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In this research, the modi¯ed extended tanh-function (METF) and the extended Jacobi elliptic

function expansion (EJEFE) techniques are used to investigate the generation and detection

of soliton structures in the Hirota{Maccari (HM) model. Consequently, we obtain soliton

solutions with advanced structures, including singular bright soliton, dark soliton, periodic
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waves, breather waves, periodic breather waves, and multiple bright and dark breather waves.

In addition, a lump-type breather wave is also included in the presented solutions. Stability

analysis of the obtained solutions is addressed by employing the Hamiltonian technique. 3D
surfaces and 2D visuals of the outcomes are represented with the help of a computer application.

These ¯ndings contribute to understanding nonlinear wave phenomena with potential appli-

cations in optics, °uid dynamics, and plasma physics.

Keywords: Modi¯ed extended tanh-function technique; extended Jacobi elliptic function

expansion technique; soliton; breather wave; periodic wave.

PACS Nos.: 02.30.Jr, 42.65.−k, 47.35.Fg, 52.35.Mw

1. Introduction

Over the recent decades, nonlinear time-dependent models have become an integral

part of di®erent branches of science namely, physical science,1 hydrodynamics,2

electromagnetism,3 condensed matter physics,4 and others.5{7 The experts in these

sectors have established a huge number of nonlinear models including the Bogoyav-

lenskii equation,8 the (3þ 1)-D Burger system,9,10 the generalized KP equation,11 the

Zoomeron equation,12 the Hirota{Maccari (HM) equation,13 the KdV equation,14,15

the WBBM equation,16 fractional generalized CBS-BK equation,17 etc. The Hirota

nonlinear model with soliton solution was established by Hirota.18 Subsequently,

Maccari showed a 2D expansion of the Hirota model.19 This physical structure is used

to develop di®erent nonlinear models in di®erent ¯elds such as optics, mathematical

physics, electric communications, and hydrodynamics.20

The nonlinear equations are solved by several powerful techniques: the ð G 0
G0þGþAÞ

method,21 the uni¯ed technique,22 the Hirota bilinear technique,23,24 the generalized

KP equation,25 the improved Kudryashov scheme,26 the generalized CBS-BK

model,27 ðG0=GÞ-expansion technique,28 the new Kudryashov technique,29,30 the lie

group technique,31 the modi¯ed rational sine-cosine method,32 the modi¯ed extended

tanh-function (METF) method,33 the extended Jacobi elliptic function expansion

(EJEFE) method,34 etc. The solutions of the nonlinear equations represent dif-

ferent types of wave pro¯les. Among these, dark soliton, bright soliton, breather

waves, periodic waves, and kink waves have important appearances in nonlinear

systems dynamics.35

This work proposes to explore the soliton outcomes of the HM model utilizing the

METF technique and the EJEFE technique. Moreover, to improve the accuracy of

the governing model the stability condition is calculated.

The framework of this study is as follows: Sec. 2 covers the conversion of ordinary

di®erential equations from the HM model. In Sec. 3, we discuss the solution process

and the utilization of the METF technique. In addition, the result procedure for the

EJEFE technique is shown in Sec. 4. In the next part, the condition of existence

is developed for the proposed model. Section 6 represents the discussion based on

¯gures. The novelty of our work is ¯gured out in Sec. 7. Finally, some completion

statements are written in Sec. 8.
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The novelty of this work is that the ¯nding outcome from our proposed model

according to the mentioned method does not describe any other researcher before.

2. Ordinary Di®erential Equation Form of the HM Model

If �ðx; y; tÞ performs as real, �ðx; y; tÞ indicates complex ¯eld, the temporal variable

is denoted by t and space variables are x; y, then the proposed model36 can be

written as

i�t þ �xy þ i�xxx þ ��� ij�j2�x ¼ 0; 3�t þ ðj�j2Þy ¼ 0: ð1Þ

To determine the ODE form of (1), assume the transformation as follows:

�ðx; y; tÞ ¼ fð�Þe�iðpxþqyþrtÞ; �ðx; y; tÞ ¼ gð�Þ; � ¼ xþ yþ st; ð2Þ

where p and s represent frequency and velocity sequentially f and g are real functions,

and lastly q and r indicate free constants and i ¼ ffiffiffiffiffiffiffi�1
p

.

Now from Eqs. (1) and (2), we get the desired ODE form:

3ð1� 3pÞf 00 þ 3ðp3 � pq� rÞf þ ð3p� 1Þf3 ¼ 0; g ¼ � f2

3
: ð3Þ

3. METF Method for the Suggested Model

Suppose the trial solution with the ancillary equation of Ref. 37 is written as

fð�Þ ¼
Xm
j¼0

aj�
jð�Þ þ

Xm
j¼1

bj�
�jð�Þ ð4Þ

and

�0ð�Þ ¼ bþ �2ð�Þ; ð5Þ
with here two arbitrary parameters b and m.

The solution of (5) implies that

�ð�Þ ¼

� ffiffiffiffiffiffi�b
p

tanhð ffiffiffiffiffiffi�b
p

�Þ; for b < 0;

� ffiffiffiffiffiffi�b
p

cothð ffiffiffiffiffiffi�b
p

�Þ; for b < 0;

� 1

�
; for b ¼ 0;

ffiffiffi
b

p
tanð ffiffiffi

b
p

�Þ; for b > 0;

� ffiffiffi
b

p
cotð ffiffiffi

b
p

�Þ; for b > 0:

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

By balancing f 00 and f3, one reaches m ¼ 1. Now from (4) we get

fð�Þ ¼ a0 þ a1�ð�Þ þ b1�
�1ð�Þ: ð7Þ
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Now using (5) and (7) in (3), we get

b ¼ b; p ¼ p; r ¼ p3 � 6bp� pqþ 2b; a0 ¼ 0; a1 ¼ �
ffiffiffi
6

p
; b1 ¼ 0; ð8Þ

b ¼ b; p ¼ p; r ¼ p3 � 6bp� pqþ 2b; a0 ¼ 0; a1 ¼ 0; b1 ¼ �
ffiffiffi
6

p
b: ð9Þ

From Eqs. (2), (3), (6), (7), and (8), we get

�1ðx; y; tÞ ¼ �
ffiffiffiffiffiffiffiffiffi
�6b

p
tanhð

ffiffiffiffiffiffi
�b

p
�Þe�iðpxþqyþrtÞ;

�2ðx; y; tÞ ¼ �
ffiffiffiffiffiffiffiffiffi
�6b

p
cothð

ffiffiffiffiffiffi
�b

p
�Þe�iðpxþqyþrtÞ;

�3ðx; y; tÞ ¼ �
ffiffiffi
6

p

�
e�iðpxþqyþrtÞ;

�4ðx; y; tÞ ¼ �
ffiffiffiffiffi
6b

p
tanð

ffiffiffi
b

p
�Þe�iðpxþqyþrtÞ;

�5ðx; y; tÞ ¼ �
ffiffiffiffiffi
6b

p
cotð

ffiffiffi
b

p
�Þe�iðpxþqyþrtÞ;

�1ðx; y; tÞ ¼ 2btanh2ð
ffiffiffiffiffiffi
�b

p
�Þ;

�2ðx; y; tÞ ¼ 2bcoth2ð
ffiffiffiffiffiffi
�b

p
�Þ;

�3ðx; y; tÞ ¼ � 2

�2
;

�4ðx; y; tÞ ¼ �2btan2ð
ffiffiffi
b

p
�Þ;

�5ðx; y; tÞ ¼ �2bcot2ð
ffiffiffi
b

p
�Þ;

where � ¼ xþ yþ st.

From Eqs. (2), (3), (6), (7), and (9), we get

�6ðx; y; tÞ ¼ �
ffiffiffi
6

p
bf�

ffiffiffiffiffiffi
�b

p
tanhð

ffiffiffiffiffiffi
�b

p
�Þg�1e�iðpxþqyþrtÞ;

�7ðx; y; tÞ ¼ �
ffiffiffi
6

p
bf�

ffiffiffiffiffiffi
�b

p
cothð

ffiffiffiffiffiffi
�b

p
�Þg�1e�iðpxþqyþrtÞ;

�8ðx; y; tÞ ¼ �
ffiffiffi
6

p
bf

ffiffiffi
b

p
tanð

ffiffiffi
b

p
�Þg�1e�iðpxþqyþrtÞ;

�9ðx; y; tÞ ¼ �
ffiffiffi
6

p
bf�

ffiffiffi
b

p
cotð

ffiffiffi
b

p
�Þg�1e�iðpxþqyþrtÞ;

�6ðx; y; tÞ ¼ �2b2fð�
ffiffiffiffiffiffi
�b

p
tanhð

ffiffiffiffiffiffi
�b

p
�ÞÞ�1g2;

�7ðx; y; tÞ ¼ �2b2fð�
ffiffiffiffiffiffi
�b

p
cothð

ffiffiffiffiffiffi
�b

p
�ÞÞ�1g2;

�8ðx; y; tÞ ¼ �2b2fð
ffiffiffi
b

p
tanð

ffiffiffi
b

p
�ÞÞ�1g2;

�9ðx; y; tÞ ¼ �2b2fð�
ffiffiffi
b

p
cotð

ffiffiffi
b

p
�ÞÞ�1g2;

where � ¼ xþ yþ st.

4. EJEFE Method for the Proposed System

Suppose the trial solution with the ancillary equation of Ref. 38 is written as

fð�Þ ¼
Xn
j¼�n

aj�ð�Þj: ð10Þ
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Here, the Jacobi elliptic function (JEF) is denoted by � and de¯ne by �ð�Þ ¼
snð�Þ ¼ snð�; �Þ or cnð�; �Þ or dnð�; �Þ with 0 < � < 1.

Note: For � tends to 1; JEF is converted to the hyperbolic pattern, that is snð�; �Þ
will be tanhð�Þ, cnð�; �Þ will be sechð�Þ, dnð�; �Þ will be sechð�Þ.

Also, for � tends to 0, JEF is changed to the hyperbolic pattern, that is snð�; �Þ
will be sinð�Þ, cnð�; �Þ will be cosð�Þ, dnð�; �Þ will be 1.

By balancing f 00 and f3, one reaches n ¼ 1. Now from (10) we get

fð�Þ ¼ a0 þ a1�ð�Þ þ a�1�ð�Þ�1: ð11Þ
First case: For �ð�Þ ¼ snð�; �Þ, we get the following outcomes from Eqs. (3),

(10), and (11):

r ¼ pa2
�1

ðp2 � 1Þ ; p ¼ p; � ¼ �; q ¼ �a2
�1ð�2 þ 1Þp; a�1 ¼ a�1;

a0 ¼ 0; a1 ¼ 0;

8<
: ð12Þ

r ¼ pa2
1

�2ðp2 � 1Þ ; p ¼ p; � ¼ �; q ¼ � a2
1ð�2 þ 1Þp

�2
; a0 ¼ 0;

a1 ¼ a1; a�1 ¼ 0;

8<
: ð13Þ

r ¼ pa2
�1

ðp2 � 1Þ ; p ¼ p; � ¼ �; q ¼ �a2
�1ð�2 þ 6�þ 1Þp; a0 ¼ 0;

a1 ¼ a�1�; a�1 ¼ a�1;

8<
: ð14Þ

r ¼ pa2
�1

ðp2 � 1Þ ; p ¼ p; � ¼ �; q ¼ �a2
�1ð�2 � 6�þ 1Þp; a0 ¼ 0;

a1 ¼ �a�1�; a�1 ¼ a�1:

8<
: ð15Þ

From Eqs. (2), (3), (11), and (12) with �ð�Þ ¼ snð�; �Þ, we get the following two

results:

�10ðx; y; tÞ ¼ a�1ðsnð�; �ÞÞ�1e
�iðpx�a 2

�1ð�2þ1Þpyþ pa 2�1
ðp2�1ÞtÞ;

�10ðx; y; tÞ ¼ � fa�1ðsnð�; �ÞÞ�1g2
3

:

For � ! 1, we found the following outputs:

�10;1ðx; y; tÞ ¼ a�1ðtanhð�ÞÞ�1e
�iðpx�a 2

�12pyþ
pa 2�1
ðp2�1ÞtÞ;

�10;1ðx; y; tÞ ¼ � fa�1ðtanhð�ÞÞ�1g2
3

:

For � ! 0, we found the following outputs:

�10;2ðx; y; tÞ ¼ a�1ðsinð�ÞÞ�1e
�iðpx�a 2

�1pyþ
pa 2�1
ðp2�1ÞtÞ;

�10;2ðx; y; tÞ ¼ � fa�1ðsinð�ÞÞ�1g2
3

;

where � ¼ xþ yþ st.
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From Eqs. (2), (3), (11), and (13) with �ð�Þ ¼ snð�; �Þ, we get the following two

results:

�11ðx; y; tÞ ¼ a1snð�; �Þe�iðpx�a 2
1
ð�2þ1Þp
�2

yþ pa 2
1

�2ðp2�1ÞtÞ;

�11ðx; y; tÞ ¼ � fa1snð�; �Þg2
3

:

For � ! 1, we found the following outputs:

�11;1ðx; y; tÞ ¼ a1 tanhð�Þe�iðpx�a 2
12pyþ

pa 2
1

ðp2�1ÞtÞ;

�11;1ðx; y; tÞ ¼ � fa1 tanhð�Þg2
3

;

where � ¼ xþ yþ st.

From Eqs. (2), (3), (11), and (14) with �ð�Þ ¼ snð�; �Þ, we get the following two

results:

�12ðx; y; tÞ ¼ fa�1�snð�; �Þ þ a�1ðsnð�; �ÞÞ�1ge�iðpx�a 2
�1ð�2þ6�þ1Þpyþ pa 2�1

ðp2�1ÞtÞ;

�12ðx; y; tÞ ¼ � fa�1�snð�; �Þ þ a�1ðsnð�; �ÞÞ�1g2
3

:

For � ! 1, we found the following outputs:

�12;1ðx; y; tÞ ¼ fa�1 tanhð�Þ þ a�1ðtanhð�ÞÞ�1ge�iðpx�a 2
�18pyþ

pa 2�1
ðp2�1ÞtÞ;

�12;1ðx; y; tÞ ¼ � fa�1 tanhð�Þ þ a�1ðtanhð�ÞÞ�1g2
3

:

For � ! 0, we found the following outputs:

�12;2ðx; y; tÞ ¼ fa�1ðsinð�ÞÞ�1ge�iðpx�a 2
�1pyþ

pa 2�1
ðp2�1ÞtÞ;

�12;2ðx; y; tÞ ¼ � fa�1ðsinð�ÞÞ�1g2
3

;

where � ¼ xþ yþ st.

From Eqs. (2), (3), (11), and (15) with �ð�Þ ¼ snð�; �Þ, we get the following two

results:

�13ðx; y; tÞ ¼ f�a�1�snð�; �Þ þ a�1ðsnð�; �ÞÞ�1ge�iðpx�a 2
�1ð�2�6�þ1Þpyþ pa 2�1

ðp2�1ÞtÞ;

�13ðx; y; tÞ ¼ � f�a�1�snð�; �Þ þ a�1ðsnð�; �ÞÞ�1g2
3

:

For � ! 1, we found the following outputs:

�13;1ðx; y; tÞ ¼ f�a�1 tanhð�Þ þ a�1ðtanhð�ÞÞ�1ge�iðpxþa 2
�14pyþ

pa 2�1
ðp2�1ÞtÞ;

�13;1ðx; y; tÞ ¼ � f�a�1 tanhð�Þ þ a�1ðtanhð�ÞÞ�1g2
3

:
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For � ! 0, we found the following outputs:

�13;2ðx; y; tÞ ¼ fa�1ðsinð�ÞÞ�1ge�iðpx�a 2
�1pyþ

pa 2�1
ðp2�1ÞtÞ;

�13;2ðx; y; tÞ ¼ � fa�1ðsinð�ÞÞ�1g2
3

;

where � ¼ xþ yþ st.

Second case: For �ð�Þ ¼ cnð�; �Þ, we get the following outcomes from Eqs. (3),

(10) and (11):

r ¼ � pa2
�1

ð�2 � 1Þðp2 � 1Þ ; p ¼ p; � ¼ �; q ¼ � a2
�1ð2�2 � 1Þp
ð�2 � 1Þ ;

a0 ¼ 0; a1 ¼ 0; a�1 ¼ a�1;

8<
: ð16Þ

r ¼ � pa2
1

�2ðp2 � 1Þ ; p ¼ p; � ¼ �; q ¼ � a2
1ð2�2 � 1Þp

�2
; a0 ¼ 0;

a1 ¼ a1; a�1 ¼ 0:

8<
: ð17Þ

From Eqs. (2), (3), (11), and (16) with �ð�Þ ¼ cnð�; �Þ, we get the following two

results:

�14ðx; y; tÞ ¼ a�1ðcnð�; �ÞÞ�1e
�iðpx�a 2�1

ð2�2�1Þp
ð�2�1Þ y� pa 2�1

ð�2�1Þðp2�1ÞtÞ;

�14ðx; y; tÞ ¼ � fa�1ðcnð�; �ÞÞ�1g2
3

:

For � ! 0, we found the following outputs:

�14;1ðx; y; tÞ ¼ a�1ðcosð�ÞÞ�1e
�iðpx�a 2

�1pyþ
pa 2�1
ðp2�1ÞtÞ;

�14;1ðx; y; tÞ ¼ � fa�1ðcosð�ÞÞ�1g2
3

;

where � ¼ xþ yþ st.

From Eqs. (2), (3), (11), and (17) with �ð�Þ ¼ cnð�; �Þ, we get the following two

results:

�15ðx; y; tÞ ¼ a1cnð�; �Þe�iðpx�a 2
1
ð2�2�1Þp
�2

y� pa 2
1

�2ðp2�1ÞtÞ;

�15ðx; y; tÞ ¼ � fa1cnð�; �Þg2
3

:

For � ! 1, we found the following outputs:

�15;1ðx; y; tÞ ¼ a1sechð�Þe�iðpxþa 2
1py�

pa 2
1

ðp2�1ÞtÞ;

�15;1ðx; y; tÞ ¼ � fa1sechð�Þg2
3

;

where � ¼ xþ yþ st.
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Third case: For �ð�Þ ¼ dnð�; �Þ, we get the following outcomes from Eqs. (3),

(10) and (11):

r ¼ � pa2
1

ðp2 � 1Þ ; p ¼ p; � ¼ �; q ¼ a2
1ð�2 � 2Þp; a0 ¼ 0;

a1 ¼ a1; a�1 ¼ 0:

8<
: ð18Þ

From Eqs. (2), (3), (11), and (18) with �ð�Þ ¼ dnð�; �Þ, we get the following two

results:

�16ðx; y; tÞ ¼ a1dnð�; �Þe�iðpxþa 2
1ð�2�2Þpy� pa 2

1
ðp2�1ÞtÞ;

�16ðx; y; tÞ ¼ � fa1dnð�; �Þg2
3

:

For � ! 1, we found the following outputs:

�16;1ðx; y; tÞ ¼ a1sechð�Þe�iðpx�a 2
1py�

pa 2
1

ðp2�1ÞtÞ;

�16;1ðx; y; tÞ ¼ � fa1sechð�Þg2
3

;

where � ¼ xþ yþ st.

5. Stability Exploration

The stability of the proposed model is discussed here. With the help of the Hamil-

tonian method,39 from Eq. (1) we obtain

R ¼ 1

2

Z 1

�1
�2ðx; y; tÞdx; ð19Þ

where R and � represent momentum and capacity respectively. The stability holds

only for

@R

@s
> 0; ð20Þ

with the velocity component s. Considering �4 and taking �2 to 2 as the limit of x,

then we get from Eq. (19)

R ¼ 1

2

Z 2

�2

ð2btan2ð
ffiffiffi
b

p
ðxþ yþ stÞÞÞ2dx; ð21Þ

which implies that

R¼ � 2

3
b
3
2tan3ð

ffiffiffi
b

p
ð�2þ yþ stÞÞ � tan3ð

ffiffiffi
b

p
ð2þ yþ stÞÞ

� 3 tanð
ffiffiffi
b

p
ð�2þ yþ stÞÞ þ 3

ffiffiffi
b

p
ð�2þ yþ stÞ þ 3 tanð

ffiffiffi
b

p
ð2þ yþ stÞÞ

� 3
ffiffiffi
b

p
ð2þ yþ stÞ: ð22Þ
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Taking y ¼ t ¼ 2, b ¼ 1 and then from Eqs. (20) and (22), we conclude the required

stability condition of Eq. (1) as follows:

@R

@s
¼

�4ð2cos4Þð2sÞcos2ð2sþ 4Þ � 2cos2ð2sÞcos4ð2sþ 4Þ
� cos4ð2sÞ þ cos4ð2sþ 4Þ

cos4ð2sÞcos4ð2sþ 4Þ > 0: ð23Þ

Consequently, we get @R
@s js¼0:1 ¼ 39:94831046 which is positive.

Hence, the solution of �4 is stable and Eq. (23) is the required condition for it.

Similarly, we can determine the conditions of stability for other variables.

6. Graphical Representation

According to the graphical investigation, we see that the results �2, �3, �6, �10;1,

�12;1, �13;1, �15;1, �16;1 represent a dark soliton with singularity, �1, �7, �11;1 denote a

bright soliton and �1, �2, �6, �7, �11;1 show double periodic wave. For b ¼ �1, p ¼
q ¼ 1 and at y ¼ 0, we draw the graph of �2 (Fig. 1), �7 (Fig. 2), and �7 (Fig. 3).

(a) (b)

Fig. 1. (Color online) Soliton wave of �2: (a) 3D curve and (b) equivalent 2D curve.

(a) (b)

Fig. 2. (Color online) Soliton wave of �7: (a) 3D curve and (b) equivalent 2D curve.

Exploration of soliton structures in the Hirota{Maccari system

2450481-9



Dark periodic waves with singularity, periodic waves, and multiple bright dark

breather waves can be found for (�4, �5, �8, �9, �10, �10;2, �12, �12;2, �13, �13;2, �14,

�14;1), (�11, �16, �15, �11, �15, �16), and (�4, �5, �8, �9, �10, �10;2, �12, �12;2, �13, �13;2, �14,

�14;1) respectively. Among them, �13; �11, and �14 are attached in Figs. 4{6, respec-

tively for � ¼ p ¼ 0:5, a�1 ¼ 1 at y ¼ 0.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (Color online) Wave pro¯le of �7: (a{c) 3D curve and (d{f) equivalent 2D plot.

(a) (b)

Fig. 4. (Color online) Pro¯le of �13: (a) 3D graphs and (b) equivalent 2D curves.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (Color online) Behavior of �11: (a{c) 3D graphs and (d{f) equivalent 2D graphs.

(a) (b) (c)

(d) (e) (f)

Fig. 6. (Color online) Wave pro¯le of �14: (a{c) 3D curves and (d{f) equivalent 2D plots.
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Lastly, we get singular bright dark breather wave, periodic breather wave with

singularity, and lump type breather wave from the outcomes (�3, �13;1, �16;1), (�10;1,

�12;1), and �15;1 respectively which are displayed in Figs. 7{9 by �13;1, �10;1, and �15;1,

respectively for � ¼ 1, p ¼ 0:5, a�1 ¼ 1, y ¼ 0.

(a) (b) (c)

(d) (e) (f)

Fig. 7. (Color online) Pro¯le of �13:1: (a{c) 3D curves and (d{f) equivalent 2D plots.

(a) (b) (c)

(d) (e) (f)

Fig. 8. (Color online) Behavior of �10:1: (a{c) 3D graphs and (d{f) corresponding 2D graphs.
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7. Results Comparison

This section focuses on the novelty of the results and the achievements of this work.

To judge the uniqueness, we compared our results with recently published

works.40{43 Mixed solitons can be found within the mentioned model through the

multiplier method by Ghosh and Maitra.40 Zafar and co-authors obtained bright

soliton, periodic waves, and dark solitons for the proposed system through the

modi¯ed Kudryashov's technique.41 For the suggested nonlinear model, Raza and

others derived explicit solutions via the general projective Riccati equation technique

and improved tanð�ð�Þ2 Þ-expansion process.42 Tarla and his co-workers studied bright-

dark patterns for the recommended model using the JEF expansion technique.43

(a) (b) (c)

(d) (e) (f)

Fig. 9. (Color online) Wave pro¯le of �15:1: (a{c) 3D graphs and (d{f) corresponding 2D graphs.

Table 1. Comparison of the obtained solutions and existing paper.44

Ma et al. solution Our solution

If P ¼ � ffiffiffi
6

p
, Q ¼ 2, G ¼ xþ yþ !	 ,

sð	;x; yÞ ¼ �ðx; y; tÞ, rð	;x; yÞ ¼ �ðx; y; tÞ, and
� ¼ pxþ qyþ r	 , then the solution Eq. (49) of

Ref. 44 becomes

If P ¼ � ffiffiffiffiffiffiffiffiffi�6b
p

, Q ¼ 2b, G ¼ ffiffiffiffiffiffi�b
p ðxþ yþ stÞ,

� ¼ �ðpxþ qyþ rtÞ, �1ðx; y; tÞ ¼ �ðx; y; tÞ;
and �1ðx; y; tÞ ¼ �ðx; y; tÞ with b < 0, then

our solutions �1ðx; y; tÞ and �1ðx; y; tÞ
becomes

�ðx; y; tÞ ¼ P tanhðGÞei�; �ðx; y; tÞ ¼ P tanhðGÞei�;
�ðx; y; tÞ ¼ Qtanh2ðGÞ: �ðx; y; tÞ ¼ Qtanh2ðGÞ:
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In our study, it can be found various outcomes: bright soliton, dark soliton,

di®erent types of periodic and breather waves, and lump-type breather waves. In

addition, stability analysis is studied in this work. There are some di®erent ¯ner

results than recently published works40{43 which can be found in our work. In

Tables 1 and 2, we also compare our results with those in Refs. 44 and 45.

8. Conclusion

For the ¯rst time, the METF technique and the EJEFE technique based on the HM

model have been discussed in this paper. Some exact and analytical soliton outcomes

can be found. We obtain a bright soliton, a dark soliton, periodic waves, dark

periodic waves, double periodic waves, multiple bright dark breather waves, periodic

breather waves, and bright dark breather waves. We can also ¯nd a special lump-

breather wave. Additionally, the stability analysis of the obtained solutions is

addressed by employing the Hamiltonian technique. 2D and 3D plotting techniques

are considered to draw the graph of the results. We may conclude that the innovative

approaches evaluated here apply to a wide range of nonlinear models, providing

valuable insights into their dynamics. These ¯ndings illuminate nonlinear system

behavior and can help identify relationships between variables.
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