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Abstract
In order to understandmany complex situations inwave propagation, such as heat transfer, fluid
dynamics, opticalfibers, electrodynamics, physics, chemistry, biology, condensedmatter physics,
ocean engineering, andmany other branches of nonlinear science, themajority of natural processes
are routinelymodelled and analysed using nonlinear evolution equations. In this study, the (3+1)-
dimensional nonlinear evolution equation is investigated analytically. Initially, theHirota bilinear
approach is used to develop the bilinear version of the higher dimensional nonlinearmodel.
Consequently, we are able to design periodic wave soliton solutions, lumpwave and single-kink
soliton solutions, and collisions between lumps and periodic waves. Later on, the unifiedmethod is
applied to develop several new travellingwave solutions for the governingmodel substantially.
Furthermore, numerous exact solutions are analyzed graphically to exploremany fascinating
nonlinear dynamical structures with the aid of 3D, contour, and 2D visualizations. A variety of higher
dimensional nonlinear evolutionmodels can also be investigated by employing present approaches
arising inmany fields of contemporary science and technology.

1. Introduction

Nonlinear evolution equations (NLEEs) involve numerous applications in diverse sectors such as
hydrodynamics, opticalfibres, chaos theory, ocean engineering, solitary wave theory, turbulence theory, and
manymore.Many nonlinearmathematical and physical events are known to heavily depend on the
development of exact solutions and the investigation of accessible properties for nonlinear dynamicalmodels. In
numerous fields, NLEEs are frequently utilised to illustrate certain events including, optics [1],fluidmechanics
[2], condensedmatter physics [3],fluid dynamics [4], plasma physics [5] and nonlinear optics [6].

The studyof dynamical structures of suchmodels is the subject of intense researchbecause of their crucial role in
explainingmany important phenomena in awide rangeof real-worldproblems, such as those in thermodynamics,
chemical physics, rheology, electrochemistry, chemical physics, quantummechanics, andnonlinear dispersive
models [7–9]. Anunderstandingof various qualitative andquantitative features of nonlinear scientific processes is
greatly aidedby the travellingwave solutions. Their nonlocality is among these qualitative attributes,which indicates
that a systemstatus dependsnot just on its current positionbut also on all of its priorhistories [10–14].

The lump solutionswere systematically created byAblowitz and Satsuma in 1978using theHirota bilinear
technique [15, 16], whileMadeveloped the interaction solutions in 2015, including the lump-kink and the lump-
soliton solutions [17] in comparison to the lumpwave solutions [18, 19]. Furthermore, the roguewaves are a
significant feature among the complicated interactionbehaviours that havebeen identifiedbased on interaction
solutions fornumerous eminent nonlinear dynamicalmodels. Some studies suggest that roguewaves originate
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from the collisionof a lumpwave and a two-soliton. The lumpwave solution is a unique sort of rational localised
wave solution that algebraically decays to thebackgroundwave in the directionof space [20, 21].

The (3+1)-dimensional nonlinear evolutionmodel reads

u u u u u u3 3 3 0, 1yt xxxy x y x xx zz- - - - =( ) ( )

which is originally proposed in 2016 by L.N.Gao et al [22], Yu-HangYin et al later developed a bilinear Bäcklund
transformation that consists of four equations and six free parameters [23], while T. A. Sulaiman et almotivated
to design and establish some lump collision phenomena [24], the interaction solutions to the dimensionally
reduced equation have also been examined [25], alongwith the resonant behaviour ofmultiple wave solutions.
In this paper, theHirota bilinear approach is utilized to investigate the nature of the higher dimensional
evolutionmodel analytically. In order to develop a thorough analysis of lumpwaves and their collisionswith
periodic waves by identifying the bilinear formof the fractionalmodel.We have successfully examined the
collisions between lumpwaves and periodic wave soliton solutions, as well as the interactions between lump
waves and single and double-kink soliton solutions. Additionally, the unifiedmethod [26–28] is implemented to
achieve some new travellingwave structures for the governingmodel.

The research framework is structured as follows: section 2, defines the governingmodel and its bilinear form
while section 3, contains themathematical analysis. Section 4 demonstrates the graphical visualizations for the
observedwave structures. At the end summary of this paper are illustrated.

2.Mathematical analysis

Consider the following transformation [29] to develop the bilinear formof the equation (1)

x y z t F x y z t, , , 2 ln , , , , 2xw =( ) [ ( )] ( )

where F(x, y, z, t) is the unknownwave function that is to be calculated for the solutions of equation (1). The
bilinear form is shown below

D D D D D D F F3 3 . 0,t y x y x z
3 2 2- - + =( )

while the following bilinear operator are related [30],

D D f g
x x t t

f x t g x t x x t t. , . , , .x
m

t
n

m n
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
¶
¶

-
¶
¶ ¢

¶
¶

-
¶
¶ ¢

´ ¢ ¢ = ¢ = ¢( ) ( ) ( )∣

For a result, we attain

FF F F F F F F F F

FF FF F FF F

2 2 6 6 2

2 3 3 0, 3

yt t y x xxy xx xy xxx y

xxxy xx x zz z
2 2

- + - +

- - - + - =( ) ( ) ( )

obviously, if F satisfies (1), thenω= 2[lnF]x directs interest approach to the given equation (1).

2.1. Lumpwaves
In this section, we examine the operator F provided by

F , 41
2

2
2y y v= + + ( )

where

a x a y a z a t b x b y b z b t, ,1 1 2 3 4 2 1 2 3 4y y= + + + = + + +

and ai, bi, ϖʼs are the constants to be determined. Putting equation (4) into equation (3), we have a collection of
results with different variables. Using a computational tool likeMathematica to resolve them,we reach the
conclusions described below.

Case 1:
a a ib b i a ib b ia

b
i ia b a a a b

a

, 2 , ,

15 6 6
,

1 3 3 1 3 3 2 2

4
3 3 3

2
2 4 3

2

2

= - - = - + =

= -
- - + +

( )
( )

where a2, a3, a4, b3,ϖ are free variables. Using all known values, equation (4) becomes

F x a ib a t a y a z

it ia b a a a b

a
ix a ib ia y b z

15 6 6
2 . 5

3 3 4 2 3
2

3 3 3
2

2 4 3
2

2
3 3 2 3

2
⎜ ⎟
⎛
⎝

⎞
⎠

v= + - - + + +

+ -
- - + +

- + + +

( ( ) )

( ) ( ) ( )

Inserting (5) into (2), Finally calculate theω1(x, t, y, z) of (1).
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Case 2:

a
a b b a b a b a b b a a a a
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where a1, a2, a3, b1, b2, b3,ϖ, are free variables. Utilizing the suggested values equation (4) becomes

F
t a b b a b a b a b b a a a a
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Using equation (6) alongwith equation (2), Finally get the answerω2(x, t, y, z) of (1).
Case 3:

a a
a b a b

b
b

a a b b

b
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where a1,a3, b1, b2, b3,ϖ, are free variables.
Utilizing the suggested values equation (4) gives

F
t a b a b

b
a x a z

t a a b b

b
b x b y b z

3

3

2
. 7

3 3 1 1

2
1 3

2

1
2

3
2

1
2

3
2

2
1 2 3

2
⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

v= -
-

+ + +

+
- + + -

+ + +

( )

( ) ( )

Adding (7) combine to (2), the determine the resultω3(x, t, y, z) of (1).
Case 4:

a a ib b i a ib b ia

b
i ia b a a a b

a

, 2 , ,
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,

1 3 3 1 3 3 2 2

4
3 3 3

2
2 4 3

2

2

= - = - - = -

=
- + +

( )
( )

where a2,a3, a4, b3,ϖ, are free variables.
Using calculated results, equation (4) gives
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a
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Utilizing (8) together in (2), they determine the resultω4(x, t, y, z) of (1).

2.2. Collision among lumpwave and stripe soliton
Consider the operator of the form

F e , 90 1 1
2

2 2
2

3 3l l y l y l= + + + y ( )

where

a a x a y a z a t b b x b y b z b t

c c x c y c z c t

, ,

,
1 0 1 2 3 4 2 0 1 2 3 4

3 0 1 2 3 4

y y
y
= + + + + = + + + +
= + + + +

here ai, bi, ciʼs are the unknown integers. These definitions forψ1,ψ2, andψ3 are still applicable throughout this
article.

Using equation (9) into equation (3), the following results are attained after solving this systemusing a
computer programme likeMathematica.

Case 1:

c
c c c c

c

2 3 3

2
, 0, 0,4

2 1
3

1
2

3
2

2
1 2l l=

+ -
= =

where c0, c1, c2, c3,λ0,λ3 are free variables.
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Therefore, applying these conditions, equation (9) becomes

F e
c c c c t

c
c x c y c z c

2 3 3

2
. 103

2 1
3

1
2

3
2

2
1 2 3 0 0⎜ ⎟

⎛
⎝

⎞
⎠

l l=
+ -

+ + + + +
( ) ( )

Using (10) alongwith (2), Finally find the solution.

*x y z t
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while a0, a1, a3, a4, b0, b2,λ0,λ1 are free variables.
Therefore, applying these conditions, equation (9) becomes
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Using (12) together with (2),Wefind the solution of the form:
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a
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where a0, a1, a4, a3, b0, b2,λ0,λ1 are free variables.
Using all of the following known values, equation (9) becomes
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Inserting (14) into (2), they determine the resultω7(x, t, y, z) of (1).
Case 4:

a a
a b a b

b
b
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b
0,

3
,

3

2
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where a0, a1, a3, b0, b1, b2, b3,λ0,λ1 contain free variables.
Therefore, given each for the following known variables equation (9) becomes

F
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using (15) alongwith (2), they determine the resultω8(x, t, y, z) of (1).
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2.3. Collisions between lumpwave and double strip soliton
Consider the following steps

F cosh . 160 1 1
2

2 2
2

3 3l l y l y l y= + + + ( ) ( )

where

a a x a y a z a t b b x b y b z b t

c c x c y c z c t

, ,

,
1 0 1 2 3 4 2 0 1 2 3 4

3 0 1 2 3 4

y y
y
= + + + + = + + + +
= + + + +

and ai, bi, ciʼs are the unknown integers.
Inserting (16) into (3),We come upwith a collection of equations involving different variables.With the use

of a computer programme likeMathematica, we are able to solve this system and obtain the given results.
Case 1:

c
c c c c

c

8 3 3

2
, 0, 0, 0,4

2 1
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1
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3
2

2
0 1 2l l l= -
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= = =

where c0, c1, c2, c3,λ3 are free variables.
In basis of these factors, equation (16) becomes

F
c c c c t

c
c x c y c z ccosh

8 3 3

2
. 173

2 1
3

1
2

3
2

2
1 2 3 0⎜ ⎟

⎛
⎝

⎞
⎠

l= -
- - +

+ + + +
( ) ( )

using (17) together with (2), they find the solution.
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where a0, a2, a4, b0, b1, b3, b4,λ1,λ2,λ3 are free variables. In basis of these factors, equation (16) becomes
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the (19) combined by (2), wefind the solutionω10(x, y, z, t) of (1).
Case 3:

a
a a b b

a
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where a0, a1, a2, a3, b0, b1, b3,λ1,λ2,λ3, are free variables.
In basis of these factors, equation (16) becomes
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using (20) alongwith (2), we acquire the solutionω11(x, y, z, t) of (1).

2.4. Collision between lump and periodic waves
The following section investigates the function F, which is defined as

F cos , 210 1 1
2

2 2
2

3 3l l y l y l y= + + + ( ) ( )

where

a a x a y a z a t b b x b y b z b t

c c x c y c z c t

, ,

,
1 0 1 2 3 4 2 0 1 2 3 4

3 0 1 2 3 4

y y
y
= + + + + = + + + +
= + + + +

and ai, bi, ciʼs are the unknown integers.
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Inserting (21) into (3), we obtain a collection of solutions with different given constants. After solving this
systemwith a computer application likeMathematica they get to the corresponding results.

Case 1:

c
c c c c

c

8 3 3

2
, 0, 0, 0,4

2 1
3

1
2

3
2

2
0 1 2l l l=
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where c0, c1, c2, c3,λ0,λ3, are free variables.
Therefore, using all of the given variables, equation (21) obtains

F
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8 3 3

2
. 223

2 1
3

1
2

3
2

2
1 2 3 0⎜ ⎟

⎛
⎝

⎞
⎠

l=
- + -

+ + + +
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using all of these results togetherwith (22) and then using (2), Finally get the solution.

x t y z c
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Case 2:
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= = -
-

=
( ) ( )

where a0, a1, a2, a3, b0, b1, b3,λ1,λ2,λ3, are free variables.
Therefore, using all of the given variables, equation (21) obtains

F
t a b a b

a
b x b z b

t a a b b

a
a x a y a z a

c t c x c y c z c

3

3

2

cos . 24

2
3 3 1 1

2
1 3 0

2

1
3
2

1 1
2

1 1
2

2 3
2

2

2 1
1 2 3 0

2

3 4 1 2 3 0

⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

l

l
l l l l

l
l

= -
-

+ + +

+ -
- + -

+ + + +

+ + + + + +

( )

( )

( ) ( )

using all of these results togetherwith (24) and then using (2), wefind the result.

x y z t
b b x b z b a c

b x b z b
, , ,

2 2 2 sin

cos
. 25

t a b a b

a

t a b a b

a

13

1 2
3

1 3 0 1 1 1 1 3 3

2
3

1 3 0
2

1 1
2

3 3

3 3 1 1

2

3 3 1 1

2

w
l l y l y

l l y l y
=

- + + + + -

- + + + + +

-

-

( )( )
( )( )

( )

( )
( )

( )

( )

where

a
a a b b

a
a t a x a y a z a

c t c x c y c z c

3

2
, ,

.

4
3
2

1 1
2

1 1
2

2 3
2

2

2 1
1 4 1 2 3 0

3 4 1 2 3 0

l l l l
l

y

y

= -
- + -

= + + + +

= + + + +

( )

Case 3:

a a
ib

a
ib

b
ia

b0, , , , 0, 0,1 3
1 2

1
4

4 2

1
2

2 1

2
3 0

l
l

l
l

l
l

l= = - = = = =

where a0, a2, b0, b1, b4,λ1,λ2,λ3, are free variables.
Therefore, using all of the given variables, equation (21) obtains

F a y a
ib t ib z

ia y
b t b x bcos . 26

1 2 0
4 2

1

1 2

1

2

3 3 2
2 1

2
4 1 0

2

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

l
l
l

l
l

l y l
l
l

= + + -

+ + + + +( ) ( )

using all of these results togetherwith (26) and then using (2), wefind the result.

x y z t
c b b t b x b

b t b x b a y a
, , ,

2 sin 2

cos
.

27

ia y

ia y ib t ib z
14

1 3 3 1 2 4 1 0

2 4 1 0
2

1 2 0
2

3 3

2 1

2

2 1

2

4 2

1

1 2

1

⎛
⎝

⎞
⎠w

l y l

l l l y
=

- + + + +

+ + + + + + - +

l

l

l

l

l

l

l

l

( )
( ) ( )( )

( )

( )

( )
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2.5. Periodic solitons
The following section investigates the function F, which is defined as

F e e cos . 280 1 2 3 21 1l l l l y= + + +y y- ( ) ( )

where

a a x a y a z a t b b x b y b z b t, .1 0 1 2 3 4 2 0 1 2 3 4y y= + + + + = + + + +

and ai, bi, ciʼs are the unknown integers.
Inserting (28) into (3), we obtain a collection of solutions with different given constants. After solving this

systemwith a computer application likeMathematica they get to the corresponding results.
Case 1:

a
a a b a a a a

a
b

b b b
b a b a a a a

a

6 2 3 3

2
, 0,

,
3 3 3

, 0,

4
2 1 1

2
2 1

3
1
2

3
2

2
2

3 1 4
1 2 1

2
2 1

2
1 3

2
0l

=
- + + -

=

= - = -
- - -

=
( )

where a0, a1, a2, b0, b1, a3,λ1,λ2,λ3 are free variables.
Therefore, using all of the given variables, equation (28) obtains

F
t a a b a a a a

a
a x a y a z a

b t a b a a a a

a
b x b z b

b t a b a a a a

a
b x b z b

6 2 3 3

2

3 3 3

cos
3 3 3

. 29

1
2 1 1

2
2 1

3
1
2

3
2

2
1 2 3 0

2

2
1 2 1

2
2 1

2
1 3

2
1 1 0

2

3
1 2 1

2
2 1

2
1 3

2
1 1 0

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

l

l

l

=
- + + -

+ + + +

+ -
- - -

+ - +

+ -
- - -

+ - +

( )

( )

( ) ( )

using all of these results togetherwith (29) and then using (2), wefind the result.

x y z t

b b x b z b a b

b x b z b
, , ,

2 sin 2 2

cos
.

30

b t a b a a a a

a

b t a b a a a a

a

15

1 3
3 3 3

1 1 0 1 1 1 1 2 2

3
3 3 3

1 1 0 1 1
2

2 2
2

1 2 1
2

2 1
2

1 3

2

1 2 1
2

2 1
2

1 3

2

⎛
⎝

⎞
⎠w

l l y l y

l l y l y
=

- - + - + + +

- + - + + +

- - -

- - -

( )( )
( )( )

( )

( )

( )

where

a
a a b a a a a

a
a t a x a y a z a

b t b x b y b z b

6 2 3 3

2
, ,

.

4
2 1 1

2
2 1

3
1
2

3
2

2
1 4 1 2 3 0

2 4 1 2 3 0

y

y

=
- + + -

= + + + +

= + + + +

Case 2:

a
a a b a a a a

a
b

b b b
b a b a a a a

a

6 2 3 3

2
, 0,

,
3 3 3

, 0,

4
2 1 1

2
2 1

3
1
2

3
2

2
2

3 1 4
1 2 1

2
2 1

2
1 3

2
0l

=
- + + -

=

= = -
- - +

=
( )

where a0, a1, a2, a3, b0, b1, b3,λ1,λ2,λ3 are free variables.
Therefore, using all of the given variables, equation (28) obtains

F
t a a b a a a a

a
a x a y a z a

b t a b a a a a

a
b x b z b

b t a b a a a a

a
b x b z b

6 2 3 3

2

3 3 3

cos
3 3 3

. 31

1
2 1 1

2
2 1

3
1
2

3
2

2
1 2 3 0

2

2
1 2 1

2
2 1

2
1 3

2
1 1 0

2

3
1 2 1

2
2 1

2
1 3

2
1 1 0

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

l

l

l

=
- + + -

+ + + +

+ -
- - +

+ + +

+ -
- - +

+ + +

( )

( )

( ) ( )
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using all of these results togetherwith (31) and then using (2), wefind the result.

x y z t

a a x a y a z a b b

a x a y a z a
, , ,

2 2 2 sin

cos
.

t a a b a a a a

a

t a a b a a a a

a

16

1 1
6 2 3 3

2 1 2 3 0 1 2 2 1 3 2

1
6 2 3 3

2 1 2 3 0
2

2 2
2

3 2

2 1 1
2

2 1
3

1
2

3
2

2

2 1 1
2

2 1
3

1
2

3
2

2

⎛
⎝

⎞
⎠w

l l y l y

l l y l y
=

+ + + + + -

+ + + + + +

- + + -

- + + -

( )
( )( )

( )

( )

( )

( )

where

b
b a b a a a a

a
b t b x b y b z b

3 3 3
, .4

1 2 1
2

2 1
2

1 3

2
2 4 1 2 3 0y= -

- - +
= + + + +

( )

2.6. Travelingwave solutions by the unifiedmethod
The aimof the section is to achieve some new travelingwave solutions for the (3+1)-dimensional nonlinear
evolutionmodel (1) by employing the unified technique [31]. Consider the followingwave transformation

x y z t u x y
z t

, , , , , 32w z z t r
s
a

m
b

= = + + -
a b

( ) ( ) ( )

where τ and ρ is parameters, whileσ,μ is thewaves velocity. An ordinary differential equation is obtained using
the transformation (32) in (1).

u u u u u3 3 3 6 0, 332 2 2 3 4mr s t z s z rt z z rt z- + -  + ¢ - ¢  - =( ) ( ) ( ) ( ) ( ) ( ) ( )( )

by integrating and skipping integration constant, then get the solutions

u u u u3 3 3
1

2
0. 342 2 2 2 3 3mr s t z s z rt z rt z- + - ¢ + + ¢ - =( ) ( ) ( ) ( ) ( ) ( )( )

Assume the solution to equation (34) provided by

u A A B , 35
i

n

i
i

i
i

0
1

åz q z q z= + +
=

-( ) ( ( ) ( )) ( )

hereAi,Bi(0� i� n) are parameters, andwhile θ(ζ) satifies

, 362q z q z¢ = + W( ) ( ) ( )

Group 1: WhenΩ< 0,

A B A K

A K B

cosh 2

sinh 2
, 37

2 2
0

0

q z
z

z
=

W - + - -W -W +

-W + +
( )

( ( )) ( ( ))
( ( ))

( )

A B A K

A K B

cosh 2

sinh 2
, 38

2 2
0

0

q z
z

z
=

- W - + - -W -W +

-W + +
( )

( ( )) ( ( ))
( ( ))

( )

A

A B K K

2

cosh 2 sinh 2
, 39

0 0

q z
z z

=
-W

+ + -W + - -W +
+ -W( )

( ( ) ( ( )))
( )

A

A B K K

2

cosh 2 sinh 2
, 40

0 0

q z
z z

=
-W

+ + -W + - -W +
- -W( )

( ( ) ( ( )))
( )

whereK0 is an integration constant.
Group 2: WhenΩ> 0,

A B A K

A K B

cos 2

sin 2
, 41

2 2
0

0

q z
z

z
=

W - - W W +

W + +
( )

( ) ( ( ))
( ( ))

( )

A B A K

A K B

cos 2

sin 2
, 42

2 2
0

0

q z
z

z
=

- W - - W W +

W + +
( )

( ) ( ( ))
( ( ))

( )

A K K
i

2Ai

iSin 2 cos 2
, 43

0 0

q z
z z

= -
W

- W + + W +
+ W( )

( ( )) ( ( ))
( )

A K K
i

2Ai

iSin 2 cos 2
. 44

0 0

q z
z z

= -
W

- W + + W +
- W( )

( ( )) ( ( ))
( )
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Group 3: WhenΩ= 0,

K

1
, 45

0

q z
z

= -
+

( ) ( )

by comparing u(3)(ζ) and u 2z¢( ) in (34), thenfind n= 1. So, equation (35) can be explained using the following

u A A
B

, 460 1
1z q z

q z
= + +( ) ( )

( )
( )

by using equation (46) including equation (36) to equation (34) and nowbalancing θ(ζ) to zero, here attain a
collection of results with various distinct parameters, They have a systemof algebraic equations.

A A A A A A

A A A A A

A B B B B B

A B A B B B B B

B B B B B

2
1

2
3 3 3 0,

2 3 3 0,

2 3 3 0,

2 2 3 3 0,

6 6
1

2

1

2
0.

1 1
3 2

1
2 2 2

1
2

0 1
2

1 1
3

1
2 2

1
2

1
2

1 1
2 2

1 1
3 2

1
2

1
2

1 1
2

1 1
2

1 1
3

1
2

1
2

1
3 3

1
3 2

1
2 2 2

1
2 2

1
2 2

mr rt rt s s t

mr rt rt s t
rt mr rt s t
rt rt mr rt s t

rt rt rt rt rt

- W - W + W + W + - W =

- - W + W + - =
- W + W + W - W + W =
- W - + + W - + =

W + W + W + W + =

The following outcomes from resolving this solution

A
A

B
6

, 0,1
0

1
s

rt
= - =

A6 2 3 3
.

0
3 2 2

m
r st rt s t

r
=

+ + -

The following solutions for the givenmodel are derived using these parameters.
Group 1: WhenΩ< 0,

x y z t A
A A B A K

A K B
, , ,

6 cosh 2

sinh 2
, 4717 0

0
2 2

0

0

w
s zm

rt zm
= -

W - - - -W -W +

-W + +
( )

( ( ) ( ( )))
( ( ( )) )

( )

x y z t A
A A B A K

A K B
, , ,

6 cosh 2

sinh 2
, 4818 0

0
2 2

0

0

w
s zm

rt zm
= -

- W - - - -W -W +

-W + +
( )

( ( ) ( ( )))
( ( ( )) )

( )

x y z t A
A

, , ,
6

, 49

A

A B K K
19 0

0
2

cosh sinh 2 20 0w
s

rt
= -

+ -W
zm zm
-W

+ + -W + - -W +( )
( ) ( )( ( ( )) ( ))

x y z t A
A

, , ,
6

, 50

A

A B K K
20 0

0
2

cosh sinh 2 20 0w
s

rt
= -

- -W
zm zm
-W

+ + -W + - -W +( )
( ) ( )( ( ( )) ( ))

where

A t
x y

z6 2 3 3
, .

0
3 2 2

m
r st rt s t

r
z

m
b

t r
s
a

=
+ + -

= - + + +
b a

Group 2: WhenΩ> 0,

x y z t A
A A B A K

A K B
, , ,

6 cos 2

sin 2
, 5121 0

0
2 2

0

0

w
s zm

rt zm
= -

W - - W W +

W + +
( )

( ( ) ( ( )))
( ( ( )) )

( )

x y z t A
A A B A K

A K B
, , ,

6 cos 2

sin 2
, 5222 0

0
2 2

0

0

w
s zm

rt zm
= -

- W - - W W +

W + +
( )

( ( ) ( ( )))
( ( ( )) )

( )

x y z t A
A i

, , ,
6

, 53
A K K

23 0

0
2Ai

iSin 2 cos 20 0w
s

rt
= -

- + W
zm zm

W
- W + + W +( )

( ) ( )( ( )) ( ( ))

x y z t A
A i

, , ,
6

, 54
A K K

24 0

0
2Ai

iSin 2 cos 20 0w
s

rt
= -

- - W
zm zm

W
- W + + W +( )

( ) ( )( ( )) ( ( ))
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where

A t
x y

z6 2 3 3
, .

0
3 2 2

m
r st rt s t

r
z

m
b

t r
s
a

=
+ + -

= - + + +
b a

Group 3: WhenΩ= 0,

x y z t
A

K x y
A, , ,

6
. 55

t A z
25

0

6 2 3 3
0

0
0

3 2 2
w

s

rt t r
=

- + + + +
+

r s t rt s t

br
s
a

+ + -b a( )( ) ( )
( )

3.Discussion and results

In current section of the study, we present the different graphical behaviours of the (3+1)dimensional nonlinear
evolution equation (1)using the advanced computational tool likeMathematica orMaple. Several distinct,
bright, dark, periodic, and bell-shaped solitons appear for a certain range of values. Figure 1 tells graphs
representations for |ω1(x, y, z, t)| based on different parameter values of a3= 1.22, a4= 2, t= 1, a1= 1.25,
a2= 1.88, b1= 1.73, b2= 1.92, b3= 1.44, z= 1, ϖ= 2 represent the bell shaped soliton solutions. Figure 2
tells graphs representations for |ω2(x, y, z, t)| based on different parameter values of a3= 1.8, a4= 1, t= 1,
a1= 0.6, a2= 1.6, b1= 1, b2=− 1, b3= 1.3, z= 1, ϖ= 1 represent the bright shaped soliton solutions.
Likewise, figure 3 displays the periodic soliton solutions utilizing different values of constant |ω4(x, y, z, t)|
with c0= 2, c1=− 1.9, c2= 1.1, c3= 0.7, z= 0.2, t= 1. Also if we talk for thefigure 4 express the periodic
soliton solution for the constant values b0= 1.7, b1=− 0.99, b3= 0.1, a0= 1.22, a1=0.43, a2= 1.2, a3= 0.11,
t= 1, z= 1,λ0=− 1.6,λ1=− 0.88. Figure 5 displays the singular bell shaped soliton solutions utilizing
different values of constant |ω10(x, y, z, t)|with a0= 0.2, a1=− 1.3, a4= 1, b0= 3, b4= 1,λ2=− 2,λ1= 1,
λ0= 2.1, z= 1, t= 1. Likewise, figures 6, 7 for given parameter values represents the periodic solution a1=1.2,
a0= 1.3, a2= 1.4, a3=− 1.2,λ1= 1.5,λ0=− 1.2, t= 1, z= 1.02 and ρ= 1.9, A= 1.3, B= 1.12, Ω= 1.7,
σ= 0.44, τ= 1.3, z= 1, t= 1, α= 0.2, β= 0.2, K0= 1, A0= 1, y= 1. Similarly, figure 8 displays a periodic
soliton solution for the constant values is presented ρ= 1.9, A= 1.3, B= 1.12, Ω= 1.7, σ= 0.44, τ= 1.3,

Figure 1.Approaches for the bell solution |ω1(x, y, z, t)|with a3 = 1.22, a4 = 2, t = 1, a1 = 1.25, a2 = 1.88, b1 = 1.73, b2 = 1.92,
b3 = 1.44, z = 1, ϖ = 2.

Figure 2.Approaches for the bright solution |ω2(x, y, z, t)|with a3 = 1.8, a4 = 1, t = 1, a1 = 0.6, a2 = 1.6, b1 = 1, b2 = − 1,
b3 = 1.3, z = 1, ϖ = 1.
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Figure 3.Approaches for themulti periodic solution |ω4(x, y, z, t)|with c0 = 2, c1 = − 1.9, c2 = 1.1, c3 = 0.7, z = 0.2, t = 1.

Figure 4.Approaches for the periodic solution |ω6(x, y, z, t)|with b0 = 1.7, b1 = − 0.99, b3 = 0.1, a0 = 1.22, a1= 0.43, a2 = 1.2,
a3 = 0.11, t = 1, z = 1,λ0 = − 1.6,λ1 = − 0.88.

Figure 5.Approaches for the singular bell shaped solution |ω10(x, y, z, t)|with a0 = 0.2, a1 = − 1.3, a4 = 1, b0 = 3, b4 = 1,λ2 = − 2,
λ1 = 1,λ0 = 2.1, z = 1, t = 1.

Figure 6.Approaches for the periodic solution |ω8(x, y, z, t)|with a1=1.2, a0 = 1.3, a2 = 1.4, a3 = − 1.2,λ1 = 1.5,λ0 = − 1.2, t = 1,
z = 1.02.
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z= 1, t= 1, α= 0.2, β= 0.2, K0= 1, A0= 1, y= 1. At the end,figure 9 represents a dark type soliton solution
for the constant values is presented ρ= 1.98, A= 1.25, B= 1.51, Ω= 1.68, τ= 2, σ=− 0.2, z= 1, t= 1,
α= 2.11, β= 1, K0= 2, A0= 1.49, y= 1.

The Two and three dimensional graphs of the computed results using various variable selections present
more in-depth understanding of the dynamical wave structures.We have observed some periodic wave
solutions representing amovement can be oscillatory or periodic, although oscillatorymotion is limited to
oscillating around an equilibriumpoint or between two states. Periodicmotion is applicable to anymovement
that repeats over time. Another formof the developedwave structures are the singular wave forms representing
the nature of the solution as the blow-up time draws near is extremely fascinating to imagine through different
wave shapes.When the solution becomes unbounded infinite time, singularity takes on a simple form. Though
its slope becomes infinite infinite time, we can claim that thewave has brokenwhen the solution is still bounded.
A point where the slope is vertical and thewave is said to have broken is eventually generated by the graph, which
initially grows somewhat steeper as it propagates.

Figure 7.Approaches for the periodic solution |ω18(x, y, z, t)|with ρ = 1.9, A = 1.3, B = 1.12, Ω = 1.7, σ = 0.44, τ = 1.3, z = 1,
t = 1, α = 0.2, β = 0.2, K0 = 1, A0 = 1, y = 1.

Figure 8.Approaches for the periodic soliton solution |ω16(x, y, z, t)|with ρ = 1.2, A = 0.21, B = 0.6, Ω = 0.9, σ = 0.3, τ = 1.3,
z = 1, t = 1, α = 0.15, β = 0.7, K0 = 1, A0 = 2, y = 1.

Figure 9.Approaches for the dark type soliton solution |ω16(x, y, z, t)|with ρ = 1.98, A = 1.25, B = 1.51, Ω = 1.68, τ = 2,
σ = − 0.2, z = 1, t = 1, α = 2.11, β = 1, K0 = 2, A0 = 1.49, y = 1.
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4. Conclusion

In this paper, the (3+1)-dimensional nonlinear evolutionmodel has been studied by applying theHirota
bilinear approach and the unifiedmethod. Based on the consideredmethodologies, we retrieved various
fascinating forms of wave structures. The dynamic characteristics for the governingmodel are extensively
visulized in the formof 3D, 2D and contour plots by usingMathematica 13. The observed solutions
demonstared fascinating behaviours including the dark, bright, singular, periodic, bell-shaped, solutions and
optical soliton solutions, for details see figures (1–9). This study ismore valuable since the findings aremore
significant and reliable in describing various physical phenomena. These solutions demonstrate the physical
behaviour of a variety of natural phenomena, includingwavemotion, fluid dynamics, and opticalfiber
properties. The applied strategies are thus shown to be desirable and helpful to deal with a number of other
higher dimensional nonlinear evolutionmodels that exist in hydrodynamic, plasma,mathematics, and other
disciplines of engineering and science.
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