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Abstract. In this approximation study, a nonlinear singular periodic model in nuclear physics is solved by using the Hermite
wavelets (HW) technique coupled with a numerical iteration technique such as the Newton Raphson (NR) one for solving the
resulting nonlinear system. The stimulation of offering this numerical work comes from the aim of introducing a consistent
framework that has as effective structures as Hermite wavelets. Two numerical examples of the singular periodic model in
nuclear physics have been investigated to observe the robustness, proficiency, and stability of the designed scheme. The
proposed outcomes of the HW technique are compared with available numerical solutions that established fitness of the
designed procedure through performance evaluated on a multiple execution.
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1. Introduction

Singular boundary value problems arise in
many applications including engineering applica-
tions [1–10], the modeling of monster beams [11],
spline approach [12], plasma in a Magnetic Field [13].
Henceforth, singular boundary value problems have
attracted much attention and have been investigated
by many researchers. In [14], the authors demon-
strated a particular singular boundary value problem
by applying FDM, and then got the same results by
applying the cubic spline technique in [15]. In [16],
the authors investigated the cubic spline method for

∗Corresponding author. Wen-Xiu Ma. E-mail: mawx@cas.
usf.edu.

solving singular boundary value problems. In [17]
VIM was investigated for solving nonlinear singu-
lar boundary value problems. The authors of [18]
solved some singular boundary value problems by
reproducing kernel space.

The literature form of the second order nonlinear
singular boundary value problem NS-BVPs is given
as [19]:

W′′ (t) + k

t
W′ (t) + f (t, W) = ~ (t) , t, k ≥ 1 (1)

At the initial conditions (ICs) :

W (0) = W0, W′ (0) = W1,
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where ~ (t), f (x, W) are continuous functions, W0,
W1 are constants.

If we pick f (x, W) = f (W) = Wn then Equation
(1) is set as:

W′′ (x) + k

x
W′ (x) + f (W) = ~ (x) (2)

with Dirichlet, Neumann, and Neumann-Robin
boundary conditions

W (0)=W0, W (1)=W1, W (0) = c0, W′ (1) = c1,

W′ (0) = 0, v0W (1) + v2W′ (0) = v3. (3)

At W0 = 1, this equation is called the NS-BVPs.
Due to singularity and nonlinearity shown in the

model (1), numerical and analytical techniques have
been proposed for presenting solutions of these mod-
els [20–28]. The purpose of the present numerical
study is to examine a consistent numerical computing
structure for solving the model (1) by using the HW
technique. Many researchers are applying various
techniques for solving nonlinear systems [29–32].
The remaining splits of the paper are organized as:
the second split describes the explanation of design
methodology, explanation of the results is provided in
the third split, the application of the proposed method
is given in split 4, and finally in split 5, the demon-
strated results and discussion and the conclusions are
reported.

2. The W technique

The HWi,j (t) are demonstrated on [0, 1) as [33]:

HWi,j (t)

=
⎧⎨
⎩2

k
2

√
2

π
Hj(2kt − 2i + 1)� i−1

2k−1 ≤ t < i
2k−1

0 ot~erewise

(4)

where k is an integer, i = 1, 2, ...., 2k−1, j =
0, 1, ..., M − 1. Thus, we demonstrate our new
hybrid as

{
HW1,0, HW1,1, ..., HW2k−1,M−1

}
and

the function can be approximated with them.
The W defines the orthonormal basis as:

H0 (t) = 1, H1 (t) = 2t, Hj+2 (t)

= 2t, Hj+1 (t) − 2 (j + 1) Hj (t) , j=0, 1, ..., M–1
(5)

2.1. Function approximation using the W
technique

The function W (t) [34–40], which is integrable in
[0, 1), can be truncated using the W technique as
follows:

W (t) =
∞∑
i=1

∞∑
j=0

cijHWij (t) , i = 1, 2, ..., ∞,

j = 0, 1, 2, ..., ∞, t ∈ [0, 1) , (6)

where the W coefficients cij are calculated as fol-
lows:

cij =
(
W (t) , Wij (t)

)(
Wij (t) , Wij (t)

)
We prune W (t) by a series as follows:

W (t) =
2k−1∑
i=1

M−1∑
j=0

cijHWij (t) = CT W (t) (7)

where W (t) and C are
(
2k−1

)
(M − 1) × 1 vectors

given by

W (t) = [ W10, W11, ...., W1(M−1), W20,

W21, ...., W2(M−1), ....., W2k−10, ....,

W2k−1(M−1)].
T

and

C = [c10, c11, ...., c1(M−1
)
, c20, c21, ....,

c2(M−1), ....., c2k−10, ...., c2k−1(M−1)]
T , (8)

so

C = D−1 〈W (t) , W (t)
〉
. (9)

where

D = 〈 W (t) , W (t)
〉
, (10)

Then;

(Dn)i+1,j+1 =
i

2k−1

∫
i−1

2k−1

Wi,n

(
2k−1t − i + 1

)

Wj,n

(
2k−1t − i + 1

)
dt (11)

We can approximate the function k (x, t) as fol-
lows:

k (x, t) ≈ WT (x) K W (t) ,
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where K is a
(
2k−1

)
(M − 1) × (2k−1

)
(M − 1)

matrix that we attain as:

K = D−1 〈 W (x)
〈
k (x, t) , W (t)

〉〉
D−1 (12)

2.2. Multiplication of the hybrid functions

We can evaluate W((2k−1)(M−1)×1) (t)

WT
((2k−1)(M−1)×1) (t) for NS-BVPs of the second

kind via the W functions as detailed below.
Let the product of W((2k−1)(M−1)×1) (t) and

WT
((2k−1)(M−1)×1) (t) be given by

W((2k−1)(M−1)×1) (t) WT
((2k−1)(M−1)×1) (t)

∼= M((2k−1)(M−1)×(2k−1)(M−1)) (t) (13)

Then, we calculate M((2k−1)(M−1)×(2k−1)(M−1)) (t)
for any k and M.

The matrix M((2k−1)(M−1)×(2k−1)(M−1)) (t) satis-
fies the relation:

M(2k−1(M−1)×2k−1(M−1)) (t) C(2k−1(M−1)×1)

= C̃(2k−1(M−1)×2k−1(M−1)) W(2k−1(M−1)×1) (t)

where C̃(2k−1(M−1)×2k−1(M−1)) is the matrix coeffi-
cient. We consider the case when k = 3 and M = 4.
Thus, we have

M(16)×(16) (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W10 (t) W10 (t) W10 (t) W20 (t) · · · W10 (t) W43 (t)

W20 (t) W10 (t) W20 (t) W20 (t) · · · W20 (t) W43 (t)

W30 (t) W10 (t) W30 (t) W20 (t) · · · W30 (t) W43 (t)
...

... · · · ...

W43 (t) W10 (t) W43 (t) W20 (t) · · · W43 (t) W43 (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Several of the integral
b(x)∫
a(x)

F (x, t)dt using Leibniz

rule as:

d

dx

b(x)
∫

a(x)
F (x, t) dt

= F (x, b (x))
db

dx
− F (x, a (x))

da

dx
+

b(x)
∫

a(x)

dF

dx
dt,

where F (x, t) and dF
dx

are continuous in the domain
D in the xt- plane that contains the region R, α ≤
x ≤ β, t0 ≤ t ≤ tn and a (x),b (x) are functions hav-
ing continuous derivatives for α ≤ x ≤ β. A global

Leibniz rule presented modifies NS-BVPs to several
equations.

3. Analysis of the W technique

In this split, we discuss the NS-BVPs of the shape
factor of the form

W′′ (x) + k

x
W′ (x) + f (W) = ~ (x) ,

W (0) = α, W′ (0) = 0, k > 1 (15)

where f (W) can take any linear or nonlinear
forms.

First, we set

W‘ (x) = α − 1

k − 1

x

∫
0
(t(1 − tk−1

xk−1
)f (W (t)) − ~ (t))dt.

(16)

Differentiate Equation (16) twice then using the
Leibniz rule, we obtain;

W′ (x) =
x∫
0
(
tk

xk
)~ (t) dt −

x∫
0
(
tk

xk
)f (W (t)) dt, (17)

W′′ (x) = ~ (x) −
x∫
0
k(

tk

xk+1 )~ ((t)) dt − f (W (x))

+
x∫
0
k(

tk

xk+1 )f (W (t)) dt. (18)

If we multiplyW′ (x) in (17) by k
x

and add toW′′ (x)
in (18) we get the following equation. That is the
NS-BVPs (18) is given by:

W′ (x) =
x

∫
0
(
tk

xk
)~ (t) dt −

x

∫
0
(
tk

xk
)f (W (t)) dt, W (0) = α.

(19)
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For k → 1, the integral form of Equation (19) is

W (x) = α +
x∫
0
t(ln(

t

x
)f (W (t)) − ~ (t))dt (20)

Based on this, the NS-BVPs forms are:

⎧⎪⎪⎨
⎪⎪⎩

W (x) = α +
x∫
0
t(ln( t

x
)f (W (t)) − ~ (t))dt, whenk = 1,

W (x) = α − 1
k−1

x∫
0
(t(1 − tk−1

xk−1 )f (W (t)) − ~ (t))dt, whenk > 1.
(21)

4. Application of W technique for NS-BVPs

The unknown function W (x) in (20) is approxi-
mated by the W technique as:

W (x) ∼=
M∑
i=1

n∑
j=0

cij Wij (x) = CT W (x) . (22)

First, integrating Equation (20) and from the
conditionW (0) = α, one gets

W (x) = α +
x∫
0
[
z∫
0
(
xk

zk
)~ (x) dx]dz

−
x∫
0
[
z∫
0
(
tk

zk
)f (W (t)) dt]dz, k ≥ 1. (23)

From Equations (22) and (23), we have;

CT W (x) = α +
x∫
0
[
z∫
0
(
xk

zk
)~ (x) dx]dz

−
x∫
0
[
z∫
0
(
tk

zk
)f (W (t)) dt]dz, k ≥ 1.

(24)

= α +
x∫
0

1(z)dz −
x∫
0

2(z)dz, (25)

where,

1 (z) =
z∫
0

(
xk

zk

)
~(x)dx, (26)

where D is a
(
2k−1

)
(M − 1) × (2k−1

)
(M − 1)

matrix, and is said the dual matrix of W (x)

D = 〈HW (x) , HW (x)〉 =
1∫
0
HW (x) HWT (x) dx

(27)

2 (z) = z
z∫
0

(
tk

zk

)
f (CT W (t))dt, (28)

Now we collocate the Equation (26) at the points
xi = (2i−1)

2((2k−1)(M)) yielding

CT W (xi) = α +
xi∫
0

1(z)dz −
xi∫
0

2(z)dz, (29)

To apply the Gaussian integration to Equation (26),
we use the transformation

τ = 2

xi

z–1, (30)

to transfer the interval of integration into the interval
[–1, 1]. Equation (26) becomes:

CT W (xi) = α + xi

2

1∫
−1

1(
xi

2
(T + 1)dτ

− xi

2

1∫
−1

2(
xi

2
(T + 1)dT, (31)

Using the Gaussian integration formula, we get

CT W (xi) ∼= α + xi

2

s1∑
j1=1

Wj1 1

(xi

2

(
Tj1 + 1

))

− xi

2

s2∑
j2=1

Wj2 2

(xi

2

(
Tj2 + 1

))
,

(32)

where s1 and s2, Tj1 and Tj2 are zeros of Legen-
dre polynomials ps1+1 (.) and ps2+1 (.) and Wj1 and
Wj2 are weights. After that we can use the New-
ton’s technique to get the values of C then we get
the solution.

Theorem 4.1. Let X be the Banach space with
‖W‖ = max

0≤x≤1
|W (x)| , W ∈ X and f (x, W) fulfill

the Lipschitz constrain, i.e.,

|f (x, ϒ1) − f (x, ϒ2) ≤ l| ϒ1 − ϒ2|, ∀ϒ1, ϒ2 ∈ X.

(33)
Let δ be denote as δ = l(a+b)

2a(1+α) .
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If δ < 1, then W = N (W) has a unique solution
in X.

Proof.

‖N (ϒ1) − N (ϒ2)‖

= max
0≤x≤1

∣∣∣∣ 1
∫
0
G (x, ζ) ζα

[
f (ζ, ϒ1) − f (ζ, ϒ1)

]∣∣∣∣
≤ max

0≤ζ≤1

1
∫
0
|f (ζ, ϒ1) − f (ζ, ϒ2)| max

0≤x≤1

∣∣∣∣ 1
∫
0
G (x, ϒ) ζαdζ

∣∣∣∣ .
(34)

Then

‖N (ϒ1) − N (ϒ2)‖ ≤ max
0≤ζ≤1

|ϒ1 − ϒ2| = ζ ‖ϒ1 − ϒ2‖ ,

(35)

‖N (ϒ1) − N (ϒ2)‖ ≤ ‖ϒ1 − ϒ2‖ , (36)

Theorem 4.2. Let N (W) be the nonlinear operator
that fulfills the Lipschitz condition. If ‖W0‖ < ∞,
then ‖Wk+1‖ ≤ δ ‖Wk‖,

k = 0, 1, 2... and the sequence Yn characterized by

Yn (x) =
n∑

j=0
Wj (x) , converges to the exact solution

W.

Proof. We have

Y1 = W0 + W1, Y2 = W0 + W1 + W2, . . . Yn

= W0 + W1 + W2 + . . . + Wn, . . . .

Thus, we find

Wk+1 = Yk+1 − Yk, k = 1, 2, . . . .

We now prove that the sequence {Yk} is convergent.
We obtain;

‖Wn+1‖ = ‖Yn+1 − Yn‖ = ‖NYn − NYn−1‖
≤ δ ‖Yn − Yn−1‖ ,

and hence

‖Yn+1 − Yn‖ = ‖Wn+1‖ ≤ δ ‖Wn+1‖
≤ δ2 ‖Wn−1‖ ≤ . . . ≤ δn+1 ‖W0‖ . (37)

For n, m ∈ N, with n ≥ m, we have,

‖Yn − Ym‖ = ‖(Yn − Yn−1) + (Yn−1 − Yn−2)

+ . . . + (Ym+1 − Ym)‖ , (38)

≤ ‖(Yn − Yn−1)‖ + ‖(Yn−1 − Yn−2)‖
+ . . . + ‖(Ym+1 − Ym)‖, (39)

≤ δn ‖W0‖ + δn−1 ‖W0‖ + . . . + δm+1 ‖W0‖ ,

(40)

= δm+1
(

1 + δ + δ2 + . . . + δn−m−1
)

‖W0‖ ,

(41)

= δm+1
(
1 + δn−m

)
1 − δ

‖W0‖ . (42)

Since 0 < δ < 1, we have
(
1 − δn−m

)
< 1. It read-

ily follows that;

‖(Yn − Ym)‖ ≤ δm+1

1 − δ
‖W0‖ . (43)

Taking limit as m → ∞, then we have
‖(Yn − Ym)‖ → 0.

Theorem 4.3. Let W (x) be the exact solution of
the operator equation W = NW. Let m (x) be the
sequence of approximate series solutions defined by

Yn (x) =
n∑

j=0
Wj (x). Then have

max
0≤t≤1

∣∣∣∣∣∣W (t) −
m∑

j=0

Wj (x)

∣∣∣∣∣∣ ≤
δm+1

1 − δ
‖W0‖ . (44)

Proof. For n ≥ m, using ‖W − Ym‖ ≤
δm+1

1−δ
‖W0‖, we have

‖Yn − Ym‖ ≤ δm+1

1 − δ
‖W0‖ . (45)

Since lim
n→∞ Yn = W, fixing m and letting n → ∞,

we obtain

‖W − Ym‖ ≤ δm+1

1 − δ
‖W0‖ . (46)

5. Consequence and investigation

In this split, two variants based on the second order
NS-BVPs have been taken and the comparison of the
present technique with the exact results will also be
discussed.
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Table 1
The W solutions at 2k−1 = 4, M = 3 and ADM for Example 1

x OBW ADM Exact AE of W AE of ADM

0.1 0.011 0.011 0.011 0 0
0.2 0.048 0.04800000004 0.048 6.5 × 10−14 4 × 10−11

0.3 0.117 0.1170000002 0.117 1.2 × 10−15 2 × 10−10

0.4 0.224 0.2240000003 0.224 8.7 × 10−14 3 × 10−10

0.5 0.375 0.3750000001 0.375 1.4 × 10−16 1 × 10−10

0.6 0.576 0.5760000004 0.576 3.1 × 10−14 4 × 10−10

0.7 0.833 0.83300000003 0.833 2.5 × 10−15 0
0.8 1.152 1.1520000007 1.152 1.6 × 10−14 1 × 10−9

0.9 1.539 1.5390000009 1.539 2.310−14 9 × 10−9

Example 1. Consider the linear second-order NSP-
BVP given by:⎧⎨

⎩
d2W(t)

dt2
+ 2

t4(1−t)1.5
dW(t)

dt
+ 1

t3(1−t)1.5 W (t) = f (t) , 0 < t < 1.

W (0) = W (1) , dW(0)
dt

= dW(1)
dt

.
(47)

The exact solution W (x) = x2 + x3.

Using the W, the truncate solution W (x) of (37)
at 2k−1 = 4 and M = 3 technique, we get 16 num-
ber algebraic equations with the same number of
unknowns at 2k−1 = 4, M = 3 and these equations
are solved by Newton’s technique with maple pro-
gram, we get the HW coefficients as:

C=[0,0, 0.02083337654, 0.078129087, 0.078125
8976, 0.1354153427, 0.22918967655, 0.3745632,
0.378987, 0.52068574, 0.71870796785, 0.984375
8647563, 0.98437685764, 1.258764, 1.5863452313
3, 2]

So, the truncate of W (x) is W (x) = CT W (x)
The acquired results have been compared with that

of our seventh order (ADM) along with the required
solutions and introduced in Table 1. The outcomes
reveal that the results by HW, with using only a small
number of bases, are very promising and superior to
ADM and evaluated absolute errors (AE) by HW for
W (x) will be decreased rapidly in comparison with
ADM.

Example 2. Consider the NSP-BVP s given by:⎧⎨
⎩

d2W(t)
dt2

+ 2
t2(1−t)

dW(t)
dt

+ 1
t(1−t)W (t) + W2 (t) = f (t) , 0 < t < 1,

W (0) = W (1) , dW(0)
dt

= dW(1)
dt

.

This equation can be transformed into the NS-
BVPs form as follows

W′
(x) = −

x∫
0
(
tg

xg
)trWm (t) dt, W (0) = 1, g ≥ 1

Tables 2 and 3, exhibit the numerical solutions of
W (t) by W at r = m = 0, g = 2, and r = 0, m =
1, g = 2.

a. For r = m = 0, and g = 2, the above equation
has the accurate solution

W (x) = 1 − x2

6
,

Table 3 shows that, for g = 2, m = 0, the acquired
results coincide with the required solution and effi-
ciency of the technique described through the AE.

By applying the W technique, and taking 2k =
4, M = 3, HW then the value of C is:

[1, 1, 0.879967, 0.9378902, 0.94378094,

0.9894876, 0.9946874, 0.946789, 0.936708,

0.964838, 0.942086, 0.94890328, 0.94289,

0.82478 - , 0.87448277, 0.8347664].

b. For r = 0, m = 1, and k = 2, we have:

W′ (x) = −
x∫
0
(
t2

x2 )W (t) dt, W (0) = 1.
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Table 2
The W solutions for Example.2 when g = 2, m = 0

x Accurate solution W solution AE

0.1 0.9983333333 0.9983333334 1 × 10−10

0.2 0.9933333333 0.9933333321 1.2 × 10−9

0.3 0.9850000000 0.9850000002 1 × 10−10

0.4 0.9733333333 0.9733333364 3.1 × 10−9

0.5 0.9583333333 0.9583333336 1 × 10−10

0.6 0.9400000000 0.9400000015 1.5 × 10−9

0.7 0.9183333333 0.9183333331 1 × 10−10

0.8 0.8933333333 0.8933333344 1.1 × 10−9

0.9 0.8650000000 0.8650000056 5.6 × 10−9

Table 3
The W solutions for Example.2 when g = 2, m = 1

x Accurate W Solution AE at 2k = 4, AE at 2k = 8,
Solution at 2k = 4, M = 3 M = 3 M = 7

0.1 0.9983341665 0.99834534345 2.37 × 10−8 4.61 × 10−16

0.2 0.9933466540 0.9933468760 1.260 × 10−7 7.02 × 10−16

0.3 0.9850673556 0.9850677866 1.173 × 10−8 2.35 × 10−16

0.4 0.9735458558 0.9735456548 2.161 × 10−8 5.11 × 10−16

0.5 0.9588510772 0.9588515722 7.278 × 10−8 2.73 × 10−16

0.6 0.9410707892 0.9410777892 1.80 × 10−8 6.35 × 10−16

0.7 0.9203109820 0.92031769820 1.086 × 10−7 1.05 × 10−16

0.8 0.8966951136 0.8966951661 9.66 × 10−8 3.24 × 10−16

0.9 0.8703632328 0.8703632628 1.12 × 10−8 4.01 × 10−16

The accurate solutions for this problem are given
by W (x) = sin(x)

x
.

Applying the W technique, and taking 2k =
4, M = 3, we note that W coefficients C as

[0.965622 1.766432345, 0.9524433, 0.98642742,
0.9272652, 0.9354247, 0.951467, 0.9642556,
0.9524552, 0.9452464, 0.9642355, 0.9524323,
0.9254334, 0.82345434, 0.8124564, 0.825433]

Designing this technique and taking 2k = 8, M =
7, if 2k, M increases, the truncate solution gets the
required solution. The truncate solutions acquired by
HW at g = 2 and 2k = 4, M = 3, at 2k = 8, M = 7
with require solutions and AE are demonstrated in
Tables 2. By increasing, 2k, M the computed results
have appropriated the exactness better as well, and
the truncate solution gets an approximate to the accu-
rate solution as demonstrated in Table 3. The CPU
time for running a case may depend on the choice
of 2k, M for solving the system of linear algebraic
equations resulting from the discretized equations. If
different values 2k, M are used, the CPU time would
be different.

6. Conclusions

In this article, the design of the W algorithm was
shown to solve the NS-BVPs. The demonstration of

the present study was carried out by using wavelets
and rapid fine modification of Hermite. The particu-
lar merit is that it can be applied very well without
change of BVPs into IVPs. The nonlinear singular
model based on periodic boundary value problems
was assessed effectively by the present approxima-
tion technique based on the Hermite technique and
accurateness of numerical outcomes was observed.
The W scheme’s accuracy was demonstrated by
finding the matching outcomes with the exact solu-
tions having 6 decimal places of overlapping for
solving nonlinear model based on singular periodic
boundary value problem. The important advantage
of the suggested technique is to collect scarce terms
of the Hermite polynomials so that a higher-order
approximation.
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