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We deduce new explicit traveling wave solutions for Zoomeron evolution equation and
(34 1)-dimensional shallow water wave equation. The reduction process using Lie vectors
leads in some cases to ordinary differential equations (ODEs) that having no quadrature.
The integrating factor property has been used to derive several new solutions for these
nonsolvable ODEs. These solutions have been illustrated with three dimensions plots.
Comparison with other works are presented.

Keywords: Integrating factors; Lie transformation; (2 + 1)-dimensional Zoomeron equa-
tion; (3 + 1)-dimensional shallow water wave equation.

1. Introduction

Nonlinear differential equations (NLDEs) investigates many phenomena in differ-
ent sciences, for example, in material science as carbon and fiber materials,! blood
flow,2 4 electric field,> and some new applications in Ref. 6. The analysis of the
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results of such application in most cases needs the analytical solution for the prob-
lem. There are many methods to explore closed-form solutions. Some of these
methods are the Bicklund transformation,” Hirota bilinear method,® Singular Man-
ifold method,?1% tanh-coth strategy,!! and Lie symmetry reduction method.12-17
In this paper, we solve two equations, namely the (2 + 1)-dimensional Zoomeron
equation and (3 + 1)-dimensional shallow water wave equation using Lie symmetry
reduction method with the help of the integrating factor property. Starting with
Zoomeron equation, we reduce the order of the equation using its infinitesimals until
we reach unsolvable ordinary differential equations (ODEs). Through the property
of the integrating factors, we solve these ODEs and generate new solutions. Plots
of the resulted solutions and comparison of other works have been presented. In the
last section, we apply the same procedure for shallow water wave equation.

2. (2 4+ 1)-Dimensional Zoomeron Equation

The (2 + 1)-dimensional Zoomeron equation was constructed by Calogero and

Degasperis®;
Uzy Uzy 2
Yoy ) _ Yoy 2(u?)py = 0, 1
(u>tt (u)mx+ (U)t ()

where u(z, y, t) is the amplitude of the relevant wave mode. In Ref. 18, the two sine—
cosine methods have been successfully applied to generate exact solutions of Eq. (1).
Applying the (G’ /G)-expansion method in Ref. 19, explicit traveling wave solutions
are generated. Using Lie symmetries in Refs. 20 and 21, some form of traveling-
wave solutions is created by examination of various combinations of reductions
which would lead to an ODE in terms of a similarity variable of traveling-wave
form as an independent variable. Here, we apply the symmetry reduction method
to reduce the Zoomeron equation to ODEs, but during the reduction process, some
of the obtained ODE’s had no quadrature. We solve these equations using the
corresponding Lie integrating factors. Equation (1) has five Lie vectors, we will
choose some of these vectors to reduce the equation
0 0 0 0

X2=§7 nga, X4:yafy—0-5u%- (2)

2.1. Reduction of the independent variables in Zoomeron

equation using X, Lie vector

Equation (1) is transformed through the optimal vector Xo = % to

F7'rrsF2 - 2FT‘F’(‘T‘8F + 2F7'3F3 - FFrsFrr =0. (3)

This equation has no closed-form solution, but possesses six Lie vectors; we will
choose here to work only with V3
0 0
= — 4+ =—. 4
or + Jds )

This Lie vector leads to an ODE with no analytic solution.

Vs
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¢ Reduction using V3
Using V3 transform Zoomeron to a nonlinear fourth-degree ODE of the form

ezonmm = 20000 + 2977297777 - 9777729 =0. (5)

e Using integrating factor to get an explicit solution
We first deduce Eq. (5) integrating factors as
pr=mn, p2=1. (6)
The integrating factors reduce Eq. (5) to two solvable ODEs
Oy + 10 =0, (7)
In(6,,) —In(0) +¢1 =0. (8)
Equation (7) has a solution in the form
0(n) = casin(v/eyn) + c3 cos(v/eyn) (9)

and Eq. (8) has a closed-form solution of the form

O(n) = eae” """ g, (10)
where n = —r + s, 0(n) = F(r,s) and ¢1, co, c3 are integration constants. Back
substituting to (x,y,t) for r = x,s =y, F(r,s) = u(z,y,t), we obtain

u(,y,t) = casin(ve, (—z +y)) + ez cos(Vey (—z +y) . (11)

This result is shown in Fig. 1 in a complex domain.

ulx, v 1)

(a) Three dimensions plot for u(x, y, t) (b) Contour plot for u(x, y,t)

Fig. 1. (Color online) u(z,y,t) in Eq. (11) withc;1 =1, c2 =1, c3 = 1.
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uixv.t) H

(@ (b)
Fig. 2. (Color online) u(z,y,t) in Eq. (10) at ¢1 = In(—1), c2 = 0.5, ¢c3 = 0.5. (a) Three
dimensions plot. (b) Contour plot for u(z,y,t).
Corresponding to Eq. (10), we obtain
u(z,y,t) = cge® T wHY) 4 0366_0'561(*””” . (12)

This solution is plotted in complex domain as depicted in Fig. 2.

2.2. Reduction of the independent variables in Zoomeron
equation using X4 Lie vector

Equation (1) is transformed through the optimal vector X, = ya% — O.SU% to

FooF? = 2F,F,sF + 2F,F? — FF,Fo; — Fop  F? 4+ 3FF,, F,

—2F3 —8F,F,F® —8F*'F,, =0. (13)
This equation has no closed-form solution, but possesses three Lie vectors
0 0 0 0 0
Vi=—, Vo=—, Vag=r— — —0.5F—. 14
e T BT e s oF (14)

We will choose here to work only with V3 Lie vector as it leads to an ODE with no
analytic solution.

e Reduction using V3
Using V3 transform Zoomeron to a nonlinear fourth-degree ODE of the form
3003000 — 30°00,,0,, + 6° + 600,07 + 60>6%0,),) + 1670, + 26,0 + 1660,
+ 800y 0" — 1By — 610007 + 816,%6° + 260,20 = 0. (15)
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e Using integrating factor to get an explicit solution

We first deduce Eq. (15) integrating factors as

1 1

p1=—, H2= —. 16
1 2 2 e (16)

The integrating factors reduce Eq. (15) to two solvable ODEs
20%0,, + 1 — 20, + 86> = 0. (17)

Equation (17) has a solution in the form
1

0(n) (18)

=7 ,

V=8n+avn+Ixy/n—1
where ¢; is integration constant, n = &, 6(n) = F(r,s)/r and ci, ca, c3 are integra-
tion constants. Back substituting to (z,y,t) for r = x, s = t, F(r,s) = u(z,y,t)\/y,
we obtain

U(:Evyvt) =+ (19)

1
ﬁH@vL8;+qM;+1*M;—1

This result is depicted in Fig. 3 in a complex domain.
The wave that plotted in Fig. 3 decayed rapidly with time.

;1) \
ufx v, 1) ulx w1y s

(a) The positive value of u(x,y,t) atc; = 1,t = 0.  (b) The positive value of u(x,y,t)atc; = 1,t = 0.01.

Fig. 3. (Color online) Three dimensions plots for positive u(z, y,t) in Eq. (18) for different values
of time.

2.3. Reduction of the independent variables in Zoomeron
equation using X, + X3 + X4 Lie vector

Using the optimal vector Xs34 = a% — ya% + % — 0.5u% and through the same
procedure in Secs. 2.1 and 2.2, Eq. (1) will reduce to a nonlinear fourth-degree ODE

1950425-5
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wix v 1) wx )

(a) The positive value of u(x,y,t) atc; = ¢, = 1,t = 0. (b) The positive value of u(x,y,t) atc; =c, =1,t =3.

Fig. 4. (Color online) Three dimensions plots for positive u(x, y,t) in Eq. (22) for different values
of time.

of the form

00, + 0,2 =0. (20)

Equation (20) has a solution in the form
0(n) = Fv/2c1n + 2¢ca, (21)
where ¢; is integration constant, n = s, (n) = F(r,s)y/r and ¢, ¢y are in-
tegration constants. Back substituting to (x,y,t) for r = ye™®, s = —x + {,

F(r,s) = u(z,y,t)e’>*, we obtain

2c1t — 2c1x + 2¢
:F\/ 1 1 2

u(z,y,t) = (22)
VY
This result is depicted in Fig. 4 in a complex domain.
Table 1. Analysis of our results with Ref. 21.
Selected
symmetry Our result Result of Ref. 21
—2
X1 or Ay |u(z,y,t) = casin(y/c, (—z + y)) u(z,y,t) = mzAi[m,;3 (m2 + mi(z +y))]
=2
+ czcos(ve, (—z +y) +maBi[m3 (m2 4+ mi(z+y))]
and
(g, 1) = et 2N D)
+536€70'5C1(—m+y)
2 -2 2
X4 or As |u(@, y, t) W@,y t) = [ /27 exp ( (m2 +mi(z + 1)) >
A A
1 2
=F Xerﬁ(‘/z(m2+m1(z+t)))
t t t
ﬁ\/ﬁ—sfwu/ﬁlu/f—l S
z z z (—2m1(1+t)(2m2+m1(w+t))>:|7
+ m3 exp 2

1950425-6



Mod. Phys. Lett. B 2019.33. Downloaded from www.worldscientific.com
by UNIVERSITY OF GEORGIA on 02/03/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Detection of new multi-wave solutions in an unbounded domain

2.4. Comparison and analysis

Morris et al. in Ref. 21 generated explicit solutions for Eq. (1) using the Lie point
symmetries reduction method. We use the same infinitesimals with the help of the
integrating factors, then we explore new and different solutions that resulted in
Ref. 21 as shown in Table 1.

3. (3 + 1)-Dimensional Shallow Water Wave Equation

Shallow water equation has the form?223;

uyzt+uzxxyz - 6uxuxyz - 6u:rzu:vy =0. (23)

Using the simplified Hirota’s method, multiple soliton solutions and general-
ized multiple singular soliton solutions were generated in Ref. 23. Hirota’s bilinear
method was used to determine the multiple-soliton solutions for this equation in
Ref. 22. In Ref. 24, some dromion solitons, periodic dromion solitons and interac-
tion between two solitary waves were generated though d’Lambert transformation
and G’ /G-expansion method. Applying Hirota method, using an auxiliary function
Lump soliton and interaction of Lump with one-stripe soliton solutions had been
explored in Ref. 25.

Here, we investigate 20 Lie vectors for Eq. (23) and we will choose only X5 to
reduce it

X5 = % + % . (24)

The original partial differential equation (PDE) (23) consisted of four indepen-
dent variables; (x,y,t; z) are first reduced to a PDE in three independent variables,
(I, h,0) using the Lie vector X5, then reduced to two independent variables (r, s)

and then one independent variable 7.
3.1. Reduction of the independent variables in the shallow water
equation using X5 Lie vector
Equation (23) is transformed through the vector X5 = % + 5 to
Koin — Kionnn — 6Kion K — 6Kip Kpo = 0. (25)
This equation has no closed-form solution but possesses 14 Lie vectors; we choose

Vi, Va.

3.1.1. Reduction of (25) using Vi Lie vector

0 0
- — 4+ . 2
Y=t (26)
Equation (25) is transformed to
Frssss - Fssr - GE‘;ESST - 6E§T‘E§S =0. (27)

This equation has no closed-form solution but possesses eight Lie vectors; we will
choose here to work with the vectors es to lead to non-solvable ODE’s while the
rest of the vectors lead to solvable ODE’s.
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e Reduction of (27) using es Lie vector
0 0 s 0
=L hse—(24F) 2. 2
<= "0 <3+ >6F (28)

We use e5 to transform shallow water to a nonlinear fifth-degree ordinary differ-
ential equation of the form

616101 + 306005 — 5O0rmun — M0nmmny + 6062, = 0. (29)

e Using integrating factor to get an explicit solution

We first deduce Eq. (29) integrating factors as

p=1, pp=n". (30)
The integrating factors reduce (29) to
3_ 92 _
20, — 6, =0. (31)
This equation has a closed-form solution
2
0(n) =— + ca, 32
()= -+ (32)
where nn = se™", 0(n) = F(T:f):rés Then back to (I, h,0) coordinates with

r=1, s=—-h+4+o, F(r,s)=K(,h,0), h=—-z+t, Il=y,
o=z, K(l,ho0)=u(z,y,t, z).
Leads to
—9¢~Y
(x—t+2)e Y+
This result is plotted in Fig. 5.
Peakon’s are distributed on a parabola drifting to the left with time and the

1 1
u(z,y,t,z) = +coeV 4+ 6(—m +1t)— rta (33)

peaks of the waves decay with time.

1 tmﬂ
14004 \/
1200
10004 s
00 ]
600-]
400
200-]
0
=200

u(x.y.tz) ~500
ufx.y.tz) A

- 1000-]

- 1500+

(a) u(x,y,t,z)atc; =1,¢, =1,z=05,t=0.7s. (b) u(x,y,t,z) atc; =1,¢c, =1,z=0.5,t =0.7s.

Fig. 5. (Color online) u(z,y, t, z) for various values of time.
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3.1.2. Reduction of (25) using Va Lie vector

Through the vector Vo = a%’ Eq. (25) is transformed to

65Fs s — 6F 5, — 68Fsssr — 82 Fagssr + 12F5, Fi + 65F5. Fsg = 0. (34)
This equation has eight Lie vectors, we choose the fifth vector.
0 0 In(s) 0
= — +sln(s)— — F)—. 35
e = g 7o) ( 5 * >8F (35)

We use e5 to transform (34) to a nonlinear fifth-degree ordinary differential equation
of the form

—610rm00n — 300,05, + 560nmmy + M0ngmn — 677972;7; =0. (36)
e Using integrating factor to get an explicit solution

We first deduce Eq. (36) integrating factors as

pr=1, pa=n*. (37)
The integrating factors reduce Eq. (36) to
—20,° + 0,2 = 0. (38)

This equation has a closed-form solution of the form

2 16F 1
0(n) = —77 o +co, where n=In(s)e”", 60(n) = Ew

Then back to (I, h,0) with r =1, s = oe™", F(r,s) = K(I,h,0), h= —x +t, 1 =y,
o=z, K(l,h,0) =u(z,y,t,z) we obtain
— 9~V
(In(z) + (x —t))e ¥ 4+ 1
This solution is plotted in Fig. 6 with ¢; = ¢y = 1.
The wave axis drifts left as time increases.

(39)

1
U(Z‘, Y, t’ Z) = + 0267:[! — 6 hl(Z@zit) . (40)
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(@ u(x,y,t,z) atc; =1,¢, =1,z=0.5,t =0s. (b) ulx,y,t,z) atc; =1,¢c, =1,z= 0.5t = 0.4s.

Fig. 6. (Color online) u(z,y,t, z) for different values of time and constant value of z.
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4. Conclusions

Starting with the infinitesimals’s reduction with integrating factor property, we
generate new closed-form solutions for two nonlinear PDEs, namely the (2 + 1)-
dimensional Zoomeron equation and (3 + 1)-dimensional shallow water wave equa-
tion by reducing these PDEs to non-solvable ODEs. Here, we deduce the following;:

e We were able to solve these ODEs using the integrating factors property.

e New analytic solutions have been generated compared with other researchers’
work as Ref. 11.

e Reduce the number of the reduction stages using the Lie symmetry method.

e In some cases, we cannot solve the reduced ODEs using Lie vectors only.

References

1. A. 1. Aliyu, A. Yusuf and D. Baleanu, Commun. Theor. Phys. 70(5) (2018) 511.

2. N. S. Akbar, Ain Shams Eng. J. 5(4) (2014) 1267.

3. S. Chakravarty and P. Mandal, Math. Comput. Model. 19(1) (1994) 59.

4. S. Chakravarty and S. Sen, J. Mech. Med. Biol. 9(3) (2009) 377.

5. Y.-Q. Wan, Q. Guo and N. Pan, Int. J. Nonlinear Sci. Numer. Simul. 5(1) (2004) 5.
6. H. Sun et al., Commun. Nonlinear Sci. Numer. Simul. 64 (2018) 213.

7. Y. Shang, Appl. Math. Comput. 187(2) (2007) 1286.

8. P. Goldstein, Acta Phys. Pol. A 112(6) (2007) 1171.

©

P. Estévez and P. Gordoa, J. Nonlinear Math. Phys. 2(3-4) (1995) 334.

10. P. Estévez and J. Prada, J. Nonlinear Math. Phys. 12(supl) (2005) 266.

11. A.-M. Wazwaz, Phys. Lett. A 366(1-2) (2007) 85.

12. D. Ekrut, Symmetry Solutions of the Multiphase Model with Biological Applications
(The Florida State University, 2016).

13. M. Frewer, M. Oberlack and S. Guenther, Fluid Dyn. Res. 39(8) (2007) 647.

14. V. Jadaun and S. Kumar, Int. J. Geom. Methods Mod. Phys. 15(8) (2018) 1850125.

15. C.-Y. Qin et al., Commun. Theor. Phys. 67(2) (2017) 157.

16. E. Yasar, New Trends Math. Sci. 4(4) (2016) 163.

17. F. Tchier and A. Yusuf, Eur. Phys. J. Plus 134(6) (2019) 250.

18. H. Gao, Int. J. Mod. Nonlinear Theory Appl. 3(2) (2014) 23.

19. R. Abazari, Appl. Math. Sci. 5(59) (2011) 2943.

20. T. Motsepa, C. Khalique and M. Gandarias, Symmetry 9(2) (2017) 27.

21. R. M. Morris and P. Leach, Phys. Scripta 90(1) (2015).

22. A.-M. Wazwaz, Appl. Math. Comput. 211(2) (2009) 495.

23. Y. Chen and R. Liu, Appl. Math. Comput. 260 (2015) 397.

24. J.-G. Liu et al., Int. J. Nonlinear Sci. Numer. Simul. 16(1) (2015) 43.

25. J. Gu and H. Dong, Fast Asian J. Appl. Math. 8(3) (2018) 510.

1950425-10





