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We deduce new explicit traveling wave solutions for Zoomeron evolution equation and

(3 + 1)-dimensional shallow water wave equation. The reduction process using Lie vectors

leads in some cases to ordinary differential equations (ODEs) that having no quadrature.
The integrating factor property has been used to derive several new solutions for these

nonsolvable ODEs. These solutions have been illustrated with three dimensions plots.

Comparison with other works are presented.

Keywords: Integrating factors; Lie transformation; (2 + 1)-dimensional Zoomeron equa-

tion; (3 + 1)-dimensional shallow water wave equation.

1. Introduction

Nonlinear differential equations (NLDEs) investigates many phenomena in differ-

ent sciences, for example, in material science as carbon and fiber materials,1 blood

flow,2–4 electric field,5 and some new applications in Ref. 6. The analysis of the

∗Corresponding author.
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results of such application in most cases needs the analytical solution for the prob-

lem. There are many methods to explore closed-form solutions. Some of these

methods are the Bäcklund transformation,7 Hirota bilinear method,8 Singular Man-

ifold method,9,10 tanh–coth strategy,11 and Lie symmetry reduction method.12–17

In this paper, we solve two equations, namely the (2 + 1)-dimensional Zoomeron

equation and (3 + 1)-dimensional shallow water wave equation using Lie symmetry

reduction method with the help of the integrating factor property. Starting with

Zoomeron equation, we reduce the order of the equation using its infinitesimals until

we reach unsolvable ordinary differential equations (ODEs). Through the property

of the integrating factors, we solve these ODEs and generate new solutions. Plots

of the resulted solutions and comparison of other works have been presented. In the

last section, we apply the same procedure for shallow water wave equation.

2. (2 + 1)-Dimensional Zoomeron Equation

The (2 + 1)-dimensional Zoomeron equation was constructed by Calogero and

Degasperis8; (
uxy
u

)
tt

−
(
uxy
u

)
xx

+ 2(u2)xt = 0 , (1)

where u(x, y, t) is the amplitude of the relevant wave mode. In Ref. 18, the two sine–

cosine methods have been successfully applied to generate exact solutions of Eq. (1).

Applying the (G′/G)-expansion method in Ref. 19, explicit traveling wave solutions

are generated. Using Lie symmetries in Refs. 20 and 21, some form of traveling-

wave solutions is created by examination of various combinations of reductions

which would lead to an ODE in terms of a similarity variable of traveling-wave

form as an independent variable. Here, we apply the symmetry reduction method

to reduce the Zoomeron equation to ODEs, but during the reduction process, some

of the obtained ODE’s had no quadrature. We solve these equations using the

corresponding Lie integrating factors. Equation (1) has five Lie vectors, we will

choose some of these vectors to reduce the equation

X2 =
∂

∂t
, X3 =

∂

∂x
, X4 = y

∂

∂y
− 0.5u

∂

∂u
. (2)

2.1. Reduction of the independent variables in Zoomeron

equation using X2 Lie vector

Equation (1) is transformed through the optimal vector X2 = ∂
∂t to

FrrrsF
2 − 2FrFrrsF + 2FrsF

2
r − FFrsFrr = 0 . (3)

This equation has no closed-form solution, but possesses six Lie vectors; we will

choose here to work only with V3

V3 =
∂

∂r
+

∂

∂s
. (4)

This Lie vector leads to an ODE with no analytic solution.
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• Reduction using V3

Using V3 transform Zoomeron to a nonlinear fourth-degree ODE of the form

θ2θηηηη − 2θηηηθηθ + 2θη
2θηη − θηη2θ = 0 . (5)

• Using integrating factor to get an explicit solution

We first deduce Eq. (5) integrating factors as

µ1 = η, µ2 = 1 . (6)

The integrating factors reduce Eq. (5) to two solvable ODEs

θηη + c1θ = 0, (7)

ln(θηη)− ln(θ) + c1 = 0 . (8)

Equation (7) has a solution in the form

θ(η) = c2 sin(
√
c1η) + c3 cos(

√
c1η) (9)

and Eq. (8) has a closed-form solution of the form

θ(η) = c2e
e−0.5c1η + c3e

e−0.5c1η , (10)

where η = −r + s, θ(η) = F (r, s) and c1, c2, c3 are integration constants. Back

substituting to (x, y, t) for r = x, s = y, F (r, s) = u(x, y, t), we obtain

u(x, y, t) = c2 sin(
√
c1(−x+ y)) + c3 cos(

√
c1(−x+ y) . (11)

This result is shown in Fig. 1 in a complex domain.

(a) (b)

Fig. 1. (Color online) u(x, y, t) in Eq. (11) with c1 = 1, c2 = 1, c3 = 1.
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(a) (b)

Fig. 2. (Color online) u(x, y, t) in Eq. (10) at c1 = ln(−1), c2 = 0.5, c3 = 0.5. (a) Three

dimensions plot. (b) Contour plot for u(x, y, t).

Corresponding to Eq. (10), we obtain

u(x, y, t) = c2e
e−0.5c1 (−x+y) + c3e

e−0.5c1 (−x+y) . (12)

This solution is plotted in complex domain as depicted in Fig. 2.

2.2. Reduction of the independent variables in Zoomeron

equation using X4 Lie vector

Equation (1) is transformed through the optimal vector X4 = y ∂
∂y − 0.5u ∂

∂u to

FssrF
2 − 2FsFrSF + 2FrF

2
s − FFrFss − FrrrF 2 + 3FFrrFr

− 2F 3
r − 8FrFsF

3 − 8F 4Frs = 0 . (13)

This equation has no closed-form solution, but possesses three Lie vectors

V1 =
∂

∂s
, V2 =

∂

∂r
, V3 = r

∂

∂r
+ s

∂

∂s
− 0.5F

∂

∂F
. (14)

We will choose here to work only with V3 Lie vector as it leads to an ODE with no

analytic solution.

• Reduction using V3

Using V3 transform Zoomeron to a nonlinear fourth-degree ODE of the form

3ηθηηθηθ − 3η3θθηηθη + θ3 + 6ηθηθ
2 + 6η2θ2θηη + η3θ2θηηη + 2θη

3η3 + 16θ4θη

+ 8ηθηηθ
4 − ηθηηηθ2 − 6η2θθ2

η + 8ηθη
2θ3 + 2θη

2θ = 0 . (15)
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• Using integrating factor to get an explicit solution

We first deduce Eq. (15) integrating factors as

µ1 =
1

η2
, µ2 =

1

η3
. (16)

The integrating factors reduce Eq. (15) to two solvable ODEs

2η2θη + ηθ − 2θη + 8θ3 = 0 . (17)

Equation (17) has a solution in the form

θ(η) = ∓ 1√
−8η + c1

√
η + 1 ∗

√
η − 1

, (18)

where c1 is integration constant, η = s
r , θ(η) = F (r, s)

√
r and c1, c2, c3 are integra-

tion constants. Back substituting to (x, y, t) for r = x, s = t, F (r, s) = u(x, y, t)
√
y,

we obtain

u(x, y, t) = ∓ 1

√
x
√
y

√
−8 tx + c1

√
t
x + 1 ∗

√
t
x − 1

. (19)

This result is depicted in Fig. 3 in a complex domain.

The wave that plotted in Fig. 3 decayed rapidly with time.

Fig. 3. (Color online) Three dimensions plots for positive u(x, y, t) in Eq. (18) for different values

of time.

2.3. Reduction of the independent variables in Zoomeron

equation using X2 + X3 + X4 Lie vector

Using the optimal vector X234 = ∂
∂x − y

∂
∂y + ∂

∂t − 0.5u ∂
∂u and through the same

procedure in Secs. 2.1 and 2.2, Eq. (1) will reduce to a nonlinear fourth-degree ODE

1950425-5
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Fig. 4. (Color online) Three dimensions plots for positive u(x, y, t) in Eq. (22) for different values

of time.

of the form

θθηη + θη
2 = 0 . (20)

Equation (20) has a solution in the form

θ(η) = ∓
√

2c1η + 2c2 , (21)

where c1 is integration constant, η = s, θ(η) = F (r, s)
√
r and c1, c2 are in-

tegration constants. Back substituting to (x, y, t) for r = ye−x, s = −x + t,

F (r, s) = u(x, y, t)e0.5x, we obtain

u(x, y, t) = ∓
√

2c1t− 2c1x+ 2c2√
y

. (22)

This result is depicted in Fig. 4 in a complex domain.

Table 1. Analysis of our results with Ref. 21.

Selected

symmetry Our result Result of Ref. 21

X1 or ∆1 u(x, y, t) = c2 sin(
√
c1(−x+ y)) u(x, y, t) = m3Ai

[
m

−2
3

1 (m2 +m1(x+ y))
]

+ c3 cos(
√
c1(−x+ y) +m4Bi

[
m

−2
3

1 (m2 +m1(x+ y))
]

and

u(x, y, t) = c2e
e−0.5c1 (−x+y)

+ c3e
e−0.5c1 (−x+y)

X4 or ∆5 u(x, y, t) u(x, y, t) =

[√
2π

A
exp

(−2(m2 +m1(x+ t))2

A

)
= ∓

1

√
x
√
y

√
−8

t

x
+ c1

√
t

x
+ 1 ∗

√
t

x
− 1

× erfi

(√
2

A
(m2 +m1(x+ t))

)

+m3 exp

(−2m1(x+ t)(2m2 +m1(x+ t))

A

)]−1
2

1950425-6

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
9.

33
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
G

E
O

R
G

IA
 o

n 
02

/0
3/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 28, 2019 14:29 MPLB S0217984919504256 page 7

Detection of new multi-wave solutions in an unbounded domain

2.4. Comparison and analysis

Morris et al. in Ref. 21 generated explicit solutions for Eq. (1) using the Lie point

symmetries reduction method. We use the same infinitesimals with the help of the

integrating factors, then we explore new and different solutions that resulted in

Ref. 21 as shown in Table 1.

3. (3 + 1)-Dimensional Shallow Water Wave Equation

Shallow water equation has the form22,23;

uyzt+uxxxyz − 6uxuxyz − 6uxzuxy = 0 . (23)

Using the simplified Hirota’s method, multiple soliton solutions and general-

ized multiple singular soliton solutions were generated in Ref. 23. Hirota’s bilinear

method was used to determine the multiple-soliton solutions for this equation in

Ref. 22. In Ref. 24, some dromion solitons, periodic dromion solitons and interac-

tion between two solitary waves were generated though d’Lambert transformation

and G′/G-expansion method. Applying Hirota method, using an auxiliary function

Lump soliton and interaction of Lump with one-stripe soliton solutions had been

explored in Ref. 25.

Here, we investigate 20 Lie vectors for Eq. (23) and we will choose only X5 to

reduce it

X5 =
∂

∂x
+
∂

∂t
. (24)

The original partial differential equation (PDE) (23) consisted of four indepen-

dent variables; (x, y, t; z) are first reduced to a PDE in three independent variables,

(l, h, o) using the Lie vector X5, then reduced to two independent variables (r, s)

and then one independent variable η.

3.1. Reduction of the independent variables in the shallow water

equation using X5 Lie vector

Equation (23) is transformed through the vector X5 = ∂
∂x + ∂

∂t to

Kolh −Klohhh − 6KlohKh − 6KlhKho = 0 . (25)

This equation has no closed-form solution but possesses 14 Lie vectors; we choose

V1, V2.

3.1.1. Reduction of (25) using V1 Lie vector

V1 =
∂

∂h
+

∂

∂o
. (26)

Equation (25) is transformed to

Frssss − F ssr − 6FsFssr − 6FsrFss = 0 . (27)

This equation has no closed-form solution but possesses eight Lie vectors; we will

choose here to work with the vectors e5 to lead to non-solvable ODE’s while the

rest of the vectors lead to solvable ODE’s.
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• Reduction of (27) using e5 Lie vector

e5 =
∂

∂r
+ s

∂

∂s
−
(
s

3
+ F

)
∂

∂F
. (28)

We use e5 to transform shallow water to a nonlinear fifth-degree ordinary differ-

ential equation of the form

6ηθηηηθη + 30θηθηη − 5θηηηη − ηθηηηηη + 6ηθ2
ηη = 0 . (29)

• Using integrating factor to get an explicit solution

We first deduce Eq. (29) integrating factors as

µ1 = 1, µ2 = η4 . (30)

The integrating factors reduce (29) to

2θ3
η − θ2

ηη = 0 . (31)

This equation has a closed-form solution

θ(η) = − 2

η + c1
+ c2 , (32)

where η = se−r, θ(η) =
F (r,s)+ 1

6 s

e−r . Then back to (l, h, o) coordinates with

r = l, s = −h+ o, F (r, s) = K(l, h, o), h = −x+ t, l = y ,

o = z, K(l, h, o) = u(x, y, t, z) .

Leads to

u(x, y, t, z) =
−2e−y

(x− t+ z)e−y + c1
+ c2e

−y +
1

6
(−x+ t)− 1

6
z . (33)

This result is plotted in Fig. 5.

Peakon’s are distributed on a parabola drifting to the left with time and the

peaks of the waves decay with time.

Fig. 5. (Color online) u(x, y, t, z) for various values of time.
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3.1.2. Reduction of (25) using V2 Lie vector

Through the vector V2 = ∂
∂h , Eq. (25) is transformed to

6sFsrFs − 6F ssr − 6sFsssr − s2Fssssr + 12FsrFs + 6sFsrFss = 0 . (34)

This equation has eight Lie vectors, we choose the fifth vector.

e5 =
∂

∂r
+ s ln(s)

∂

∂s
−
(

ln(s)

3
+ F

)
∂

∂F
. (35)

We use e5 to transform (34) to a nonlinear fifth-degree ordinary differential equation

of the form

−6ηθηηηθη − 30θηθηη + 5θηηηη + ηθηηηηη − 6ηθ2
ηη = 0 . (36)

• Using integrating factor to get an explicit solution

We first deduce Eq. (36) integrating factors as

µ1 = 1, µ2 = η4 . (37)

The integrating factors reduce Eq. (36) to

−2θη
3 + θηη

2 = 0 . (38)

This equation has a closed-form solution of the form

θ(η) = − 2

η + c1
+ c2, where η = ln(s)e−r, θ(η) =

1

6

6F (r, s) + ln(s)

e−r
. (39)

Then back to (l, h, o) with r = l, s = oe−h, F (r, s) = K(l, h, o), h = −x+ t, l = y,

o = z, K(l, h, o) = u(x, y, t, z) we obtain

u(x, y, t, z) =
−2e−y

(ln(z) + (x− t))e−y + c1
+ c2e

−y − 1

6
ln(zex−t) . (40)

This solution is plotted in Fig. 6 with c1 = c2 = 1.

The wave axis drifts left as time increases.

Fig. 6. (Color online) u(x, y, t, z) for different values of time and constant value of z.
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4. Conclusions

Starting with the infinitesimals’s reduction with integrating factor property, we

generate new closed-form solutions for two nonlinear PDEs, namely the (2 + 1)-

dimensional Zoomeron equation and (3 + 1)-dimensional shallow water wave equa-

tion by reducing these PDEs to non-solvable ODEs. Here, we deduce the following:

• We were able to solve these ODEs using the integrating factors property.

• New analytic solutions have been generated compared with other researchers’

work as Ref. 11.

• Reduce the number of the reduction stages using the Lie symmetry method.

• In some cases, we cannot solve the reduced ODEs using Lie vectors only.
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