + α( t ) νxxxx + β( t ) νxxxy + γ ( t ) νx νxx 

+ δ( t ) νx νxy + θ ( t ) νy νxx = 0 . (3) 

here α(t) , β(t) , γ (t) , δ(t) and θ (t) are real functions in time

nd γ (t) = 6 α(t) and δ(t) = θ (t) = 4 β(t) . 

In [1] , they determine the parallel Bell polynomial and Hirota 

echnique to research one and two solitons for (1.3). The collab- 

ration between one soliton, either two soliton arrangements on 

he off chance that the functions are steady or variable is explored 

n [12] utilizing the summed up brought together technique. Many 

nvestigations produce different arrangements of (1.3) utilizing var- 

ous techniques as the reverse dispersing strategy with the guide of 

ax sets administrators and the ( G 
′ 
) expansion method [ 13 , 14 ]. 
G 

249 
In this article, we consider the (VCBK) equation and in view of 

ie approach [23-20,14,15,2,5], Eq. (1.3) have four obscure vectors 

s determinate in [1] , in this way, we improve Lie vectors contain- 

ng self-assertive elements of time through a commutative item 

or different upsides of capacities and furthermore apply similar 

ystem for steady coefficients condition (1.2). Through a couple of 

hases of decreases, a few ODEs that had no quadrature are settled 

tilizing the coordinating components as in [18] . 

The organizing of this paper is cleared as follows: In 

ection 2 , we demonstrate three events for Eq. (3) using 

ie symmetry approach by demonstrating a various values for 

(t) , β(t) , γ (t) , δ(t) and θ (t) . Abbreviate the NLPDEs to find

he resulted ODEs are demonstrated using Lie symmetry then new 

olitons and other solutions for the VCBK equation are demon- 

trated in Section 3 . In Section 4 , the aim of the work is demon-

trated at the end of the paper. 
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Table 1 

Commutator table. 

X 1 X 2 X 3 X 4 

X 1 0 − f ′ 1 e −t ∂ 
∂x 

+ a 1 
∂ 
∂ν

a 2 
∂ 
∂ν

a 3 
∂ 
∂x 

+ 

1 
3 

∂ 
∂y 

+ a 4 
∂ 
∂ν

X 2 f ′ 1 e −t ∂ 
∂x 

− a 1 
∂ 
∂ν

0 ( e −t f ′ 5 + 

1 
4 

f 3 ) 
∂ 
∂x 

+ 

∂ 
∂y 

+ a 5 
∂ 
∂ν

( 1 
3 

f 3 + e −t f ′ 7 − f ′ 3 ) 
∂ 
∂x 

+ 

∂ 
∂t 

+ a 6 
∂ 
∂ν

X 3 −a 2 
∂ 
∂ν

( −e −t f ′ 5 − 1 
4 

f 3 ) 
∂ 
∂x 

− ∂ 
∂y 

− a 5 
∂ 
∂ν

0 ( 1 
3 

f 5 − f ′ 5 ) 
∂ 
∂x 

− 2 
3 

∂ 
∂y 

+ a 7 
∂ 
∂ν

X 4 −a 3 
∂ 
∂x 

− 1 
3 

∂ 
∂y 

− a 4 
∂ 
∂ν

−( 1 
3 

f 3 + e −t f ′ 7 − f ′ 3 ) 
∂ 
∂x 

− ∂ 
∂t 

− a 6 
∂ 
∂ν

( − 1 
3 

f 5 + f ′ 5 ) 
∂ 
∂x 

+ 

2 
3 

∂ 
∂y 

− a 7 
∂ 
∂ν

0 

2

fi

r  

f

K

2

 

E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w

f

t  

fi

a

a

a

a

a

a  

 

. 

n

a

i

Table 2 

Commutator table after optimization. 

X 1 X 2 X 3 X 4 

X 1 0 − f ′ 1 e −t ∂ 
∂x 

+ a 1 
∂ 
∂ν

a 2 
∂ 
∂ν

1 
3 

X 1 
X 2 f ′ 1 e −t ∂ 

∂x 
− a 1 

∂ 
∂ν

0 X 1 X 2 
X 3 −a 2 

∂ 
∂ν

−X 1 0 − 2 
3 

X 3 
X 4 − 1 

3 
X 1 −X 2 

2 
3 

X 3 0 

i⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

 

−⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 

ν
. 

a⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
3

3

3

. Lie symmetry approach of VCBK equation 

The objective of this part is to present three cases of Lie in- 

nitesimals for the VCBK equation using various values of the 

eal function ( α, δ, β, v , θ ). By using various values of the real

unction, the four vectors X 1 , X 2 , X 3 , X 4 for the Bogoyavlensky- 

onopelchenko equation can be established as 

.1. Case I 

Suppose α(t) = δ(t) = 

g(t) 
2 , β(t) = 

g(t) 
4 and γ (t) = θ (t) = g(t) .

q. (3) admits the following Lie infinitesimals; 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 1 = f 1 ( t ) 
∂ 
∂x 

+ 

∂ 
∂y 

+ 

(
1 

g ( t ) 
y f ′ 1 ( t ) + f 2 ( t ) 

)
∂ 
∂ν

, 

X 2 = f 3 ( t ) 
∂ 
∂x 

+ 

1 
g ( t ) 

∂ 
∂t 

+ 

(
1 

g ( t ) 
y f ′ 3 ( t ) + f 4 ( t ) 

)
∂ 
∂ν

, 

X 3 = f 5 ( t ) 
∂ 
∂x 

+ g ( t ) ∂ ∂y 
+ 

(
1 

4 g ( t ) 
y f ′ 5 ( t ) + f 6 ( t ) + 

1 
4 x − 3 

8 y 
)

∂ 
∂ν

, 

X 4 = 

(
1 
3 x + f 7 ( t ) 

)
∂ 
∂x 

+ 

1 
3 y 

∂ 
∂y 

+ 

∂ 
∂t 

+ 

(
1 

4 g ( t ) 
y f ′ 7 ( t ) + f 8 ( t ) − 1 

3 ν
)

∂ 
∂ν

(4) 

here g(t) = e t , there is an infinite number of possibilities 

or these vectors due to the existence of the arbitrary func- 

ions f i (t) , i = 1 . . . 8 . We derive optimal values for these functions

rst, by evaluating the commutative product of these infinitesimals 

s listed in Table 1 . where; 

 1 = e −t 

(
f ′ 3 
4 

+ 

y e −t f ′ 1 
4 

− y e −t f ′′ 1 

4 
− f ′ 2 

)
, a 2 = 

1 
4 

f 1 + 

e −t 

4 
f ′ 5 − 3 

8 
− 1 

4 
f ′ 1 , 

 3 = 

1 
3 

f 1 − f ′ 1 , a 4 = 

e −t f ′ 7 
4 

+ 

y e −t f ′ 1 
12 

− 1 
3 

f 2 − 1 
4 

y e −t f ′′ 1 − f ′ 2 , 

 5 = e −t 
(−1 

4 
y e −t f ′ 5 + 

1 
4 

y e −t f ′′ 5 + f ′ 6 

)
− 1 

4 
f ′ 3 , 

 6 = e −t 

(
−1 
4 

y e −t f ′ 7 + 

1 
4 

y e −t f ′′ 7 + f ′ 8 + 

y f ′ 3 
6 

− y f ′′ 3 

4 

)
− f ′ 4 − 1 

3 
f 4 

 7 = 

1 
4 

f ′ 7 + 

1 
12 

y e −t f ′ 5 − 1 
6 

x − 1 
4 

y − 2 y 
t 2 

f ′ 5 − 1 
3 

f 6 − 1 
4 

f 7 − 1 
4 

y e −t f ′′ 5 − f ′6
(5) 

Simplifying Table 1 by setting the values for a’s, generates a 

onlinear system of ODEs; 

f ′ 1 = 0 , − 1 
4 

e −t f ′ 7 + 

2 
3 

f 2 + f ′ 2 = 0 , 

e −t f ′ 5 + 

1 
4 

f 3 = 0 , e −t f ′ 6 = f 2 

− 1 
3 

f 6 − 1 
4 

f ′ 7 + 

1 
4 

f 7 + f ′ 6 = 0 , 

− 2 
3 

f 3 + e −t f ′ 7 − f ′ 3 = 0 , − 4 
3 

f 4 + f ′ 4 + e −t f ′ 8 = 0 , 

(6) 

Solving this system of differential equations manually and the 

ssumption of some values, results in; 

f 1 = c 1 , 

f 5 = e t , f 4 = 

3 
4 + e 

4 
3 

t 
, f 7 = 

8 
3 ( c 1 − 1 ) e t 

f 3 = 4 ( c 1 − 1 ) , f 6 = ( c 1 − 1 ) e t + 3 e 
1 
3 

t 
, f 2 = ( c 1 − 1 ) + e 

− 2 
3 

t 
, f 8 = e t 

. (7) 

Substituting from (7) in (4), we explore the four unknown Lie 

nfinitesimals then simplify Table 1 to an optimized form described 
250 
n Table 2 . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 1 = c 1 
∂ 
∂x 

+ 

∂ 
∂y 

+ 

(
( c 1 − 1 ) + e 

− 2 
3 

t 
)

∂ 
∂ν

, 

X 2 = 4 ( c 1 − 1 ) ∂ ∂x 
+ e −t ∂ 

∂t 
+ 

(
3 
4 + e 

4 
3 

t 
)

∂ 
∂ν

, 

X 3 = e t ∂ 
∂x 

+ e t ∂ 
∂y 

+ 

(
( c 1 − 1 ) e t + 3 e 

1 
3 

t + 

1 
4 x − 1 

8 y 

)
∂ 
∂ν

, 

X 4 = 

(
1 
3 x + 

8 
3 ( c 1 − 1 ) e t 

)
∂ 
∂x 

+ 

1 
3 y 

∂ 
∂y 

+ 

∂ 
∂t 

+ 

(
2 
3 ( c 1 − 1 ) y + e t − 1 

3 ν
)

∂ 
∂ν

. 

(8) 

.2. Case II 

Assume α(t) = 2 , β(t) = −1 , so, γ (t) = 12 and δ(t) = θ (t) =
4 . Eq. (3) admits the following Lie infinitesimals; 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 1 = f 1 ( t ) 
∂ 
∂x 

+ 

∂ 
∂t 

+ 

(
− 1 

4 
y f ′ 1 ( t ) + f 2 ( t ) 

)
∂ 
∂ν

, 

X 2 = f 3 ( t ) 
∂ 
∂x 

+ 

∂ 
∂y 

+ 

(
− 1 

4 
y f ′ 3 ( t ) + f 4 ( t ) 

)
∂ 
∂ν

, 

X 3 = f 5 ( t ) 
∂ 
∂x 

+ t ∂ 
∂y 

+ 

(
− ( f ′ 5 ( t ) y 

4 
+ f 6 ( t ) − 1 

4 
x − 3 

4 
y 

)
∂ 
∂ν

, 

X 4 = 

(
1 
3 

x + f 7 ( t ) 
)

∂ 
∂x 

+ 

1 
3 

y ∂ 
∂y 

+ t ∂ 
∂t 

+ 

(
− 1 

4 
y f ′ 7 ( t ) + f 8 ( t ) − 1 

3 
ν
)

∂
∂

(9) 

Follow the same procedure the previous cases, so; 

f 3 = 1 , f 1 = t 
−2 
3 , f 5 = t, f 4 = t 

−2 
3 , f 7 = 1 f 8 = 1 , f 6 = −4 

3 

+ t 
1 
3 , f 2 = t 

−4 
3 . (10) 

Substituting from (10) in (9), we generate new Lie infinitesimals 

s in Eq. (11) . 
 

 

 

 

 

 

 

 

 

 

 

X 1 = t 
−2 
3 

∂ 
∂x 

+ 

∂ 
∂t 

+ 

(
1 
6 

y t 
−5 
3 + t 

−4 
3 

)
∂ 
∂ν

, 

X 2 = 

∂ 
∂x 

+ 

∂ 
∂y 

+ 

(
t 

−2 
3 

)
∂ 
∂ν

, 

X 3 = t ∂ 
∂x 

+ t ∂ 
∂y 

+ 

(
− y 

4 
− 4 

3 
+ t 

1 
3 − 1 

4 
x − 3 

4 
y 
)

∂ 
∂ν

, 

X 4 = 

(
1 
3 

x + 1 

)
∂ 
∂x 

+ 

1 
3 

y ∂ 
∂y 

+ t ∂ 
∂t 

+ 

(
1 − 1 

3 
ν
)

∂ 
∂ν

. 

(11) 

. An optimal equations of dimensional subalgebras 

.1. Case I 

.1.1. Using Lie vector X 1 in Eq. (8) ; 

X 1 = c 1 
∂ 

∂x 
+ 

∂ 

∂y 
+ 

(
( c 1 − 1 ) + e −

2 
3 t 
)

∂ 

∂ν
(12) 

Therefore, the characteristic equation will be; 

dx 

c 1 
= 

dy 

1 

= 

dt 

0 

= 

dν(
( c 1 − 1 ) + e −

2 
3 t 
) (13) 
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Fig. 2. Three dimensional plots for v ( x, y, t ) at c = 1 , c 3 = 1 , c 4 = 1 (a) t = 0 , (b) t = 0 . 1 and (c) y = 0 . 

ν

w

r

E

s

η , 

c

θ

f

c

θ

s

θ

1

X

Solving this equation leads to; 

( x, y, t ) = F ( r, s ) + 

(
( c 1 − 1 ) + e −

2 
3 t 
)

y. (14) 

here F ( r, s ) is a new independent variable and; 

 = x − c 1 y, s = t (15) 

Using the new similarity and the dependent variables, 

q. (3) will be reduced to; 

F rs − ( c 1 − 1 ) e s F r r r r + 6 e s F r F rr − 8 c 1 e 
s F r F rr 

+ 4 ( c 1 − 1 ) e s F rr + 4 e 
1 
3 s F rr = 0 , (16) 

Put c 1 = 0 in Eq. (16) then explore its generators; one of these 

ymmetries has the form V 8 = e −
2 
3 

s ∂ 
∂r 

+ e −s ∂ 
∂s 

+ s ∂ 
∂F 

; 

Where, 

= −r + 12 e 
1 
3 s , θ ( η) = F ( r, s ) − 3 e s 

(
8 ln ( 2 ) + 4 ln ( 3 ) + 

1 

3 

s + 1 

)
(17) 

Eq. (16) will reduced to fourth order nonlinear ODE that has no 

losed form solution; 

ηηηη + 4 θηη − 6 θηηθη = 0 . (18) 
251 
Applying the integration factors method explore new solutions 

or (18). 

Ø Integration method 

Integrate Eq. (18) once with respect to η, set the integration 

onstant equal to zero; 

ηηη = 3 θη
2 + 4 θη, (19) 

Secondly, multiply Eq. (18) by ( θη) then integrate once with re- 

pect to η, 

ηηη = 

1 

2( θη) 

(
4 θ3 

η + θ2 
ηη + 4 θ2 

η

)
, (20) 

Equating Eqs. (19) to (20) , results in; 

0 θ3 
η + 12 θ2 

η + θ2 
ηη = 0 , (21) 

By solving this equation; 

θ (η) = − 2 
5 

√ 

3 tan ( 
√ 

3 η + 

√ 

3 c ) + 

2 
5 

√ 

3 ta n 

−1 ( tan ( 
√ 

3 η + 

√ 

3 c ) ) −
6 
5 η + c 2 , (22) Back substitution using Eqs. (17) , (15) and (14) ; 

 2 = 4 

∂ 

∂x 
+ e −t ∂ 

∂t 
+ 

(
3 

4 

+ e 
4 
3 t 
)

∂ 

∂ν
, (23) 

This solution plotted as depicted in Fig. 1 . 
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Fig. 3. Three dimensional plots for v ( x, y, t ) for c 1 = 1 , c 2 = 1 (a) t = 0 . 1 , (b) t = 0 . 5 and (c) x = 1 . 

3

X

ν

w

r

E

−

F

s

ν

.1.2. Using Lie vector X 2 in Eq. (8) and set c 1 = 2 ; 

 2 = 4 

∂ 

∂x 
+ e −t ∂ 

∂t 
+ 

(
3 

4 

+ e 
4 
3 t 
)

∂ 

∂ν
, (24) 

Therefore, the characteristic equation will be; 

dx 

4 

= 

dy 

0 

= 

dt 

e −t 
= 

dν(
3 
4 

+ e 
4 
3 t 
) , (25) 

Solving this equation leads to; 

( x, y, t ) = F ( r, s ) + 

3 8 

1 
3 

14 

e 
7 
3 t + 

3 

16 

x. (26) 

here F ( r, s ) is a new independent variable and; 

 = y, s = 4 e t − x, (27) 

Using the new similarity and the dependent variables, 

q. (3) will be reduced to; 

23 F ss + F ssss − 8 F sssr − 48 F ss F s + 32 F s F rs − 6 F rs + 32 F r F ss = 0 , (28) 
252 
Eq. (28) has an analytic solution; 

 ( r, s ) = c 4 + 87 

c 3 tanh 

(
C + c 3 s + 

c 3 ( 32 c 2 
2 −23 ) r 

2 ( 16 c 3 2 +3 ) 

)
16 c 3 2 − 55 

. (29) 

Using the similarity variables in (27) and (26) then we can back 

ubstitution to the original variables; 

( x, y, t ) = c 4 + 87 

c 3 tanh 

(
c + c 3 

(
4 e t − x 

)
+ 

c 3 ( 32 c 2 
2 −23 ) y 

2 ( 16 c 3 2 +3 ) 

)
16 c 3 2 − 55 

+ 

3 8 

1 
3 

14 

e 
7 
3 t + 

3 

16 

x (30) 

This result is plotted in Fig. 2 
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3

ν

w

r

E

w

η

θ

d

3

c

θ

s

θ

−

θ

ν

t

4

s

L

n

a

t

i

t

t

t

i

t

u

e

o

d

a

r

p

o

s

m

s

fi

m

s

t

T

t

d

d

a

t

D

R

 

 

.2. Case II 

Using Lie vector X 3 in Eq. (9) 

X 3 = t 
∂ 

∂x 
+ t 

∂ 

∂y 
+ 

(
− y 

4 

− 4 

3 

+ t 
1 
3 − 1 

4 

x − 3 

4 

y 

)
∂ 

∂ν
, (31) 

This vector generates the characteristic equation. 

dx 

t 
= 

dy 

t 
= 

dν

− y 
4 

− 4 
3 

+ t 
1 
3 − 1 

4 
x − 3 

4 
y 
, (32) 

Solving Eq. (32) produces the similarity variables; 

( x, y, t ) = F ( r, s ) + 

3 

8 

x 2 

t 
+ 

(
−y 

t 
+ 

1 

t 
2 
3 

− 3 

4 t 

)
x. (33) 

here F ( r, s ) is a new independent variable and; 

 = −x + y, s = t. (34) 

Using the new similarity and the dependent variables, 

q. (3) will be reduced to; 

27 s 
2 
3 − 37 s + 36 s 

2 
3 r + 48 s 

5 
3 F r + 36 s 

5 
3 F rr − 48 s 2 F rr + 48 s 

5 
3 r F rr 

+ 60 s 
8 
3 F r F rr + 3 s 

8 
3 F rs − 3 s 

8 
3 F r r r r = 0 (35) 

Therefore, the Eq. (35) eight Lie vectors, we choose to work 

ith V 7 = −2 s 
−2 
3 ∂ 

∂r 
+ 

∂ 
∂s 

+ ( 17 
15 

r 

s 
5 
3 

+ 

3 
5 

r 
s 2 

+ 

2 
5 

r 2 

s 2 
+ 1 ) ∂ 

∂F 
, Where; 

= r + 6 s 
1 
3 , θ ( η) = F ( r, s ) + 

2 

5 

r 2 

s 
−

(
7 

10 s 
2 
3 

− 3 

5 s 

)
r − s + 

21 

5 s 
1 
3 

− 9 

5 s 
2 
3 

, (36) 

Eq. (36) will reduced to; 

ηηηη − 20 θηηθη = 0 . (37) 

This condition has no scientific solution, so we attempt to ad- 

ress it utilizing the integrating factors as follow; 

.3. Integration method 

Integrate Eq. (37) once with respect to η, set the integration 

onstant equal to zero; 

ηηη = 10 θη
2 
, (38) 

Secondly, multiply Eq. (37) by ( θη) then integrate once with re- 

pect to η, 

ηηη = 

1 

6( θη) 

(
40 θ3 

η + 3 θ2 
ηη

)
, (39) 

Equating Eqs. (38) to (39) , results in; 

20 θ3 
η + 3 θ2 

η = 0 , (40) 

By solving this equation; 

( η) = 

−3 

5 ( η + c 1 ) 
+ c 2 , (41) 

Back substitution using Eqs. (36) , (34) and (33) ; 

( x, y, t ) = 

−3 

5 

(
−x + y + 6 t 

1 
3 + c 1 

) + c 2 − 2 

5 

( −x + y ) 
2 

t 

+ 

(
7 

10 t 
2 
3 

− 3 

5 t 

)
( −x + y ) + t − 21 

5 t 
1 
3 

+ 

9 

5 t 
2 
3 

+ 

3 

8 

x 2 

t 

+ 

(
−y 

t 
+ 

1 

t 
2 
3 

− 3 

4 t 

)
x. (42) 

The result is depicted in Fig. 3 . 

The resulted waves consist of some solitons by increasing the 

ime, the amplitude of the wave is reduced and moved to the right. 
253 
. Conclusions 

The present work is to study a (2 + 1dimensional Bogoyavlen- 

ky Konopelchenko equation with variable coefficients through the 

ie Symmetry approach, which results in the implementation of 

ew exact solutions for the vcBK equation.The obtained solutions 

re organized, accurate, interesting and huge scheme for future au- 

hors in ruling an important solution to other nonlinear mathemat- 

cal models in the fields of ocean engineering and sciences. First, 

he enhanced infinitesimal generators and then group classifica- 

ion is achieved with the assistance of the Lie symmetry group. Al- 

hough, the presence of functional arbitrary elements in infinites- 

mal generators makes the Lie group classification a difficult and 

edious task. Furthermore, the associated subalgebras are being 

tilized to reduce the considered equation into lower-dimensional 

quations, which are then deciphered to obtain the corresponding 

rdinary differential equation. It is remarkable to notify that the 

erived solutions in this study have not been reported in the liter- 

ture. Additionally, the wide diversity of features and physical pa- 

ameters of these acquired solutions are elucidated with the sup- 

ort of three-dimensional plots, considering the appropriate choice 

f involved functional parameters and other constant parameters 

hown by Figs. 1 –3 . Such a type of investigation is highly recom- 

ended in the areas of progressive research and development. We 

howed that the (2 + 1) dimensional VCBK equation admits an in- 

nite number of infinitesimals of Lie point symmetries. We deter- 

ined an optimal system of one-dimensional sub-algebras of Lie 

ymmetries. Abundant exact travelling wave solutions, two-soliton 

ype solutions and three-soliton type solutions were presented. 

he summary of our results; 

• The investigated Lie vectors are different and new compared 

with [ 10 , 16 , 17 ]. 
• Based on the new Lie vectors, we reduce Eq. (3) to some ODEs 

and solved these equations using the direct method and the in- 

tegration method. 
• We can analyze our solutions as: 

(I) Figs. (2-a,2-b,3-a,3-b,3-c) imply one-soliton and three- soli- 

on solutions depend on the increase in time value. The amplitude 

ecreases with increasing time and the wave peaks move to a lift 

irection. 

(II) Figs. (1-a) represent multi- peaks of waves moves together 

nd this means the physical properties do not change after the in- 

eraction. 

(III) In Figs. (3-c), exponential waves are presented. 

• In the future, the design of the wavelet method can be used to 

solve new applications in Ocean Engineering and Science. 
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