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In this research, the modified extended tanh-function (METF) and the extended Jacobi elliptic
function expansion (EJEFE) techniques are used to investigate the generation and detection
of soliton structures in the Hirota—Maccari (HM) model. Consequently, we obtain soliton
solutions with advanced structures, including singular bright soliton, dark soliton, periodic
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waves, breather waves, periodic breather waves, and multiple bright and dark breather waves.
In addition, a lump-type breather wave is also included in the presented solutions. Stability
analysis of the obtained solutions is addressed by employing the Hamiltonian technique. 3D
surfaces and 2D visuals of the outcomes are represented with the help of a computer application.
These findings contribute to understanding nonlinear wave phenomena with potential appli-
cations in optics, fluid dynamics, and plasma physics.

Keywords: Modified extended tanh-function technique; extended Jacobi elliptic function
expansion technique; soliton; breather wave; periodic wave.

PACS Nos.: 02.30.Jr, 42.65.-k, 47.35.Fg, 52.35.Mw

1. Introduction

Over the recent decades, nonlinear time-dependent models have become an integral
part of different branches of science namely, physical science,! hydrodynamics,?
electromagnetism,? condensed matter physics,” and others.” " The experts in these
sectors have established a huge number of nonlinear models including the Bogoyav-
lenskii equation,® the (3 + 1)-D Burger system,”!? the generalized KP equation,'! the
Zoomeron equation,'? the Hirota—Maccari (HM) equation,'® the KdV equation,'*!?
the WBBM equation,'® fractional generalized CBS-BK equation,'” etc. The Hirota
nonlinear model with soliton solution was established by Hirota.'® Subsequently,
Maccari showed a 2D expansion of the Hirota model.'” This physical structure is used
to develop different nonlinear models in different fields such as optics, mathematical

physics, electric communications, and hydrodynamics.?"

The nonlinear equations are solved by several powerful techniques: the (%)
method,?! the unified technique,?? the Hirota bilinear technique,?*>* the generalized
KP equation,? the improved Kudryashov scheme,?® the generalized CBS-BK
model,?>” (G'/G)-expansion technique,?® the new Kudryashov technique,??0 the lie
group technique,?' the modified rational sine-cosine method,?? the modified extended
tanh-function (METF) method,** the extended Jacobi elliptic function expansion
(EJEFE) method,?* etc. The solutions of the nonlinear equations represent dif-
ferent types of wave profiles. Among these, dark soliton, bright soliton, breather
waves, periodic waves, and kink waves have important appearances in nonlinear
systems dynamics.?’

This work proposes to explore the soliton outcomes of the HM model utilizing the
METTF technique and the EJEFE technique. Moreover, to improve the accuracy of
the governing model the stability condition is calculated.

The framework of this study is as follows: Sec. 2 covers the conversion of ordinary
differential equations from the HM model. In Sec. 3, we discuss the solution process
and the utilization of the METF technique. In addition, the result procedure for the
EJEFE technique is shown in Sec. 4. In the next part, the condition of existence
is developed for the proposed model. Section 6 represents the discussion based on
figures. The novelty of our work is figured out in Sec. 7. Finally, some completion
statements are written in Sec. 8.
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Exploration of soliton structures in the Hirota—Maccari system

The novelty of this work is that the finding outcome from our proposed model
according to the mentioned method does not describe any other researcher before.

2. Ordinary Differential Equation Form of the HM Model

If x(x,y,t) performs as real, {(z,y,t) indicates complex field, the temporal variable
is denoted by t and space variables are x,y, then the proposed model®® can be
written as

To determine the ODE form of (1), assume the transformation as follows:

&z, y,t) = F(Qe i prtart) - y(2,y,1) = g(¢), (= +y+st, (2)

where p and s represent frequency and velocity sequentially fand g are real functions,
and lastly ¢ and r indicate free constants and i = v/ —1.
Now from Egs. (1) and (2), we get the desired ODE form:

2
31 =3p)f"+3(° —pg—1)f+Bp—-1)f*=0, g= —% (3)

3. METF Method for the Suggested Model

Suppose the trial solution with the ancillary equation of Ref. 37 is written as

m m

FO = a /() +> b () (4)
J=0 j=1
and
¢'(Q) = b+ ¢*(), (5)

with here two arbitrary parameters b and m.
The solution of (5) implies that

—v/=btanh(v/=b¢), for b <0,
—v/=bcoth(v/=b¢), for b <0,
B(C) = _%? for b =0, (6)
Vb tan(vb(), for b > 0,
—Vb cot(VC), for b > 0.

By balancing f” and f?, one reaches m = 1. Now from (4) we get

f(C) = ag+ a19(¢) + b1~ (Q). (7)
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Now using (5) and (7) in (3), we get
b=b, p=p, r=p*—6bp—pg+2b, ay=0, a;==+V6, b =0, (8)
b=b, p=p, r=p° —6bp—pg+2b, ay=0, a; =0, b =+V6b (9)
From Egs. (2), (3), (6), (7), and (8), we get
&1(z,y,t) = £V —6btanh(v/—bC)e Prtavtrt)
&s(z,y,t) = £V—6bcoth(v—bC)e Prtart)

53 (1'7 Y, t) =+ ? 6_14’(7)5'"’*'(]3/-&-7‘15)7

Ea(z,y,t) = :E\/_tan(\/gg)e i(pr-taytrt)
&(z,y,t) = :t\/_bcot(\/l—)oe ilpoaytrt)
X1 (z,y, t) = 2btanh?(V~b(),
Xa(2,y, t) = 2bcoth?(V—b(),

2
x3(@,y,t) = —a

X4(I7y7 t) = _2btan2(\/5<-)a
XB(x7y7 t) = 72bC0t2(\/5C)a

where ( = x + y + st.
From Egs. (2), (3), (6), (7), and (9), we get

€62, y,t) = £V6b{—V—btanh(vV—b¢)} e iprtav+rt)
& (x,y,t) = £V6b{— \/_bcoth(\/_g)} Le—ilpr+ay+rt)
&s(x,y,t) = i\/—b{\/_tan(\/_g)}—l ilprtay+rt)

+v6b{—Vbcot(Vh()} e prravtt),
—2b2{(—\/—_tanh(\/—_C))71}2,
20{(=v/=beoth(v=b()) '},
—252{(\/—'5%(\/_()) 1
—20*{(~Vbcot(vh)) 11,

=

X1\, Y,

X8\, Y,

t)
(=, y,t)
(z,9,t)
&(z,yt)
6(z,y,t)
(z,y,1)
(=, y,t)
Xo(2,y,1)
where ( = x + y + st.

4. EJEFE Method for the Proposed System

Suppose the trial solution with the ancillary equation of Ref. 38 is written as

© =3 ancy. (10)

j=—n
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Here, the Jacobi elliptic function (JEF) is denoted by 7 and define by n(¢) =
sn(0) = sn(¢, p) or en((, p) or dn(¢, p) with 0 < p < 1.

Note: For p tends to 1, JEF is converted to the hyperbolic pattern, that is sn(¢, p)
will be tanh(¢), en(¢, p) will be sech((), dn(¢, p) will be sech(().

Also, for p tends to 0, JEF is changed to the hyperbolic pattern, that is sn((, p)
will be sin(¢), en(¢, p) will be cos((), dn((, p) will be 1.

By balancing f” and f3, one reaches n = 1. Now from (10) we get

f(Q) = ag + an(¢) + a_in(¢)~". (11)

First case: For n(¢) = sn(¢, p), we get the following outcomes from Egs. (3),
(10), and (11):

2
pa_; 2 (9
’[":7, = s = y = —Qa_ —|—1 5 a_ :a,_,
o1 PTR pmea 1(p”+ 1p 1 1 (12)
aOZO, (11:0,
R N TR (it ok S
p*(p?—1)’ ’ ’ P ’ (13)
ap=a;, a=0,
p321 2 (2
= - = = s = —Qa_ 6 1 s :0,
o) PTP P a=a 1(p”+6p+1)p, ag (14)
ap =a_1p, a1 =0ay,
2
__bay _ _ 2 9 —
r=pioqy PTR Pee 4= aZy(p” =6p+Lp, a=0, (5
ap = —-a_1p, a1 =0a_.

From Egs. (2), (3), (11), and (12) with n(¢) = sn(¢, p), we get the following two
results:

. 5 . pa?
510 (17, Y, t) =a_ (STL(C, p))—lefz(pfnf’lz—l(ﬂhfl)py‘kﬁt)7

_faan@o) P
3

For p — 1, we found the following outputs:

X10 ($7 Y, t)

Z
51(),1(%% t) = a_;(tanh(¢))~ 1 fz(pa: a2 2py—ak Sy )7

{a_(tanh(¢))"'}*
3 :

For p — 0, we found the following outputs:

X101 (z,y,t) = —

a2
510_2(.12’:(}7 t) = ail( n(C)) 16*2(@8 a? pUJr(pZ 1)t)

fa_1(sin(¢))” 1}2

X102z, y,t) = — 3

where ( = x + y + st.
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From Egs. (2), (3), (11), and (13) with n(¢) = sn((, p), we get the following two
results:

2(p2+1)p f

En(z,9,1) = aysn(C, p)e O E V),

{asn(Go)P
3

For p — 1, we found the following outputs:

Xll(m, Y, t) =

2
€101(,y,£) = ay tanh(()e P PG,

_ {a; tanh(¢)}?

X111 (z,y,.t) = 3 ,

where ( =z + y + st.
From Egs. (2), (3), (11), and (14) with n(¢) = sn(¢, p), we get the following two
results:

Ea(@,y,t) = {a_1psn(C, p) + a_y(sn(C, p)) L Je T B s o,

{a_1psn(C,p) + a_i(sn(¢, p) Y2
. .

For p — 1, we found the following outputs:

X12(337?J> t) = =

22

€121 (7, 9,t) = {a_; tanh(¢) + a_; (tanh(¢)) " Je "~ 0 Spyt i i)

{a_ tanh(¢) +a_y(tanh(¢))~"}*
3 .

For p — 0, we found the following outputs:

X12,1 (7,y,t) = —

‘()2
(©)) Hye e,

{a_1(sin(¢)) "}
3 b

512,2(50,97 t) = {a_;(sin
X12,2(x7y7 t) = -

where ( = x + y + st.
From Egs. (2), (3), (11), and (15) with n(¢) = sn(¢, p), we get the following two
results:

Z
_14 _—i(pr—a® (0 —6p+1
613 ($7 Y, t) = {_a71p8n<<—7 p) + a*l(sn(C7 p)) l}e o < r )py+( ?-1 t>7

{—a_1psn(C,p) +a_i(sn(( p) '}
; .

For p — 1, we found the following outputs:

x13(z,y,t) = —

v,
€131 (2, 9,1) = {—a_, tanh(C) + a_ (tanh(¢)) " e PTG

{—a_y tanh(¢) + a_; (tanh(¢))'}*
3 :

X13,1 ((E, Y, t) = -
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For p — 0, we found the following outputs:

513,2(55;:% t) = {a,l(sin( )) l}e i(pr— aflp‘/Jr(pz 1)t)

_fai(sin(Q))1}*

t =
X13,2($, Y, ) 3

where ( = x + y + st.

Second case: For 1(¢) = cn((, p), we get the following outcomes from Egs. (3),
(10) and (11):

R pa%l p=p, p=p q:_a31(2p2—1)p

(P -1)@*-1)’ ’ ’ (-1 7 (16)
ag=0, a;=0, a=a_y,
r:—ipa% p=p, p=p q:—ia%@ﬁ_l)p ap =0

pQ(pQ — 1) 9 ) ) p2 9 0 9 (17)

ay =ay, a_1= 0.
From Egs. (2), (3), (11), and (16) with n(¢) = en((, p), we get the following two
results:

a2 202-1)p pa’?

Eua(@,,t) = a_y(en(, p)) e 0TI TR,

asenCo) P
3

For p — 0, we found the following outputs:

X14(ZL', Y, t) =

2
il 2 Pay
&z, y,t) = a_i(cos(¢)) e e ailpyﬂ')z")t)y

{a_1(cos(¢)) 1}
3 ;

X14,1(x7 Y, t) = -

where ( = x + y + st.
From Egs. (2), (3), (11), and (17) with n(¢) = en((, p), we get the following two
results:

2(2/;2 p pa?

&i5(x,y,t) = ajen((, p)e 77(pr*ﬂ—zy 020)—2[1>t)’

{men(Go))
3

For p — 1, we found the following outputs:

X15($, Y, t) =

2
s 2, P
€151 (7, 9,) = agsech(Q)e PTG,

_ {asech(¢)}

X151 (2, 1) = 3 ,

where ( = x + y + st.
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Third case: For n(¢) = dn(¢, p), we get the following outcomes from Egs. (3),
(10) and (11):

r=— pa% — = :a2(2—2) CLZO
(pQ — 1) ’ p b, P P q VY P, 0 ’ (18)

ap =a;, a_;=0.
From Egs. (2), (3), (11), and (18) with n(¢) = dn((, p), we get the following two
results:

a2

&6(z,y,t) = ardn(C, p)efi(pwaf(ptz)pyfmt),

_{adn(C p)}?
3 .

For p — 1, we found the following outputs:

Xlﬁ(x7 Y, t) =

2
il 2L
€161,y 1) = aysech(Q)e PTG

_ {aysech(¢)}?

XlG,l(xmya t) = 3

where ( = x + y + st.

5. Stability Exploration

The stability of the proposed model is discussed here. With the help of the Hamil-
tonian method,*® from Eq. (1) we obtain

1 o0
R =§/ X (@, y, t)dz, (19)
where R and x represent momentum and capacity respectively. The stability holds
only for
OR
— >0, 20
5 (20)

with the velocity component s. Considering x, and taking —2 to 2 as the limit of z,
then we get from Eq. (19)

R:% [2 (@btan2(Vb(z +y + st)))2da, (21)

which implies that
2 . )
R= — gb%tand(\/g(—2 +y+ st)) — tan® (VB(2 + y + st))

—3tan(Vh(—2 4y + st)) + 3Vb(=2 + y + st) + 3tan(VH(2 + y + st))
—3Vb(2 + y + st). (22)

2450481-8
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Taking y =t = 2, b = 1 and then from Egs. (20) and (22), we conclude the required
stability condition of Eq. (1) as follows:
—4(2cos*)(25)cos?(2s + 4) — 2cos?(2s)cos?(2s + 4)
OR _ — cos*(2s) + cos?(2s + 4)
s cos*(2s)cos*(2s + 4)

> 0. (23)

Consequently, we get % ls—0.1 = 39.94831046 which is positive.
Hence, the solution of x, is stable and Eq. (23) is the required condition for it.
Similarly, we can determine the conditions of stability for other variables.

6. Graphical Representation

According to the graphical investigation, we see that the results x,, X3, X6, X101,
X12,1» X135 X151 X161 Tepresent a dark soliton with singularity, x1, X7, X111 denote a
bright soliton and &, &, &, &7, 11,1 show double periodic wave. For b= —1, p =
g =1 and at y = 0, we draw the graph of x, (Fig. 1), x7 (Fig. 2), and &; (Fig. 3).

20 sa 3%y -2 PTI N T 2 5 4
e b
0 » -56] " i
10 a0 *
4 -y E
X -201 -100,
4 o X *x
_30—- o
—40—_ —150'—.
-3 -2 2 3 2004
-1 ol i
LB R I
x t ff=—2 - (=0 ° (=2
(a) (b)

Fig. 1. (Color online) Soliton wave of x5: (a) 3D curve and (b) equivalent 2D curve.

Fig. 2. (Color online) Soliton wave of x;: (a) 3D curve and (b) equivalent 2D curve.
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i EAagll oA BE w el - s B & 3
& Y o L S Jeas W » ® © *a
&y - ® B oW % T ER - s BN P
o * ‘O.i it o+ BN PR s BB
ﬁ . > L By «d 2 oe - 3 hid & 3 ]
B f 3 LIBE I:: s : ol g es -8 40 & - o100
o Foel e 1 wl Telt o 48 | | ¢ §
DUV Nihastes B 0U 5 SEEY ¥ UL
2 o 1 © © gt I 1 * X 2
Yo ® & . Viatle & 40 f » T 52 12 8%
Ta = & AF P ® w3 A S I
it T W L oo IR NAE- | ¥
a o = 5 8 = x oo = yag. rale L+ 3 o8 %
a b ok A8 o« o» o3 g 3y E ) P I
%j., L) 2{% 8 A F %i: ! LR R Y 3
v v A AV Y v
[ r=-2 - 1=0 - 1=2] [~ a=-2 =0 = 1=2]

Fig. 3. (Color online) Wave profile of &;: (a—c) 3D curve and (d—f) equivalent 2D plot.

Dark periodic waves with singularity, periodic waves, and multiple bright dark

breather waves can be found for (X4, X55 X8y X95 X105 X10,2> X125 X12,2> X13> X13,25> X14»

X14‘1)7 (5117 £16> €155 X115 X159 Xle), and (547 &5 €3, &9y €10, 510,2, &1, 512,2, 13, 513,27 14
&14.1) respectively. Among them, x3,&;1, and &, are attached in Figs. 4-6, respec-
tively for p=p=0.5,a_; =1 at y = 0.

Fig. 4. (Color online) Profile of x;3: (a) 3D graphs and (b) equivalent 2D curves.
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(d) (e) (®)

Fig. 5. (Color online) Behavior of ¢;;: (a—c) 3D graphs and (d—f) equivalent 2D graphs.

Fig. 6. (Color online) Wave profile of &,: (a—c) 3D curves and (d—f) equivalent 2D plots.
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x x

& 4 r'—ﬂ‘z! 4
i :
o
.
o
:

« =-2 .r—n ° 1=2 . r——.: =0 ° (=2
(d) (e) (£)
Fig. 7. (Color online) Profile of {;31: (a—c) 3D curves and (d-f) equivalent 2D plots.
Lastly, we get singular bright dark breather wave, periodic breather wave with
singularity, and lump type breather wave from the outcomes (£, &131, &16.1)5 (€101

512’1), and 51571 respectively which are dlsplayed in FlgS 7-9 by 513’1, 510)1, and 515)1,
respectively for p=1,p=0.5,a_1 =1,y =0.

Fig. 8. (Color online) Behavior of &y : (a—c) 3D graphs and (d-f) corresponding 2D graphs.
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(d) () (®)

Fig. 9. (Color online) Wave profile of &5 ;: (a—c) 3D graphs and (d-f) corresponding 2D graphs.

7. Results Comparison

This section focuses on the novelty of the results and the achievements of this work.
To judge the uniqueness, we compared our results with recently published
works.?0™*3 Mixed solitons can be found within the mentioned model through the
multiplier method by Ghosh and Maitra.*’ Zafar and co-authors obtained bright
soliton, periodic waves, and dark solitons for the proposed system through the
modified Kudryashov’s technique.*! For the suggested nonlinear model, Raza and
others derived explicit solutions via the general projective Riccati equation technique

and improved tan(@)—expansion process.?? Tarla and his co-workers studied bright-
dark patterns for the recommended model using the JEF expansion technique.?

Table 1. Comparison of the obtained solutions and existing paper.**

Ma et al. solution Our solution

fP=+4V6,Q=2G=2+y+wr, If P = 4+v/—6b, Q = 2b, G = v/—b(zx + y + st),
s(r,z,y) = €&(@,y,1), r(1,2,9) = x(2,y,1), and 0= —(pz +qu+7t), & (2,9,t) = &(2,9,1),
0 = px + qy + r7, then the solution Eq. (49) of and x;(z,y,t) = x(z,y,t) with b < 0, then
Ref. 44 becomes our solutions & (z,y,t) and x;(z,y,t)

becomes
&(z,y,t) = Ptanh(GQ)e', &(z,y,t) = Ptanh(GQ)e'?,
x(z,y,t) = Qtanh?(G). x(z,y,t) = Qtanh?(G).

2450481-13
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Table 2. Comparison of the obtained solutions and existing paper.*’

Wazwaz’s solution Our solution

If P=+V6k, Q= —2ks, G = ka + sy — W=2hs=ry  If P = +£/—6b, Q = 2b, G = V—b(z + y + st),
0= kx+ cy +rt, ’LL((I/', yt) = 6(‘/1"7 Y, t)? and 0= —([)51/ +aqy+ 74t)7 52(*%1 Y, t) = é(ﬂ-y, f)v
v(z,y,t) = x(z,y,t), then the solution Eq. (95) of and x(z,y,t) = x(z,y,t) with b < 0, then our
Ref. 45 becomes solutions & (z,y,t) and xy(z,y,t) becomes

&z, ,) = Pcoth(C)e”, &(z,9.1) = Peoth(G)e,

x(%,y,t) = Qcoth?((). x(#,9,t) = Qeoth?(G).

In our study, it can be found various outcomes: bright soliton, dark soliton,
different types of periodic and breather waves, and lump-type breather waves. In
addition, stability analysis is studied in this work. There are some different finer
results than recently published works" 43

Tables 1 and 2, we also compare our results with those in Refs. 44 and 45.

which can be found in our work. In

8. Conclusion

For the first time, the METF technique and the EJEFE technique based on the HM
model have been discussed in this paper. Some exact and analytical soliton outcomes
can be found. We obtain a bright soliton, a dark soliton, periodic waves, dark
periodic waves, double periodic waves, multiple bright dark breather waves, periodic
breather waves, and bright dark breather waves. We can also find a special lump-
breather wave. Additionally, the stability analysis of the obtained solutions is
addressed by employing the Hamiltonian technique. 2D and 3D plotting techniques
are considered to draw the graph of the results. We may conclude that the innovative
approaches evaluated here apply to a wide range of nonlinear models, providing
valuable insights into their dynamics. These findings illuminate nonlinear system
behavior and can help identify relationships between variables.
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