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ABSTRACT

This work aims to present nonlinear models that arise in ocean engineering. There are many models
of ocean waves that are present in nature. In shallow water, the linearization of the equations requires
critical conditions on wave capacity than it make in deep water, and the strong nonlinear belongings
are spotted. We use Lie symmetry analysis to obtain different types of soliton solutions like one, two,
and three-soliton solutions in a (2 + 1) dimensional variable-coefficient Bogoyavlensky Konopelchenko
(VCBK) equation that describes the interaction of a Riemann wave reproducing along the y-axis and a
long wave reproducing along the x-axis in engineering and science. We use the Lie symmetry analysis
then the integrating factor method to obtain new solutions of the VCBK equation. To demonstrate the
physical meaning of the solutions obtained by the presented techniques, the graphical performance has
been demonstrated with some values. The presented equation has fewer dimensions and is reduced to
ordinary differential equations using the Lie symmetry technique.

© 2021 Shanghai Jiaotong University. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The Bogoyavlensky Konopelchenko models have many valu-
able applications in physical systems, physiology, mathematical sci-
ence problems, engineering areas and the chemical reaction of
species in the porous catalyst particle. The historical Bogoyavlensky
Konopelchenko models has great significance and importance due
to the singularity at the origin. Investigation of the nonlinear par-
tial differential equations (NLPDEs) has involved the attention of
the author’s sets because they represent pertinent nonlinear events
in several Engineering and Science [1-10]. The study of the sym-
metry approach and other correlating properties of the NLPDEs is
constantly expanding its dimensions in various fields of research
and technology. The primary role of the symmetry approach is
to reduce the dimensions of NLPDEs to an ordinary differential

* Corresponding authors.
E-mail addresses: mohamed.reda@bhit.bu.edu.eg (M.R. Ali), mawx@cas.usf.edu
(W.-X. Ma), rmosa@zu.edu.eg (R. Sadat).

https://doi.org/10.1016/j.joes.2021.08.006

equation. The Lie symmetry approach is the widest approach for
the authors [11-15] in mathematical Engineering and sciences. The
main target, of the present study deals with an investigation of the
(2 + 1) dimensional Bogoyavlensky Konopelchenko (BK) equation
[16-19];

Wi + OWyyy + BWayy + 6awwy + 48wwy, 4+ 4Bwyd; 'wy = 0. (1)

where 3! is the integral concerning x and & and 8 are arbitrary
constants. Substituting w(x,y,t) = vy to get the following simple
equation;

Uxt + O Vxxxx + ﬂVxxxy + 60 Vv + 4,3Vxny + 4ﬂVnyx =0. (2)

Many kinds of research such as in [16] depicted that
V(x,y,t) describes the interaction of a Riemann wave propagating
along the y-axis and x-axis. From our fast review, there are many
presented solutions for (2). Authors in [16,17], apply the Lie sym-
metry analysis to present some generators through the prolonga-
tion theorem and the geometric approach, respectively, to reduce
(2) to ODEs and generate exact solutions. Also, the authors in [24],
apply Lie point symmetry to (2) and investigate its conservation
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Fig. 1. Three dimensional plots for v(x,y,t) atc=1,

laws. Some Lump solutions and interacted soliton solutions had
been obtained using the Hirota bilinear method in [20-25]. On the
other hand, some authors studied the VCBK equation [24];

Uxt + & (E) Veuxx + ,B(t)vxxxy + ¥ (t)VxVxx

+ () VxVxy + O ()Vy Ve = 0. (3)

Where «a(t), B(t),y(t),5(t) and 6(t) are real functions in time
and y (t) =6a(t) and 6(t) = 0(t) =4p6(t).

In [1], they determine the parallel Bell polynomial and Hirota
technique to research one and two solitons for (1.3). The collab-
oration between one soliton, either two soliton arrangements on
the off chance that the functions are steady or variable is explored
in [12] utilizing the summed up brought together technique. Many
investigations produce different arrangements of (1.3) utilizing var-
ious techniques as the reverse dispersing strategy with the guide of
Lax sets administrators and the (%) expansion method [13,14].
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c;=0¢c4=1,(Q)t=0,(b)y=0and (c) x=1.

In this article, we consider the (VCBK) equation and in view of
Lie approach [23-20,14,15,2,5], Eq. (1.3) have four obscure vectors
as determinate in [1], in this way, we improve Lie vectors contain-
ing self-assertive elements of time through a commutative item
for different upsides of capacities and furthermore apply similar
system for steady coefficients condition (1.2). Through a couple of
phases of decreases, a few ODEs that had no quadrature are settled
utilizing the coordinating components as in [18].

The organizing of this paper is cleared as follows: In
Section 2, we demonstrate three events for Eq. (3) using
Lie symmetry approach by demonstrating a various values for
a(t), B(t), y(t), 8() and O(t). Abbreviate the NLPDEs to find
the resulted ODEs are demonstrated using Lie symmetry then new
solitons and other solutions for the VCBK equation are demon-
strated in Section 3. In Section 4, the aim of the work is demon-
strated at the end of the paper.
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Table 1
Commutator table.
X X, X3 X4
Xi 0 f/ 37[6 +010U (123% a3%+%3%+a43%
X fletl-al 0 € fi+ i+ +asgy  Gf+telf- f3>ax+ 7+ 055
X;  —argy (e fi— ) — 4 — 55 0 ' Gfs—f5 -3 +am5m
Xo —ak-if-al -Gh+e'f- f3)3x F-td 3R+ -wd O
2. Lie symmetry approach of VCBK equation Table 2
Commutator table after optimization.
The objective of this part is to present three cases of Lie in- X X, X; X4
finitesimals for the VCBK equation using various values of the ot 2 9 1
) . 4 X; 0 “flelgtag Gy X
real functlon (o, 8, B,v,0). By using various values of the real X, fletd-al 0 X, X,
function, the four vectors X;, X, X3, X4 for the Bogoyavlensky- X; —ml —Xi 0 -2X3
Konopelchenko equation can be established as Xs  —3X X s 0
21 Case | in Table 2.
) -3\ 3
© ® X1*513x+ (G =-D+e 3 )45,
Suppose «(t) =8(t) = &2, B(t) = & and y (t) = 0(t) = g(t). , s 40\ 5
Eq. (3) admits the following Lie infinitesimals; Xo=4(c1 - g +e g+ ( +e3 )Tu (8)
9,9 1y 9 Xg=el & +eld+((c —1)ef+3e3‘+1x—ly K
Xi=flt)sm+ 7 +(W>yf1(t)+fz(t))w 1 4787 Jav
p P _ il
Xa = f5(O) 35 + gy o + (¥ 5O + fa©) 55 (4) X4_(§X+§(Cl_l)e[)3x gy o+ (@ -Dy+e - gv)g.

X3 = fs(t) % +80) 3 +

Xe=(3x+FO) &+ 3y +4

(s V50 + fo(O) + 1x— iy)a%,
+(Zeyf©) + fs®) = $v) 2

d
where g(t) =e!, there is an infinite number of possibilities
for these vectors due to the existence of the arbitrary func-
tions f;(t), i=1...8. We derive optimal values for these functions
first, by evaluating the commutative product of these infinitesimals
as listed in Table 1. where;

a=et(frh o) = A S h-3- 4R

as=1fi—fl, ag=S0 4 ¥ 1f yetpr 1

as = e (Fye i+ pye I+ f) — 1f3

as = e (Fye tf+ hyefy s R AR/

a7 = 3f7 + mye ' f5 = §X = 3y f/ 3fo—afr—dye ' f{ — fg
(5)

Simplifying Table 1 by setting the values for a’s, generates a
nonlinear system of ODEs;

fi=0, —ze'fj+3H+f=0,
et fi+ zf3 =0, e'fi=1 6)
—3fr+ i+ fi=0,
—3fs+etf)j—fi=0, —3fa+fi+e'f;=0,

Solving this system of differential equations manually and the
assumption of some values, results in;

fi=c,
fo=¢ fa=3+
f3

4
e3

L=

1 2
=4(c; = 1), fo= (e — et +3e3%, fo=(c; — 1) +e 3, fg=et

S —1e

(7)

Substituting from (7) in (4), we explore the four unknown Lie
infinitesimals then simplify Table 1 to an optimized form described
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2.2. Case 1l

Assume «(t) =2, B(t)=-1, so, y(t) =12 and §(t) =0(t) =
—4. Eq. (3) admits the following Lie infinitesimals;

=AML +L+ (O +RO)E.
=BOF+E+ (RO + fa) 5,

Xa = O+t + (~E2 + fo©) - Jx- 3v) 4

Xa=(3%+ f1(0)) & + 3y +ti + (—5vf O + fs©) = §v) &
(9)
Follow the same procedure the previous cases, so;
f=1fi=t%, fs=t fa=t3, fr=1fs=1 fo=—=
i, fo=t7. (10)

Substituting from (10) in (9), we generate new Lie infinitesimals
as in Eq. (11).

X =t &+ 2+ (% +t7) L,
9 ] 2\
Xo =g+ 35+ (67 )ap an
Xo=th +oh+ (- d+t - - Wb,
Xe=(3x+ )&+ 5 +t&+(1-3v) 5.

3. An optimal equations of dimensional subalgebras

3.1. Case |

3.1.1. Using Lie vector X; in Eq. (8);

) d )

Xi=ci o+ Ly (-1 esf> 12
1 1ax+8y+<(] )+ av ( )
Therefore, the characteristic equation will be;

d_dy_d_ v a3)

o 1 0 ((Cl -1+ e*sf)
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Fig. 2. Three dimensional plots for v(x,y.t) atc=1, 3=1,c4=1(a) t

Solving this equation leads to;

v(x,y.t) =F(,s) + ((q -1+ e’%t)y. (14)
where F(r,s) is a new independent variable and;
r=x-cy, s=t (15)

Using the new similarity and the dependent variables,
Eq. (3) will be reduced to;

Frs - (Cl - 1)esFrrrr + 6eSFrI:;'r -8 €1 esFrFrr
+ 4(c1 — 1)eFr + 4e3°F, = 0, (16)
Put ¢; = 0 in Eq. (16) then explore its generators; one of these
symmetries has the form Vg = e’%s% + e*s% + saa—F;
Where,
1
= —r+12e35.0(n) = F(r,s) — 335(8 In (2) +41n (3) + 35+ 1),
(17)

Eq. (16) will reduced to fourth order nonlinear ODE that has no
closed form solution;

Onun + 40py — 66ny0n = 0. (18)

vix.y.t)
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0, (b)t=0.1and (c)y=0.

Applying the integration factors method explore new solutions
for (18).

@ Integration method

Integrate Eq. (18) once with respect to 7, set the integration
constant equal to zero;

Oy = 36, +40,, (19)

Secondly, multiply Eq. (18) by (6;) then integrate once with re-
spect to 7,

1
Opn = =—— (402 + 62 +402), 20
nn 2(90)( n n n) (20)
Equating Eqs. (19) to (20), results in;
100, +126; + 67, =0, (21)

By solving this equation;
6(n) = —2+v/3tan(v3n + v3¢) + £+/3tan~" (tan(v/3n + v/30)) —
1 + ¢2.(22) Back substitution using Egs. (17), (15) and (14);
3
~yel

%+67t%+(4 ) ;

X2 = 4 —_
This solution plotted as depicted in Fig. 1.

ov’ (23)
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Fig. 3. Three dimensional plots for v(x,y,t) forc; =1, c;=1(a)t=0.1, (b) t =0.5 and (c) x=1.

3.1.2. Using Lie vector X, in Eq. (8) and set ¢y = 2;

0 40 3 4\ 0
XZ—4§+9 m+<‘—l+e3)%, (24)
Therefore, the characteristic equation will be;
dx dy dt dv
s AR A (25)
4 O E*f (% + e%[‘)
Solving this equation leads to;
38 ,, 3
v(x,y,t) =F(r,s) + 7 ¢ + 6~ (26)
where F(r, s) is a new independent variable and;
r=y s=4e —x, (27)

Using the new similarity and the dependent variables,
Eq. (3) will be reduced to;

—23F;s + Fisss — 8Fsssr — 48FFs + 32KF — 6Fs + 32FFs =0,  (28)
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Eq. (28) has an analytic solution;

c tanh(C c3s —C3(32C22_23)r)
F(r.s) = 4 + 87— T a(imea) (29)
’ 16¢32 — 55

Using the similarity variables in (27) and (26) then we can back
substitution to the original variables;

cstanh (c +c3(4ef —x) +
16¢32 — 55

c3 ( 32¢,2-23 )y
2(16c32+3)

V(X, ¥, t) = cq4 + 87

383

t g

(30)

This result is plotted in Fig. 2
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3.2. Case Il

Using Lie vector X3 in Eq. (9)

] ] y 4 1 3\ 0
Xs ta——l—t@—i-(—z—g—kti—zx—f)av (31)
This vector generates the characteristic equation.
% _ dtl v (32)
—47 3 + ts — *X — *y
Solving Eq. (32) produces the similarity variables;

y 1 3
v(xyt)_F(rs)+8t+( t+t%_4t)x' (33)
where F(r,s) is a new independent variable and;

=—X+Yy, s=t. (34)

Using the new similarity and the dependent variables,
Eq. (3) will be reduced to;

27s% — 375+ 36s3r + 48s3F + 36s3F, — 48s2F, + 48s31F,,

+ 6053 FFy + 355 Fs — 353 Fy = 0 (35)
Therefore, the Eq. ( 5) eight Lie vectors, we choose to work
with V5 = —25% Pil+(fiL+35+ ég +1) % Where;
s3
2
n=r+65%,9(7z)=F(r,s)+§r— 7< 72 - 53>r75+ 2—11 - iz (36)
$ \10s3 > 553 553
Eq. (36) will reduced to;
Qnmm - 2091717971 =0. (37)

This condition has no scientific solution, so we attempt to ad-
dress it utilizing the integrating factors as follow;

3.3. Integration method

Integrate Eq. (37) once with respect to 5, set the integration
constant equal to zero;

Oy = 100,°, (38)

Secondly, multiply Eq. (37) by (6,) then integrate once with re-
spect to 7,

Oy = 50, )(4093 +367). (39)
Equating Eqs. (38) to (39), results in;
—200; + 367 =0, (40)
By solving this equation;
-3
6 = ——+0(y, 41
(m sy 1@ (41)
Back substitution using Eqs. (36), (34) and (33);
_ _ 2
v(X,y! t) — 3 : — %M
5(-x+y+6t +¢) 5 t
+( 7 —i>(—x+)+t—21 9 3 x2
10t5 5t y 5t% 8t
y 1 3 )
=+ 5 - — )x. 42
+ ( F ) (42)

The result is depicted in Fig. 3.
The resulted waves consist of some solitons by increasing the
time, the amplitude of the wave is reduced and moved to the right.
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4. Conclusions

The present work is to study a (2 + 1dimensional Bogoyavlen-
sky Konopelchenko equation with variable coefficients through the
Lie Symmetry approach, which results in the implementation of
new exact solutions for the vcBK equation.The obtained solutions
are organized, accurate, interesting and huge scheme for future au-
thors in ruling an important solution to other nonlinear mathemat-
ical models in the fields of ocean engineering and sciences. First,
the enhanced infinitesimal generators and then group classifica-
tion is achieved with the assistance of the Lie symmetry group. Al-
though, the presence of functional arbitrary elements in infinites-
imal generators makes the Lie group classification a difficult and
tedious task. Furthermore, the associated subalgebras are being
utilized to reduce the considered equation into lower-dimensional
equations, which are then deciphered to obtain the corresponding
ordinary differential equation. It is remarkable to notify that the
derived solutions in this study have not been reported in the liter-
ature. Additionally, the wide diversity of features and physical pa-
rameters of these acquired solutions are elucidated with the sup-
port of three-dimensional plots, considering the appropriate choice
of involved functional parameters and other constant parameters
shown by Figs. 1-3. Such a type of investigation is highly recom-
mended in the areas of progressive research and development. We
showed that the (2 + 1) dimensional VCBK equation admits an in-
finite number of infinitesimals of Lie point symmetries. We deter-
mined an optimal system of one-dimensional sub-algebras of Lie
symmetries. Abundant exact travelling wave solutions, two-soliton
type solutions and three-soliton type solutions were presented.
The summary of our results;

o The investigated Lie vectors are different and new compared
with [10,16,17].

e Based on the new Lie vectors, we reduce Eq. (3) to some ODEs
and solved these equations using the direct method and the in-
tegration method.

o We can analyze our solutions as:

(I) Figs. (2-a,2-b,3-3,3-b,3-c) imply one-soliton and three- soli-
ton solutions depend on the increase in time value. The amplitude
decreases with increasing time and the wave peaks move to a lift
direction.

(II) Figs. (1-a) represent multi- peaks of waves moves together
and this means the physical properties do not change after the in-
teraction.

(I In Figs. (3-c), exponential waves are presented.

o In the future, the design of the wavelet method can be used to
solve new applications in Ocean Engineering and Science.
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