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Abstract

In order to understand many complex situations in wave propagation, such as heat transfer, fluid
dynamics, optical fibers, electrodynamics, physics, chemistry, biology, condensed matter physics,
ocean engineering, and many other branches of nonlinear science, the majority of natural processes
are routinely modelled and analysed using nonlinear evolution equations. In this study, the (3+1)-
dimensional nonlinear evolution equation is investigated analytically. Initially, the Hirota bilinear
approach is used to develop the bilinear version of the higher dimensional nonlinear model.
Consequently, we are able to design periodic wave soliton solutions, lump wave and single-kink
soliton solutions, and collisions between lumps and periodic waves. Later on, the unified method is
applied to develop several new travelling wave solutions for the governing model substantially.
Furthermore, numerous exact solutions are analyzed graphically to explore many fascinating
nonlinear dynamical structures with the aid of 3D, contour, and 2D visualizations. A variety of higher
dimensional nonlinear evolution models can also be investigated by employing present approaches
arising in many fields of contemporary science and technology.

1. Introduction

Nonlinear evolution equations (NLEEs) involve numerous applications in diverse sectors such as
hydrodynamics, optical fibres, chaos theory, ocean engineering, solitary wave theory, turbulence theory, and
many more. Many nonlinear mathematical and physical events are known to heavily depend on the
development of exact solutions and the investigation of accessible properties for nonlinear dynamical models. In
numerous fields, NLEEs are frequently utilised to illustrate certain events including, optics [ 1], fluid mechanics
[2], condensed matter physics [3], fluid dynamics [4], plasma physics [5] and nonlinear optics [6].

The study of dynamical structures of such models is the subject of intense research because of their crucial role in
explaining many important phenomena in a wide range of real-world problems, such as those in thermodynamics,
chemical physics, rheology, electrochemistry, chemical physics, quantum mechanics, and nonlinear dispersive
models [7-9]. An understanding of various qualitative and quantitative features of nonlinear scientific processes is
greatly aided by the travelling wave solutions. Their nonlocality is among these qualitative attributes, which indicates
that a system status depends not just on its current position but also on all of its prior histories [10—14].

The lump solutions were systematically created by Ablowitz and Satsuma in 1978 using the Hirota bilinear
technique [15, 16], while Ma developed the interaction solutions in 2015, including the lump-kink and the lump-
soliton solutions [17] in comparison to the lump wave solutions [ 18, 19]. Furthermore, the rogue waves are a
significant feature among the complicated interaction behaviours that have been identified based on interaction
solutions for numerous eminent nonlinear dynamical models. Some studies suggest that rogue waves originate
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from the collision of alump wave and a two-soliton. The lump wave solution is a unique sort of rational localised
wave solution that algebraically decays to the background wave in the direction of space [20, 21].
The (3+1)-dimensional nonlinear evolution model reads

Uyr — Uxxxy — 3(uxuy)x — 3y — 3u, =0, (D

which is originally proposed in 2016 by L. N. Gao et al [22], Yu-Hang Yin et allater developed a bilinear Backlund
transformation that consists of four equations and six free parameters [23], while T. A. Sulaiman et al motivated
to design and establish some lump collision phenomena [24], the interaction solutions to the dimensionally
reduced equation have also been examined [25], along with the resonant behaviour of multiple wave solutions.
In this paper, the Hirota bilinear approach is utilized to investigate the nature of the higher dimensional
evolution model analytically. In order to develop a thorough analysis of lump waves and their collisions with
periodic waves by identifying the bilinear form of the fractional model. We have successfully examined the
collisions between lump waves and periodic wave soliton solutions, as well as the interactions between lump
waves and single and double-kink soliton solutions. Additionally, the unified method [26-28] is implemented to
achieve some new travelling wave structures for the governing model.

The research framework is structured as follows: section 2, defines the governing model and its bilinear form
while section 3, contains the mathematical analysis. Section 4 demonstrates the graphical visualizations for the
observed wave structures. At the end summary of this paper are illustrated.

2. Mathematical analysis

Consider the following transformation [29] to develop the bilinear form of the equation (1)

w(x, ¥, z, t) = 2In[F(x, y, z, )], 2
where F(x, y, z, t) is the unknown wave function that is to be calculated for the solutions of equation (1). The
bilinear form is shown below

(D;D, — D}D, — 3D} + 3D}))F.F = 0,

while the following bilinear operator are related [30],

m n 8 6 " 8 a "
DD (f.g) = (8_x - @) (5 - 5) X f(x, 0).g&, thlx=x,t=1.

For a result, we attain
2FE, — 2EF, + 6F,Fuy — 6EEy + 2EeF,
—2FE.y — 3(FEy — F}) + 3(FE, — F) = 0, 3)

obviously, if Fsatisfies (1), then w = 2[InF]x directs interest approach to the given equation (1).

2.1. Lump waves
In this section, we examine the operator F provided by

F=9!+ ¢} + w, (4)
where
7?1 =mx + ay + asz =+ aut, wz = blx + bz)/ + b3Z + b4t,

and a;, b;, w’sare the constants to be determined. Putting equation (4) into equation (3), we have a collection of
results with different variables. Using a computational tool like Mathematica to resolve them, we reach the
conclusions described below.
Case 1:
a = —as — ibs, by = —2i(az + ib3), b, = iay,
i(—15iasbs — 6a? + ayay + 6b})
ap ’
where a,, a3, a4, bs, w are free variables. Using all known values, equation (4) becomes

by =

F=w+ (x(—as — ibs) + ast + @y + asz)?
N (_ it (—15iasbs — 6a? + ara, + 6b})
a

— 2ix(as + ibs) + iayy + b3Z) 2, (5)

Inserting (5) into (2), Finally calculate the w1 (x, t, ¥, 2) of (1).

2
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Case2:

Gy — — 3(—2a1b1b2 + a2b12 — a2b32 + 2a3b2b3 + a2a32 — alzaz)
) 2a; + b7) ’
- 3(6112(*172) —+ 2612611171 —+ 032[72 — 20203b3 — b2b32 —+ blzbz)

2(a; + b3)

by

where ay, a,, as, by, by, b3, w, are free variables. Utilizing the suggested values equation (4) becomes

F—|_ 3t(—2a1b1b2 + a2b12 — a2b32 + 2a3b,bs + azaf — alzaz)
2(a; + b3)

4 31’(012(—172) + 2aya,by + a32b2 — 2aya3b; — b2b32 + blzbz)
2(a; + b3)

+ ax + @y + a3z)2 + @

+ b1x + bz}/ + b32)2. (6)

Using equation (6) along with equation (2), Finally get the answer w,(x, t, y, z) of (1).
Case 3:

_3(a3b3 — albl) b4 _ 3(—6112 + 6132 + b12 - b32)

bz 2b2

=0, as=

where a,,as, by, by, b3, w0, are free variables.
Utilizing the suggested values equation (4) gives

F(M +a1x+a32)2+w

by
2 2 2 12
—+ 3t( i * e + bl b3) + b].x + bz}/ + b3Z 2. (7)
2b,
Adding (7) combine to (2), the determine the result ws(x, t, y, z) of (1).
Case 4:
ap = a3 — ib3, by = —2i(a3 — ib3), b, = —iay,
by — i(15iazbs — 6a32 + ayay + 6b32)
4 — >
a

where a,,d3, a4, bs, @, are free variables.
Using calculated results, equation (4) gives

F=w + (x(as — ibs) + ast + @y + a3z)?
n (it(lSia3b3 — 6ai + aya, + 6b?)

[25)

— 2ix(as — ibs) — iapy + b3z)2. (8)

Utilizing (8) together in (2), they determine the result w,(x, t, y, z) of (1).

2.2. Collision among lump wave and stripe soliton
Consider the operator of the form

F= X+ N7 + Mt + Ase?s, ©)]
where

¢1 =ay + ax + ay + aszz + aut, ’lpz = b() + blx + bz)/ + b3Z + b4t,
VY3 =co+ ax + oy + 3z + at,

herea;, b;, ¢;'s are the unknown integers. These definitions for 11, 1,, and 15 are still applicable throughout this
article.

Using equation (9) into equation (3), the following results are attained after solving this system using a
computer programme like Mathematica.

Case 1:

26¢; + 3¢ — 3¢
Cy =

, A=0, =0,
% 1 2

where cy, 1, ¢, €3, Mg, A3 are free variables.
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Therefore, applying these conditions, equation (9) becomes
26¢] + 3¢t — 3ci)t
F= )\3e(( Qo+ 261 &) +ax+ gy + cz+co|+ Ao (10)
&)
Using (10) along with (2), Finally find the solution.
3 2_ 5.2
C1A3€(W +ax+ oy + caz+ co)
wS(x) V> 2 t) = 2% 3 2 22 . (11)
)\36(7(2@:1 +§2 2D 4 ax+ oy + gz 4 co) + Ao

Case2:

o ll’lz \/)\_2 ia3 \/71
ay = — b

i(l] Al i(l4 )\1 \ 0
> 1= 5 3= - > 4 = — > 3= U,
YA NEY NEY NEY
while ay, a;, as, as, b, by, Ao, \; are free variables.
Therefore, applying these conditions, equation (9) becomes

I~

F= X+ )\1(114t + ax + azz + ag — Ibz\/szJz
iag AL t a3+ A iy | A
+ )\2(_1&4 1 1as 1 X 1a; 12

— + byy + by | (12)

Using (12) together with (2), We find the solution of the form:

2(2611/\1(04t + ax + asz + ag — ﬂlz) — 21.613\/71\/)\_2(—% + bz}/ + bo — b3 — b4))
wﬁ(x) }/, Z, t) - i ﬁ
)\2(* IJ/\—;Z + bz)/ + bo — b3 — b4)2 + /\1(a4t + ayx + azz + ag — az)z + AO

(13)
where

Case 3:

a2:_1b2\/)\72) a3:0) b1:0> b3 lal\/x' 1a4\/x;
oY by VR
where ag, a;, ay, as, by, by, N\g, \; are free variables.
Using all of the following known values, equation (9) becomes

F= X+ )\1(&4t+ amx + ag — @)2
1

N

iﬂ4 )\1 t i&ll )\1 z
+ Nf - - + byy + bo)z. (14)
( ™~ Im
Inserting (14) into (2), they determine the result w;(x, t, , z) of (1).
Case 4:

QZZO, a, = _M)
2

where ay, a;, as, by, by, by, bs, A\g, A\ contain free variables.

by — — 3(&3}\1 — 032A1 — blz)\z + b32>\2)
! 26, ’

Therefore, given each for the following known variables equation (9) becomes

F = Al(_w + ax + azz + a0)2 + X
2

2y 2y 12 2
+ /\2( 3t@h — a3 ;\; )\bl Aot b5 ) + bix + byy + b3z + bo)z. (15)
22

using (15) along with (2), they determine the result wg(x;, £, , 2) of (1).

4
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2.3. Collisions between lump wave and double strip soliton
Consider the following steps

F =X+ MN¢f + Xt)3 + As cosh (¢3). (16)
where

U= ag + ax + ;y + azz + agt, Yy = by + bix + by + bz + byt,
Y3 =co+ ax + oy + 3z + at,

anda;, b;, ¢;’sare the unknown integers.
Inserting (16) into (3), We come up with a collection of equations involving different variables. With the use
of a computer programme like Mathematica, we are able to solve this system and obtain the given results.
Case 1:
—8c¢f — 3¢ + 3ci

Cy = > >\0:0> AIZO) >\2:07
262

where ¢y, ¢, ¢, €3, A3 are free variables.
In basis of these factors, equation (16) becomes

_(—8c2c13 — 3¢k + 3c)t
2C2

F=); cosh( +ax+ gy +caz+ co). (17)

using (17) together with (2), they find the solution.

(=8¢ — 3¢ + 3c)t
2C2

wo(x, ¥, 2, t) = Zlq tanh( +ax+ oy +cz+ co)]. (18)

Case 2:

ib3 \/Tz _ lbl \/>\_2 lb4 \/)\_2 iaz Al

aq=———, a3 = as = b, = >
o

Ao =0,

\/Tl > \/x > 4 — \/Tl >

where a, a,, a4, by, by, b3, by, A1, Ay, A are free variables. In basis of these factors, equation (16) becomes

ib4 )\2t . ib3\/A_2x ibl\/TzZ]z

JN JN JN
i\ Ay
A2

+ /\3 COSh(wj,) + Az(— + b4t + b]X + b3Z + bo)z. (19)

>~

the (19) combined by (2), we find the solution wy(x, ¥, z, ) of (1).
Case 3:

F= )\1(02}/ + ag +

2 2 2 12 o
4y = — 3(03 )\1 Lll Al -+ bl )\2 b3 )\2) X bz _ 0, b4 _ _ 3(&3173 (llbl) i )\0 _ 0,
2a2/\1 a

where ag, a;, a, s, by, by, bs, A1, Ay, A3, are free variables.
In basis of these factors, equation (16) becomes

o /\2(_ 3t(asbs — ab))

a

+ b]X + b3Z + bo)z

+ )\l(_ 3t(ﬂ32)\1 - a12>\1 + bleZ - b32>\2)

+ ax + apy + a3z + ag |* + As cosh (¥3). (20)
2&12)\1

using (20) along with (2), we acquire the solution wy(x, , z, t) of (1).
2.4. Collision between lump and periodic waves

The following section investigates the function F, which is defined as

F =X+ N7+ M3 + Ascos (13), (21)
where

U= ag + ax + ay + azz + agt, Yy = by + bix + by + bz + byt,
Y3 =co+ ax + ay + iz + at,

anda;, b;, ¢;’sare the unknown integers.
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Inserting (21) into (3), we obtain a collection of solutions with different given constants. After solving this
system with a computer application like Mathematica they get to the corresponding results.
Case 1:
_ —8g ¢ + 3¢t — 3¢}

Cy 5 )\0:0, A]ZO, )\2:0,
2C2

where ¢y, ¢1, C2, €3, Ags A3, are free variables.
Therefore, using all of the given variables, equation (21) obtains

F=)\ cos((_gczc13 +2iC12 — 36t +ax+ay+az+ 60). (22)
2
using all of these results together with (22) and then using (2), Finally get the solution.
wi(x, t, ¥, 2) = 2(—a) tan((_gczc13 +2iclz — 3t +ax+ gy +caz+ co). (23)
2
Case 2:
0y = 73(0132)\1 —a’N + b\ — b32)\2), by =0, by =  3(asb; — albl)’ Ao = 0,

2a, N a

where ag, a;, a, s, by, by, b3, A1, Ay, A3, are free variables.
Therefore, using all of the given variables, equation (21) obtains

P )\2(_ 3t(asbs — aby)

+ bix + bsz + bo)z
a

+ A] - 3t(613,2)\1 — alz)\l + blz)\z — b32)\2)
2[12)\1
+ X3 + cos(at + ax + gy + 63z + co). (24)

+ ax + @y + azz + ao)z

using all of these results together with (24) and then using (2), we find the result.

2(251&(—@ + b+ bsz + by) + 2Nt — assin (wg))

W13(X, Vs 25 t) = (25)

Yo (— 2B by bz + by )2+ AR+ s cos (9)

2
where
. 3(&32/\1 — Lllz)\l + b12)\2 — b32/\2)
2[12)\1
Y3 = cat + ax + gy + ¢z + co.

a, = , 1= agt + ax + ayy + asz + ao,

Case 3:
*1b1\/72> 61411174\/)\72) b laz\/x bs; =0, N\ =
YN YN

where ag, d,, by, b1, by A1, M2y A3, are free variables.
Therefore, using all of the given variables, equation (21) obtains

ib4 )\2t _ lbl )\22)2

A A

+ )\3 Cos (w3) + )\2(@ -+ b4t + b1X + bo)z. (26)
2

™

using all of these results together with (26) and then using (2), we find the result.

a =0, a3 =

F = /\1(612}/ + ag +

2(—C1A3 sin (¢3) + ZblAz(iuzﬁy + b4t + b].x + b()))

( 1) = o
R A (—"“Z'ﬂy T bt +bix+b )2+ A (ay+ ag + et _ ez A”)2+ Ay cos (1hs)
2 \/)\—2 4 1 0 1 2 0 JA—I \/)\—1 3 3

27)
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2.5. Periodic solitons
The following section investigates the function F, which is defined as

F= X\ + )\16_1/]1 + )\28'1/)1 + A3 cos (’(/)2) (28)
where
’(/11 = Ao + qyx + ay + asz + aut, ¢2 = bo + blx + bzy + b3Z + b4t.

anda;, b;, ¢;’s are the unknown integers.
Inserting (28) into (3), we obtain a collection of solutions with different given constants. After solving this
system with a computer application like Mathematica they get to the corresponding results.

Case 1:
0, = —6ayabf + 2aa] + 3af — 3a32’ by = 0,
2&2
bi(aybf — 3azal — 3a; — 3
by = —by, by — — 1(a by aa; a ﬂs)) Ao = 0,

a

where ay, a;, a,, by, by, as, Aj, My, Az are free variables.
Therefore, using all of the given variables, equation (28) obtains

t(—6aab? + 2a,a + 3a’ — 3a?)
F=X\

+ ax + @y + asz + ao)z
2612

+ )\2(_ blt(azblz — 36126112 — 3611 — 3613)

+ blx — blZ + bo)z
a

blt((lzblz — 3&2&12 — 3a; — 3a3)

a

+ )\3 COS(— + blx - blz + b()) (29)

using all of these results together with (29) and then using (2), we find the result.

az

z(bl/\3(_sin(_b1t(uzbf3a2a123u13a3) + blx — blz + bo)) + 201>\1’l/11 + 2b1>\2’l/12)

wlS(x’ r % t) - bit(aybf — 3aya? — 3a; — 3as3) 2 2
A3 cos(— R zazl 2 hix — bz + bo) + N7+ s
(30)
where
—6aya bt + 2ma’ + 3af — 3a?
ay = ki 221 ! 3, Y1 = agt + ax + apy + asz + ay,
a
’(ﬂz = b4t + blx + bz)/ + b3Z + bo.
Case 2:
0, = —6ama1b? + 2aya + 3al — 3a3 =0,
Zﬂz
bi(ab? — 3aal — 3 3
by = by by — — 1(axb] aay a + ﬂs)) Ao = 0,
a
where ag, a;, a, as, by, by, bs, A\, Ay, A3 are free variables.
Therefore, using all of the given variables, equation (28) obtains
2 3 2 2
_ 2 _
Fo )q(t( 6a,a b + Zzal + 3a; 3a3) b oax+ amy+ az+ a0)2
a
bit(a;b} — 3ayaf — 3 3
" )\2(_ 12 (a2 by 2 a + 3a3) 4 bx + bz + b0)2
a
bit(ab? — 3azaf — 3 3
+ )\3 COS(— L (612 ! 2| i a3) + blx + blz + bo) (31)
a
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using all of these results together with (31) and then using (2), we find the result.

2ay

2 3 2 2
z(zal/\l(t(fwzmbl +2aza7 + 3af — 3a3) + a;x + ay + azz + ao) + Zbl)\2¢2 — by A3 sin (1/12))

wie(x, ¥ 2, 1) =

t(—6aza b + 2ayai + 3af — 3a3
Al( Conabi P — %) 4 ax + ayy + asz + 110)2 + A3 + Ascos (1)
where

_ bi(ab} — 3a,a’ — 3ay + 3a3)
a

by = > ¢2=b4l‘+b1x+b2y+b3z+b0.

2.6. Traveling wave solutions by the unified method
The aim of the section is to achieve some new traveling wave solutions for the (34 1)-dimensional nonlinear
evolution model (1) by employing the unified technique [31]. Consider the following wave transformation

w, ¥z, 1) = uQ), ¢(=71x+ py+ , (32)
a B

where 7and p is parameters, while o, 1 is the waves velocity. An ordinary differential equation is obtained using
the transformation (32) in (1).

(—pp + 302 = 3rHU"(Q) + 30u'(Q) — 6pT*u (Qu"(Q) — pT’u®(O) = 0, (33)

by integrating and skipping integration constant, then get the solutions

(—ip + 307 = 39U + 30u(Q) + Spru (O = pruI(O) = 0. (34)
Assume the solution to equation (34) provided by

u(Q) = Ag + (A0 () + B~ (), (35)
i=1
here A;, B{0 < i < n) are parameters, and while 6(() satifies
0'(¢) = 6*(O) + Q, (36)

Group 1: When 2 < 0,

VU= (A2 + B?)) — AV—8 cosh(2+—Q (¢ + Kp))

0 _ 37
© Asinh2V—=Q (¢ + Ky) + B 7
0() = —JQ(—(A% 4 BY)) — AV—Q cosh(2vV—Q (¢ + Kp)) (38)
B AsinhV=Q (¢ + Ko)) + B ’
2AN -0
0(0) = + V-9, 39
© A 4+ B + cosh(2v—Q (¢ + Ky) — sinh 2V —Q (¢ + Kyp))) 49
2A—0
0(¢) = - V=9, 40
© A + B + cosh(2v—Q (¢ + Kp) — sinh(2v—Q (¢ + Kp))) (40
where Kj is an integration constant.
Group 2: When 2 > 0,
JOA — B} — AVQ cos 2VQ (¢ + Ko))
0(0) = . : (41
Asin(2VQ (¢ + Ko)) + B
—JQA2 = B?) — AVQ cos 2VQ (¢ + Ky))
0(C) = : » (42)
Asin(2VQ (¢ + Ky) + B
2AIQ .
9(0) = — + iV, 43
© A — iSin(2VQ (¢ + Ko)) + cos 2VQ (¢ + Ky)) : @
8O = — 2AIVQ (44)

_q Q
A — iSin(2VQ (¢ + Ky)) + cos V(¢ + Ky)) :
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Group 3: When 2 =0,

1
0(Q) = — ; (45)
¢ ¢+ Ko
by comparing 1O and 1/ (¢)? in (34), then find 1 = 1. So, equation (35) can be explained using the following
B,
u(Q) = Ap + A0(0) + ) (46)
0(¢)
by using equation (46) including equation (36) to equation (34) and now balancing 6(¢) to zero, here attain a
collection of results with various distinct parameters, They have a system of algebraic equations.
— A pupS) — 2A,p730 + %AlszZQZ + 3A,0%Q + 3A00 — 3A,72Q = 0,
— Aypp — 2A1p73Q + AZpT*Q + 3A10% — 3A,72 = 0,
— AB1p72 Q0 + BiupQ + 2B p13Q% — 3B0*Q) + 3B,7XQ2 = 0,
— 2A1B1PTZQ — AlBlpTZ + Blﬂp + 2B1p’7’39 — 3310'2 + 3B1T2 = 0,
6B p73$ + 6B pT3? + %Blzper2 + B pTQ + %Blzprz =0.
The following outcomes from resolving this solution
JA
A = _M’ B, =0,
JpT
B J6 A, JP~OT + 2p7 4 30% — 372
P .
The following solutions for the given model are derived using these parameters.
Group 1: When 2 < 0,
(i 9 2, ) = V6 AT (JQU—A* — B) — AV—0 cosh2V—Q (¢u + Koy “n
17\ A5 )5 45 -
JPT(Asinh(2v—Q ((u + Ko)) + B)
ey 20 8) =  V6JAGVT (A — B) — AV=Q cosh V=0 (¢ + Koy 48)
18\ A5 )5 4 -
JPT(Asinh (2v—Q ((u + Ko)) + B)
24— ey
JgJA_Oﬁ(A + B + cosh (sinh (2+/=Q ((ut + Ko)) — 2+/=Q (¢ + Ko) + V-0 )
LU19(3C, V> 2 t) = AO - > (49)
JPT
e 2A=Q e
\/g AO ﬁ(A+B+ cosh (sinh (2+/—Q (¢t + Ko)) — 2+/— (¢ + Ko)) — V-0 )
wZO(xa V> 25 t) = AO - > (50)
NI
where
V6. JA o1+ 2073 + 30% — 372 P a
_ \/_Ox/ﬁ P ’ CZ—M——FTx-i-py—i—UZ
P g
Group 2: When {2 > 0,
ey ) — A V6 JAg T (JUA2 — BY) — AV cos 2V (Cu + Ko) -
21\A )y 4 — A0 —
JPT(Asin(2VQ (Cu + Ko)) + B)
s 3 25 1) =  V6A T (— A — B — AV cos @V (u + Ko 2
22\As s 4y —
JPT(Asin 2vQ (G + Ko)) + B)
24i/Q .
‘/g\/A_O“/E(f A —iSin@~/Q (e + Ko)) + cos @~Q (Cu + Kp)) + 1\/5)
was(x, ¥, 2, t) = Ag — , (53)
JpT
24i/Q .
\/g\/A_O“/E (_ A —iSin@/2 (Cu + Ko)) + cos Q4 (G + Ko)) Zm)
woa(x, ¥, 2, t) = Ag — , (54)
JpT
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(a) (b) (©)

Figure 1. Approaches for the bell solution |w, (x, y, z, )| with a3 = 1.22, a, =2, t =1, a; = 1.25, a, = 1.88, b, = 1.73, b, = 1.92,
by=144,z=1, w=2.

(a) (b) (c)

Figure 2. Approaches for the bright solution |wy(x, y, 2, f)| with a; = 1.8, ay =1, t =1, a, = 0.6, a = 1.6, by =1, b, = — 1,
bs;=13,z=1, w=1.

where

J6 /A JoT 4+ 2p73 + 302 — 372 0 @
p= 0P P , Cz—%+rx+py+0z.
p a

Group 3: When 2 =0,
J6JA) /T

. ta(»/ngA_o\?ﬁT-k 2p73 + 30% - 3712)

WT( Bp

<-’—)25(-7(:) Y 2 t) = + A(). (55)

+m+m+w+%)

3. Discussion and results

In current section of the study, we present the different graphical behaviours of the (3+1) dimensional nonlinear
evolution equation (1) using the advanced computational tool like Mathematica or Maple. Several distinct,
bright, dark, periodic, and bell-shaped solitons appear for a certain range of values. Figure 1 tells graphs
representations for |w;(x, y, z, )| based on different parameter values of a; = 1.22, a, =2, =1, a; = 1.25,
a,=1.88, by =1.73, b, = 1.92, by = 1.44, z=1, w = 2 represent the bell shaped soliton solutions. Figure 2
tells graphs representations for |w(x, ¥, z, t)| based on different parameter valuesof a; = 1.8, a, =1, t =1,
a;=0.6, a,=1.6, by =1, b,=—1, b= 1.3, z= 1, w = 1 represent the bright shaped soliton solutions.
Likewise, figure 3 displays the periodic soliton solutions utilizing different values of constant |w,(x, y, z, 1))
withey=2, g =—1.9, =1.1, c=0.7, z= 0.2, t = 1. Also if we talk for the figure 4 express the periodic
soliton solution for the constant values by = 1.7, b; = — 0.99, b; = 0.1, a9 = 1.22,a,=0.43,a, = 1.2,a; = 0.11,
t=1,z=1, A= — 1.6, \; = — 0.88. Figure 5 displays the singular bell shaped soliton solutions utilizing
different values of constant |wyo(x, ¥, 2, t)| with ag = 0.2,a;, = — 1.3,a, = 1, by =3, by = 1, \, = — 2, \, =1,
Ao =2.1,z=1,t= 1. Likewise, figures 6, 7 for given parameter values represents the periodic solution a;=1.2,
ap=13a,=14,a3=—12,\, =15 =—12,t=1,z=1.02and p=19, A=1.3, B=1.12, R =1.7,
0=044, 7=13,z=1,t=1, «=0.2, =02, Ky=1, Ag =1,y = 1. Similarly, figure 8 displays a periodic
soliton solution for the constant values is presented p =19, A=1.3, B=1.12, 2 =1.7, 0 =0.44, 7= 1.3,
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Figure 3. Approaches for the multi periodic solution |w,(x, y, 2, f)| with ¢g = 2, ¢, = — 1.9, ; = 1.1, 3 =0.7, z= 0.2, t = 1.

(a) (b) (c)

Figure 4. Approaches for the periodic solution |ws(x, , 2, £)| with by = 1.7,b; = — 0.99,b; = 0.1,a0 = 1.22,a, =0.43,a, = 1.2,
a3 =011Lt=1z=1X=— 1.6\ = — 0.88.

(a) (b) (c)

Figure 5. Approaches for the singular bell shaped solution |w;o(x, y, z, t)| with ag = 0.2,a, = — 1.3,a, = 1, by = 3,by = 1, \, = — 2,

AM=LXA=2lLz=1t=1.

() (b) (c)

Figure 6. Approaches for the periodic solution |wg(x, y, z, )| with a;=1.2,a = 1.3,a, = 1.4,a5 = — 1.2, \; = 1.5, \g = — 1.2,t =1,

z=1.02.
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(b) (©)

Figure 7. Approaches for the periodic solution |w;s(x, , z, )| with p = 1.9, A= 1.3, B=1.12, @ = 1.7, c = 044, 7= 1.3, z= 1,
t=1,a=02 =02,Ky=1,A=1Ly=1

(a) (b) (c)

Figure 8. Approaches for the periodic soliton solution |w¢(x, ¥, 2, 1) with p = 1.2, A = 0.21, B=0.6, 2 = 0.9, 0 = 0.3, 7= 1.3,
z=1t=1,a=0.15 =07 Ky=1,A,=2,y=1.

(a) (b) (c)

Figure 9. Approaches for the dark type soliton solution |w;4(x, y, 2, )| with p = 1.98, A = 1.25, B=1.51, Q = 1.68, 7 =2,
c=—-02z=1Lt=1a=211, =1,Ky=2, Ag=149, y=1.

z=1,t=1, =02, =02, Ky=1, Ay =1,y = 1. Atthe end, figure 9 represents a dark type soliton solution
for the constant values is presented p = 1.98, A=1.25, B=1.51, 0 =1.68, T=2,0=—0.2,z=1, t=1,
a=211, B=1,Ks=2, Ag=1.49, y=1.

The Two and three dimensional graphs of the computed results using various variable selections present
more in-depth understanding of the dynamical wave structures. We have observed some periodic wave
solutions representing a movement can be oscillatory or periodic, although oscillatory motion is limited to
oscillating around an equilibrium point or between two states. Periodic motion is applicable to any movement
that repeats over time. Another form of the developed wave structures are the singular wave forms representing
the nature of the solution as the blow-up time draws near is extremely fascinating to imagine through different
wave shapes. When the solution becomes unbounded in finite time, singularity takes on a simple form. Though
its slope becomes infinite in finite time, we can claim that the wave has broken when the solution is still bounded.
A point where the slope is vertical and the wave is said to have broken is eventually generated by the graph, which
initially grows somewhat steeper as it propagates.
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4. Conclusion

In this paper, the (3+1)-dimensional nonlinear evolution model has been studied by applying the Hirota
bilinear approach and the unified method. Based on the considered methodologies, we retrieved various
fascinating forms of wave structures. The dynamic characteristics for the governing model are extensively
visulized in the form of 3D, 2D and contour plots by using Mathematica 13. The observed solutions
demonstared fascinating behaviours including the dark, bright, singular, periodic, bell-shaped, solutions and
optical soliton solutions, for details see figures (1-9). This study is more valuable since the findings are more
significant and reliable in describing various physical phenomena. These solutions demonstrate the physical
behaviour of a variety of natural phenomena, including wave motion, fluid dynamics, and optical fiber
properties. The applied strategies are thus shown to be desirable and helpful to deal with a number of other
higher dimensional nonlinear evolution models that exist in hydrodynamic, plasma, mathematics, and other
disciplines of engineering and science.
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