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1. Introduction

Integrable equations describe many physical phenomena such as magnetic fields,

plasma physics, nonlinear optics and quantum fields, etc. Especially, nonlocal ones

have been the center of interest of many studies nowadays.

Nonlocal equations describe PT symmetric dispersive waves. Interestingly, lo-

cal integrable equations can be reduced to nonlocal ones under the time parity

symmetry.1–3

There are many techniques to solve integrable equations such as Darboux

transformation,4 Hirota bilinear method5 and the inverse scattering transform.1,6–8

The Riemann–Hilbert technique is another powerful method to solve integrable

equations and generate their soliton solutions.9–12 In this paper, the associated

Riemann–Hilbert problems are formulated for a six-component AKNS system of

fourth-order equations in the AKNS multi-component hierarchy, and solutions to

the Riemann–Hilbert problems are worked out while taking the identity jump

matrix.13–16

The rest of the paper is structured as follows. In Sec. 2, we analyze the Riemann–

Hilbert problems associated with the corresponding matrix spectral problems,

which is closely related to the inverse scattering method. In Sec. 3, we will gen-

erate soliton solutions from the reflectionless problems, while in Sec. 4, we present

a few examples of soliton solutions and look into their dynamics. Finally, the last

section will be the conclusion, together with some remarks.

2. Riemann–Hilbert Problems

2.1. Six-component AKNS hierarchy of coupled fourth-order

integrable equations

Let us consider the pair of spatial and temporal spectral problems for the six-

component AKNS system13:

ψx = iUψ, (1)

ψt = iV [4]ψ, (2)

where ψ is the eigenfunction.

The spectral matrix is given by

U(u, λ) =


α1λ p1 p2 p3

r1 α2λ 0 0

r2 0 α2λ 0

r3 0 0 α2λ

 , (3)
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where λ is a spectral parameter, α1, α2 are real constants, p = (p1, p2, p3) and

r = (r1, r2, r3)T are vector functions of (x, t) and u = (p, rT )T is a vector of six

potentials.

The Lax matrix operator V [4] is determined by

V [4] =



a[0]λ4 + a[2]λ2 b
[1]
1 λ3 + b

[2]
1 λ2 b

[1]
2 λ3 + b

[2]
2 λ2 b

[1]
3 λ3 + b

[2]
3 λ2

+ a[3]λ+ a[4] + b
[3]
1 λ+ b

[4]
1 + b

[3]
2 λ+ b

[4]
2 + b

[3]
3 λ+ b

[4]
3

c
[1]
1 λ3 + c

[2]
1 λ2 d

[0]
11λ

4 + d
[2]
11λ

2 d
[2]
12λ

2 + d
[3]
12λ d

[2]
13λ

2 + d
[3]
13λ

+ c
[3]
1 λ+ c

[4]
1 + d

[3]
11λ+ d

[4]
11 + d

[4]
12 + d

[4]
13

c
[1]
2 λ3 + c

[2]
2 λ2 d

[2]
21λ

2 + d
[3]
21λ d

[0]
22λ

4 + d
[2]
22λ

2 d
[2]
23λ

2 + d
[3]
23λ

+ c
[3]
2 λ+ c

[4]
2 + d

[4]
21 + d

[3]
22λ+ d

[4]
22 + d

[4]
23

c
[1]
3 λ3 + c

[2]
3 λ2 d

[2]
31λ

2 + d
[3]
31λ d

[2]
32λ

2 + d
[3]
32λ d

[0]
33λ

4 + d
[2]
33λ

2

+ c
[3]
3 λ+ c

[4]
3 + d

[4]
31 + d

[4]
32 + d

[3]
33λ+ d

[4]
33



, (4)

where all the involved functions are defined as follows:



a[0] = β1,

a[1] = 0,

a[2] = − β

α2

3∑
i=1

piri,

a[3] = −i β
α3

3∑
i=1

(piri,x − pi,xri),

a[4] =
β

α4

[
3

( 3∑
i=1

piri

)2

+

3∑
i=1

(piri,xx − pi,xri,x + pi,xxri)

]
,

a[5] = i
β

α5

[
6

( 3∑
i=1

piri

)
−

3∑
i=1

(piri,x − pi,xri)

+

3∑
i=1

(piri,xxx − pi,xxxri + pi,xxri,x − pi,xri,xx)

]
,
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b
[0]
k = 0,

b
[1]
k =

β

α
rk,

b
[2]
k = −i β

α2
pk,x,

b
[3]
k = − β

α3

[
pk,xx + 2

( 3∑
i=1

piri

)
pk

]
,

b
[4]
k = i

β

α4

[
pk,xxx + 3

( 3∑
i=1

piri

)
pk,x + 3

( 3∑
i=1

pi,xri

)
pk

]
,

b
[5]
k =

β

α5

[
pk,xxxx + 4

( 3∑
i=1

piri

)
pk,xx +

(
6

3∑
i=1

pi,xri + 2

3∑
i=1

piri,x

)
pk,x

+

(
4

3∑
i=1

pi,xxri + 2

3∑
i=1

pi,xri,x + 2

3∑
i=1

piri,xx + 6

( 3∑
i=1

piri

)2)
pk

]
,



c
[0]
k = 0,

c
[1]
k =

β

α
pk,

c
[2]
k = i

β

α2
rk,x,

c
[3]
k = − β

α3

[
rk,xx + 2

( 3∑
i=1

piri

)
rk

]
,

c
[4]
k = −i β

α4

[
rk,xxx + 3

( 3∑
i=1

piri

)
rk,x + 3

( 3∑
i=1

pi,xri

)
rk

]
,

c
[5]
k =

β

α5

[
rk,xxxx + 4

( 3∑
i=1

piri

)
rk,xx +

(
6

3∑
i=1

piri,x + 2

3∑
i=1

pi,xri

)
rk,x

+

(
4

3∑
i=1

piri,xx + 2

3∑
i=1

pi,xri,x + 2

3∑
i=1

pi,xxri + 6

( 3∑
i=1

piri

)2)
rk

]
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and

d
[0]
kj = β2I3,

d
[1]
kj = 0,

d
[2]
kj =

β

α2
pjrk,

d
[3]
kj = −i β

α3
(pj,xrk − pjrk,x),

d
[4]
kj = − β

α4

[
3pj

( 3∑
i=1

piri

)
rk + pj,xxrk − pj,xrk,x + pjrk,xx

]
,

d
[5]
kj =

β

α5

[
2pj

( 3∑
i=1

pi,xri − piri,x
)
rk + 4pj,x

( 3∑
i=1

piri

)
rk − pj

( 3∑
i=1

piri

)
rk,x

+ pj,xxxrk − pjrk,xxx + pj,xrk,xx − pj,xxrk,x
]
,

where α = α1 − α2 and β = β1 − β2. We always assume that b[i] = (b
[i]
1 , b

[i]
2 , b

[i]
3 ),

c[i] = (c
[i]
1 , c

[i]
2 , c

[i]
3 )T and d[i] = (d

[i]
kl)3×3, for i ∈ {1, 2, 3, 4, 5}.

The compatibility condition ψxt = ψtx will lead to the zero curvature equation:

Ut − V [4]
x + i[U, V [4]] = 0, (5)

which gives the six-component system of soliton equations

ut =

(
pT

r

)
t

= i

(
αb[5]T

−αc[5]

)
, (6)

where b[5] and c[5] are defined earlier. Thus, we deduce the coupled AKNS system

of fourth-order equations13:

pk,t = i
β

α4

[
pk,xxxx + 4

( 3∑
i=1

piri

)
pk,xx +

(
6

3∑
i=1

pi,xri + 2

3∑
i=1

piri,x

)
pk,x

+

(
4

3∑
i=1

pi,xxri + 2

3∑
i=1

pi,xri,x + 2

3∑
i=1

piri,xx + 6

( 3∑
i=1

piri

)2)
pk

]
,

rk,t = −i β
α4

[
rk,xxxx + 4

( 3∑
i=1

piri

)
rk,xx +

(
6

3∑
i=1

piri,x + 2

3∑
i=1

pi,xri

)
rk,x

+

(
4

3∑
i=1

piri,xx + 2

3∑
i=1

pi,xri,x + 2

3∑
i=1

pi,xxri + 6

( 3∑
i=1

piri

)2)
rk

]
,

(7)

where k ∈ {1, 2, 3}.
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2.2. Nonlocal reverse-time six-component AKNS system

Let us consider a class of specific nonlocal reverse-time reductions for the spectral

matrix

UT (x,−t,−λ) = −CU(x, t, λ)C−1, (8)

where C =

(
1 0

0 Σ

)
and Σ is a constant invertible symmetric 3 × 3 matrix, i.e.,

ΣT = Σ and det Σ 6= 0.

As U(x, t, λ) = λΛ + P (x, t), for P =

(
0 p

r 0

)
and Λ = diag(α1, α2I3), then we

have

PT (x,−t) = −CP (x, t)C−1. (9)

From the above (9), we get

pT (x,−t) = −Σr(x, t) i.e., r(x, t) = −Σ−1pT (x,−t). (10)

As V [4](x, t, λ) = λ4Ω +Q(x, t, λ) and from (9), we prove that

V [4]T (x,−t,−λ) = CV [4](x, t, λ)C−1 and

QT (x,−t,−λ) = CQ(x, t, λ)C−1, (11)

where Ω = diag(β1, β2I3).

Importantly, the two Lax pair matrices UT (x,−t,−λ) and V [4]T (x,−t,−λ) satisfy

an equivalent zero curvature equation.

From this specific nonlocal reduction, the coupled six-component fourth-order

AKNS equations can be reduced to the nonlocal reverse-time six-component fourth-

order equations.

As Σ is invertible and symmetric so diagonalizable, then we can take Σ =

diag(ρ−1
1 , ρ−1

2 , ρ−1
3 ), for ρ1, ρ2, ρ3 nonzero real. Thus, Σ−1 = diag(ρ1, ρ2, ρ3) leads

(10) to

ri(x, t) = −ρipi(x,−t) for i ∈ {1, 2, 3}. (12)

Therefore, the coupled equations (7) reduce to the nonlocal reverse-time fourth-

order equation

pk,t(x, t) = i
β

α4

[
pk,xxxx(x, t)− 4

(
3∑
i=1

ρipi(x, t)pi(x,−t)

)
pk,xx(x, t)

−

(
6

3∑
i=1

ρipi,x(x, t)pi(x,−t) + 2

3∑
i=1

ρipi(x, t)pi,x(x,−t)

)
pk,x(x, t)
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−

(
4

3∑
i=1

ρipi,xx(x, t)pi(x,−t) + 2

3∑
i=1

ρipi,x(x, t)pi,x(x,−t)

+ 2

3∑
i=1

ρipi(x, t)pi,xx(x,−t)− 6

(
3∑
i=1

ρipi(x, t)pi(x,−t)

)2)
pk(x, t)

]
(13)

for k ∈ {1, 2, 3}.
We should note that if Σ is negative definite i.e., each ρi < 0 for i ∈ {1, 2, 3}, then

we obtain the focusing nonlocal reverse-time six-component fourth-order equation

due to the fact that the dispersive term and nonlinear terms attract. If ρi’s are

not all the same sign for i ∈ {1, 2, 3}, we obtain combined focusing and defocusing

cases.

2.3. Riemann–Hilbert problems

The Lax pair of the six-component fourth-order AKNS equations can be written as

follows:

ψx = iUψ = i(λΛ + P )ψ, (14)

ψt = iV [4]ψ = i(λ4Ω +Q)ψ, (15)

where Ω = diag(β1, β2, β2, β2), Λ = diag(α1, α2, α2, α2) and

P =


0 p1 p2 p3

r1 0 0 0

r2 0 0 0

r3 0 0 0

,

Q =



a[2]λ2 + a[3]λ b
[1]
1 λ3 + b

[2]
1 λ2 b

[1]
2 λ3 + b

[2]
2 λ2 b

[1]
3 λ3 + b

[2]
3 λ2

+ a[4] + b
[3]
1 λ+ b

[4]
1 + b

[3]
2 λ+ b

[4]
2 + b

[3]
3 λ+ b

[4]
3

c
[1]
1 λ3 + c

[2]
1 λ2 d

[2]
11λ

2 + d
[3]
11λ d

[2]
12λ

2 + d
[3]
12λ d

[2]
13λ

2 + d
[3]
13λ

+ c
[3]
1 λ+ c

[4]
1 + d

[4]
11 + d

[4]
12 + d

[4]
13

c
[1]
2 λ3 + c

[2]
2 λ2 d

[2]
21λ

2 + d
[3]
21λ d

[2]
22λ

2 + d
[3]
22λ d

[2]
23λ

2 + d
[3]
23λ

+ c
[3]
2 λ+ c

[4]
2 + d

[4]
21 + d

[4]
22 + d

[4]
23

c
[1]
3 λ3 + c

[2]
3 λ2 d

[2]
31λ

2 + d
[3]
31λ d

[2]
32λ

2 + d
[3]
32λ d

[2]
33λ

2 + d
[3]
33λ

+ c
[3]
3 λ+ c

[4]
3 + d

[4]
31 + d

[4]
32 + d

[4]
33



. (16)

2150035-7

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

02
1.

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

A
K

E
 F

O
R

E
ST

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

4/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2021 14:23 IJMPB S0217979221500351 page 8

A. Adjiri, A. M. G. Ahmed & W. X. Ma

Our purpose is to find soliton solutions from an initial condition

(p(x, 0), rT (x, 0))T to (p(x, t), rT (x, t))T at any time t. We assume that any pi and

ri decay exponentially, i.e., pi → 0 and ri → 0 as x, t → ±∞ for i ∈ {1, 2, 3}.
Therefore, from the spectral problems (14), (15), ψ will behave asymptotically

ψ(x, t) eiλΛx+iλ4Ωt.

We can then expect the solution for the spectral problems to be

ψ(x, t) = φ(x, t)eiλΛx+iλ4Ωt. (17)

For the Jost solution,9,17 we require that

φ(x, t)→ I4, as x, t→ ±∞, (18)

where I4 is the 4× 4 identity matrix. Substituting (17) into the Lax pair, (14) and

(15), will result in the equivalent expression of the spectral problems

φx = iλ[Λ, φ] + iPφ, (19)

φt = iλ4[Ω, φ] + iQφ. (20)

Now, we are going to work with the spatial spectral problem (19), assuming that

the time is t = 0 for the direct scattering process.

By Liouville’s formula,9 as tr(iP ) = 0 and tr(iQ) = 0, so det(φ) is a constant,

and using the boundary condition (18), we get

det(φ) = 1. (21)

To construct the Riemann–Hilbert problems and their solutions in the reflec-

tionless case, we are going to use the adjoint scattering equations of the spectral

problems ψx = iUψ and ψt = iV [4]ψ. Their adjoints are

ψ̃x = −iψ̃U, (22)

ψ̃t = −iψ̃V [4], (23)

and the equivalent spectral adjoint equations read

φ̃x = −iλ[φ̃,Λ]− iφ̃P, (24)

φ̃t = −iλ4[φ̃,Ω]− iφ̃Q. (25)

As φ−1
x = −φ−1φxφ

−1, we have from (19),

φ−1
x = −iλ[φ−1,Λ]− iφ−1P. (26)

Therefore, we deduce that (φ±)−1 satisfies the adjoint equation (24). Similarly, we

can show that (φ±)−1 satisfies (25) as well.

Now, if the eigenfunction φ(x, t, λ) is a solution of the spectral problem (19),

then Cφ−1(x, t, λ) is a solution of the spectral adjoint problem (24) with the same

eigenvalue because φ−1
x = −φ−1φxφ

−1. Also φT (x,−t,−λ)C is a solution of the
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spectral adjoint problem (24). As both solutions have the same boundary condition

as x→ ±∞ which guarantees the uniqueness of the solution, so

φT (x,−t,−λ)C = Cφ−1(x, t, λ) or φT (x,−t,−λ) = Cφ−1(x, t, λ)C−1. (27)

This tells us that if λ is an eigenvalue of the spectral problems, then −λ is also an

eigenvalue.

For the rest of the problem, we assume that α < 0 and β < 0 and Y ± tell us at

which end of the x-axis, the boundary conditions are set. We know that

φ± → I4 when x→ ±∞. (28)

We can then write

ψ± = φ±eiλΛx. (29)

As ψ+ and ψ− are two solutions of the spectral spatial differential equation of first-

order (14), they are then linearly dependent, and so they are related by a scattering

matrix S(λ). As a result,

ψ− = ψ+S(λ), (30)

using (29), we have

φ− = φ+eiλΛxS(λ)e−iλΛx, for λ ∈ R, (31)

where

S(λ) = (sij)4×4 =


s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

. (32)

Because det(φ±) = 1, one has

det(S(λ)) = 1. (33)

From (27) and (31), we have this involution relation

ST (−λ) = CS−1(λ)C−1. (34)

From (34), we deduce that

ŝ11(λ) = s11(−λ), (35)

where the inverse scattering data matrix S−1 = (ŝij)4×4 for i, j ∈ {1, 2, 3, 4}.
We can see that the recovery of the potentials will depend on the information of

the scattering data from the scattering matrix S(λ). As φ± → I4 when x → ±∞,

we need to analyze the analyticity of the Jost matrix φ± in order to formulate the

Riemann–Hilbert problems.
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One can write the solution φ± in a unique manner by the Volterra integral

equations using (14):

φ−(x, λ) = I4 + i

∫ x

−∞
eiλΛ(x−y)P (y)φ−(y, λ)eiλΛ(y−x)dy, (36)

φ+(x, λ) = I4 − i
∫ +∞

x

eiλΛ(x−y)P (y)φ+(y, λ)eiλΛ(y−x)dy. (37)

If the matrix φ− is

φ− =


φ−11 φ−12 φ−13 φ−14

φ−21 φ−22 φ−23 φ−24

φ−31 φ−32 φ−33 φ−34

φ−41 φ−42 φ−43 φ−44

, (38)

then the components of the first column of φ− are

φ−11 = 1 + i

∫ x

−∞
(p1(y)φ−21(y, λ) + p2(y)φ−31(y, λ) + p3(y)φ−41(y, λ))dy, (39)

φ−21 = i

∫ x

−∞
r1(y)φ−11(y, λ)e−iλα(x−y)dy, (40)

φ−31 = i

∫ x

−∞
r2(y)φ−11(y, λ)e−iλα(x−y)dy, (41)

φ−41 = i

∫ x

−∞
r3(y)φ−11(y, λ)e−iλα(x−y)dy. (42)

Similarly, the components of the second column of φ− are

φ−12 = i

∫ x

−∞
(p1(y)φ−22(y, λ)

+ p2(y)φ−32(y, λ) + p3(y)φ−42(y, λ))eiλα(x−y)dy, (43)

φ−22 = 1 + i

∫ x

−∞
r1(y)φ−12(y, λ)dy, (44)

φ−32 = i

∫ x

−∞
r2(y)φ−12(y, λ)dy, (45)

φ−42 = i

∫ x

−∞
r3(y)φ−12(y, λ)dy, (46)

and the components of the third column of φ− are

φ−13 = i

∫ x

−∞
(p1(y)φ−23(y, λ)

+ p2(y)φ−33(y, λ) + p3(y)φ−43(y, λ))eiλα(x−y)dy, (47)
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φ−23 = i

∫ x

−∞
r1(y)φ−13(y, λ)dy, (48)

φ−33 = 1 + i

∫ x

−∞
r2(y)φ−13(y, λ)dy, (49)

φ−43 = i

∫ x

−∞
r3(y)φ−13(y, λ)dy, (50)

and finally, the components of the fourth column of φ− are

φ−14 = i

∫ x

−∞
(p1(y)φ−24(y, λ)

+ p2(y)φ−34(y, λ) + p3(y)φ−44(y, λ))eiλα(x−y)dy, (51)

φ−24 = i

∫ x

−∞
r1(y)φ−14(y, λ)dy, (52)

φ−34 = i

∫ x

−∞
r2(y)φ−14(y, λ)dy, (53)

φ−44 = 1 + i

∫ x

−∞
r3(y)φ−14(y, λ)dy. (54)

We can see that as α = α1 − α2 < 0, if Im(λ) > 0, then Re(e−iλα(x−y)) decays

exponentially when y < x, and so each integral of the first column of φ− converges.

As a result, the components of the first column of φ−, i.e., φ−11, φ
−
21, φ

−
31, φ

−
41 are

analytic in the upper half complex plane for λ ∈ C+ and continuous for λ ∈ C+∪R.

But, if Im(λ) < 0, Re(eiλα(x−y)) also decays, then the components of the last three

columns of φ− converge, and thus, they are analytic in the lower half plane for

λ ∈ C− and continuous for λ ∈ C− ∪ R.

In the same way, for y > x, the components of the last three columns of φ+ are

analytic in the upper half plane for λ ∈ C+ and continuous for λ ∈ C+ ∪ R, and

the components of the first column of φ+ are analytic in the lower half plane for

λ ∈ C− and continuous for λ ∈ C− ∪ R.
Now let us construct the Riemann–Hilbert problems. Note that

ψ± = φ±eiλΛx, so φ± = ψ±e−iλΛx. (55)

Let φ±j be the jth column of φ± for j ∈ {1, 2, 3, 4}, and so the first Jost matrix

solution can be taken as

P+(x, λ) = (φ−1 , φ
+
2 , φ

+
3 , φ

+
4 ) = φ−H1 + φ+H2, (56)

where φ−1 = (φ−11, φ
−
21, φ

−
31, φ

−
41)T , φ+

2 = (φ+
12, φ

+
22, φ

+
32, φ

+
42)T , φ+

3 = (φ+
13, φ

+
23, φ

+
33,

φ+
43)T , φ+

4 = (φ+
14, φ

+
24, φ

+
34, φ

+
44)T and H1 = diag(1, 0, 0, 0) and H2 = diag(0, 1, 1, 1).

P+ is then analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

To construct the analytic counterpart of P+ ∈ C+, it is going to be simpler

to use the equivalent spectral adjoint equation (26). Because φ̃± = (φ±)−1 and
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ψ± = φ±eiλΛx, we have

(φ±)−1 = eiλΛx(ψ±)−1. (57)

Now, let φ̃±j be the jth row of φ̃± for j ∈ {1, 2, 3, 4}. In the same way, we proved

for P+ above, we can get

P−(x, λ) = (φ̃−1 , φ̃
+
2 , φ̃

+
3 , φ̃

+
4 )T = H1(φ−)−1 +H2(φ+)−1. (58)

P− is analytic for λ ∈ C− and continuous for λ ∈ C− ∪ R.

From (56), (58) and (55) along with φT (x,−t,−λ) = Cφ−1(x, t, λ)C−1, we have

the nonlocal involution property

(P+)T (x,−t,−λ) = CP−(x, t, λ)C−1. (59)

Through what have been done above, we have been able to construct the matrix

of eigenfunctions P+ and P− that are analytic in C+ and C−, respectively, and

continuous in C+ ∪ R and C− ∪ R, respectively.

From (56) and (58), we have

P−(x, λ)P+(x, λ) = eiλΛx(H1 +H2S)(H1 + S−1H2)e−iλΛx, for λ ∈ R, (60)

where the inverse scattering data matrix S−1 = (ŝij)4×4 for i, j ∈ {1, 2, 3, 4}.
Using (31) in (56), we have

P+(x, λ) = φ+(eiλΛxSe−iλΛxH1 +H2), (61)

as φ+(x, λ)→ I4 when x→ +∞, then

lim
x→+∞

P+ =


s11(λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, for λ ∈ C+ ∪ R. (62)

In the same way, we have as well

lim
x→−∞

P− =


ŝ11(λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, for λ ∈ C− ∪ R. (63)

Thus, if we choose

G+(x, λ) = P+(x, λ)


s−1

11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and
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(G−)−1(x, λ) =


ŝ−1

11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

P−(x, λ), (64)

then on the real line, the two generalized matrices generate the matrix Riemann–

Hilbert problems for the six-component AKNS system of fourth-order given by

G+(x, λ) = G−(x, λ)G0(x, λ), for λ ∈ R, (65)

where the jump matrix G0(x, λ) can be cast as

G0(x, λ) = eiλΛx


ŝ−1

11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (H1 +H2S)(H1 + S−1H2)

×


s−1

11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 e−iλΛx, (66)

which can be explicitly written as

G0(x, λ)

=


s−1
11 ŝ
−1
11 ŝ12ŝ

−1
11 e

iλx(α1−α2) ŝ13ŝ
−1
11 e

iλx(α1−α2) ŝ14ŝ
−1
11 e

iλx(α1−α2)

s21s
−1
11 e
−iλx(α1−α2) 1 0 0

s31s
−1
11 e
−iλx(α1−α2) 0 1 0

s41s
−1
11 e
−iλx(α1−α2) 0 0 1

,

(67)

with its canonical normalization conditions given by

G+(x, λ) → I4 as λ ∈ C+ ∪ R→∞, (68)

G−(x, λ)→ I4 as λ ∈ C− ∪ R→∞. (69)

From (59) along with (64) and (35), we obtain

(G+)T (x,−t,−λ) = C(G−)−1(x, t, λ)C−1. (70)

Also, from (66) and (35), we have this involution property

GT0 (x,−t,−λ) = CG0(x, t, λ)C−1. (71)
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2.4. Time evolution of the scattering data

The process of the inverse scattering transform requires the time evolution of the

scattering data. Differentiating Eq. (31) with respect to time t and applying (20)

give

St = iλ4[Ω, S], (72)

and thus,

St =


0 iβλ4s12 iβλ4s13 iβλ4s14

−iβλ4s21 0 0 0

−iβλ4s31 0 0 0

−iβλ4s41 0 0 0

. (73)

As a result, we have 

s12(t, λ) = s12(0, λ)eiβλ
4t,

s13(t, λ) = s13(0, λ)eiβλ
4t,

s14(t, λ) = s14(0, λ)eiβλ
4t,

s21(t, λ) = s21(0, λ)e−iβλ
4t,

s31(t, λ) = s31(0, λ)e−iβλ
4t,

s41(t, λ) = s41(0, λ)e−iβλ
4t,

(74)

and s11, s22, s23, s24, s32, s33, s34, s42, s43, s44 are constants.

3. Soliton Solutions

3.1. General case

In this section, we are going to write explicitly the one- and two-soliton solutions

from the N -soliton solution based on the Riemann–Hilbert problems. In fact, the

Riemann–Hilbert problems generate a unique solution in the regular case, i.e., the

det(G±) 6= 0 when G± → I4 as λ → ∞. However, there are possible contingencies

that det(G±) could be zero for some discrete λ ∈ C± when nonregular. In that case,

it is opportune to transform the nonregular case to a regular in order to guarantee

a solution.

From (56) and (58) with (31), as det(φ±) = 1, we prove that

det(P+(x, λ)) = s11(λ) (75)

and

det(P−(x, λ)) = ŝ11(λ). (76)
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Because det(S(λ)) = 1, so S−1(λ) = (cof(S(λ)))T ; thus,

ŝ11 =

∣∣∣∣∣∣∣∣
s22 s23 s24

s32 s33 s34

s42 s43 s44

∣∣∣∣∣∣∣∣. (77)

In order to get soliton solutions, the solutions of det(P±(x, λ)) = 0 are as-

sumed to be simple. Let us suppose that s11(λ) has simple zeros λk ∈ C+ for

k ∈ {1, 2, . . . , N} and ŝ11(λ) has simple zeros λ̂k ∈ C− for k ∈ {1, 2, . . . , N}, which

are the poles of the transmission coefficients.17

From (35), we know that ŝ11(λ) = s11(−λ). Hence, we have the involution

relation

λ̂ = −λ. (78)

Each Ker(P+(x, λk)) contains a singleton column vector vk, and also

Ker(P−(x, λ̂k)) contains a singleton row vector v̂k for k ∈ {1, 2, . . . , N} such that

P+(x, λk)vk = 0 for k ∈ {1, 2, . . . , N} (79)

and

v̂kP
−(x, λ̂k) = 0 for k ∈ {1, 2, . . . , N}. (80)

The Riemann–Hilbert problems can be solved explicitly when G0 = I4. This will

force the reflection coefficients s21 = s31 = s41 = 0 and ŝ12 = ŝ13 = ŝ14 = 0.

In that case, we can present the solutions to special Riemann–Hilbert problems

as follows16,18:

G+(x, λ) = I4 −
N∑

k,j=1

vk(M−1)kj v̂j

λ− λ̂j
(81)

and

(G−)−1(x, λ) = I4 +

N∑
k,j=1

vk(M−1)kj v̂j
λ− λk

, (82)

where M = (mkj)4×4 is a matrix defined as follows:

mkj =


v̂kvj

λj − λ̂k
if λj 6= λ̂k

0 if λj = λ̂k

, k, j ∈ {1, 2, . . . , N}. (83)

The scattering vectors vk and v̂k are functions of (x, t), but λk and λ̂k are constants,

and so differentiating both sides of P+(x, λk)vk = 0 with respect to x and knowing

that P+ satisfies the spectral spatial equivalent equation (19) along with (79) give

P+(x, λk)

(
dvk
dx
− iλkΛvk

)
= 0 for k, j ∈ {1, 2, . . . , N}, (84)
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and also differentiating it with respect to t and using the temporal equation (20)

along with (79) give

P+(x, λk)

(
dvk
dt
− iλ4

kΩvk

)
= 0 for k, j ∈ {1, 2, . . . , N}. (85)

In the same way, by using (80) and the adjoint spectral equations (24) and (25),

one can prove that (
dv̂k
dx

+ iλ̂kv̂kΛ

)
P−(x, λ̂k) = 0 (86)

and (
dv̂k
dt

+ iλ̂4
kv̂kΩ

)
P−(x, λ̂k) = 0. (87)

As vk is a single vector in the kernel of P+, so dvk
dx − iλkΛvk and dvk

dt − iλ
4
kΩvk are

scalar multiples of vk.

This permits one to obtain

vk(x, t) = eiλkΛx+iλ4
kΩtwk for k ∈ {1, 2, . . . , N}. (88)

In the same way, we will have for P−,

v̂k(x, t) = ŵke
−iλ̂kΛx−iλ̂4

kΩt for k ∈ {1, 2, . . . , N}, (89)

where the column vector wk and the row vector ŵk are constants.

Now from (79) and using (59), we get

vTk (x,−t,−λk)(P+)T (x,−t,−λk)

= vTk (x,−t,−λk)CP−(x, t, λk)C−1 = 0 for k ∈ {1, 2, . . . , N}. (90)

Because vTk (x,−t,−λk)CP−(x, t, λk) could be zero and using (80) leads to

vTk (x,−t,−λk)CP−(x, t, λk) = v̂k(x, t, λ̂k)P−(x, t, λ̂k)

= v̂k(x, t,−λ̂k)P−(x, t,−λ̂k) = 0. (91)

As λ̂k = −λk from (78), then we can take

v̂k(x, t,−λ̂k) = vTk (x,−t,−λk)C for k ∈ {1, 2, . . . , N}. (92)

These involution relations will give then

vk(x, t) = eiλkΛx+iλ4
kΩtwk for k ∈ {1, 2, . . . , N}, (93)

v̂k(x, t) = wTk e
−iλ̂kΛx−iλ̂4

kΩtC for k ∈ {1, 2, . . . , N}. (94)

The jump matrix being G = I4 allows to recover the potential P from the

generalized matrix Jost eigenfunctions. Because P+ is analytic, we can expand G+

as λ→∞ in this form at order 3,

G+(x, λ) = I4 +
1

λ
G+

1 (x) +O

(
1

λ2

)
when λ→∞. (95)

2150035-16

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

02
1.

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

A
K

E
 F

O
R

E
ST

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/1

4/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2021 14:23 IJMPB S0217979221500351 page 17

Riemann-Hilbert problems of a nonlocal AKNS System

Because G+ satisfies the spectral problem, substituting it in (19) and matching the

coefficients of the same power of 1
λ , at order O(1), we get

P = −[Λ, G+
1 ]. (96)

If

G+
1 =


(G+

1 )11 (G+
1 )12 (G+

1 )13 (G+
1 )14

(G+
1 )21 (G+

1 )22 (G+
1 )23 (G+

1 )24

(G+
1 )31 (G+

1 )32 (G+
1 )33 (G+

1 )34

(G+
1 )41 (G+

1 )42 (G+
1 )43 (G+

1 )44

, (97)

then

P = −[Λ, G+
1 ]

=


0 −α(G+

1 )12 −α(G+
1 )13 −α(G+

1 )14

α(G+
1 )21 0 0 0

α(G+
1 )31 0 0 0

α(G+
1 )41 0 0 0

. (98)

As a result, we can now recover the potentials pi and ri for i ∈ {1, 2, 3} as follows:

p1 = −α(G+
1 )12, r1 = α(G+

1 )21,

p2 = −α(G+
1 )13, r2 = α(G+

1 )31,

p3 = −α(G+
1 )14, r3 = α(G+

1 )41.

(99)

Also, from (95), we have

G+
1 = λ lim

λ→∞
(G+(x, λ)− I4); (100)

so from (81), we prove

G+
1 = −

N∑
k,j=1

vk(M−1)k,j v̂j . (101)

From (9) and (96), we easily prove the nonlocal involution property

(G+
1 )T (x,−t) = CG+

1 (x, t)C−1. (102)

Using (99) along with (93), (94) and (101) will generate the N -soliton solution

to the nonlocal reverse-time six-component AKNS system of fourth-order

pi = α

N∑
k,j=1

vk1(M−1)kj v̂j,i+1 for i ∈ {1, 2, 3}, (103)

where wk is an arbitrary constant column vector in C4, and

vk = (vk1, vk2, vk3, . . . , vkn+1)T , v̂k = (v̂k1, v̂k2, v̂k3, . . . , v̂kn+1).
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4. Exact Soliton Solutions and Dynamics

4.1. One-soliton solution

A general explicit solution for a single-soliton in the reverse-time case when N = 1,

w1 = (w11, w12, w13, w14)T , λ1 ∈ C is arbitrary and λ̂1 = −λ1 is given by

p1(x, t) =
2ρ2ρ3λ1(α1 − α2)w11w12e

iλ1(α1+α2)x+iλ4
1(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e2iλ1α2x

, (104)

p2(x, t) =
2ρ1ρ3λ1(α1 − α2)w11w13e

iλ1(α1+α2)x+iλ4
1(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e2iλ1α2x

, (105)

p3(x, t) =
2ρ1ρ2λ1(α1 − α2)w11w14e

iλ1(α1+α2)x+iλ4
1(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e2iλ1α2x

. (106)

We can get the amplitude of p1:

|p1(x, t)| = 2e−Im(λ4
1(β1−β2)t+λ1(α1+α2)x)

×
∣∣∣∣ λ1ρ2ρ3(α1 − α2)w11w12

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e2iλ1α2x

∣∣∣∣.
(107)

About the dynamics of the one-soliton, we can see from p1 that there is no speed,

i.e., the soliton is not a traveling wave. By choosing any arbitrary constant x = x0,

β1 − β2 < 0 and λ1 /∈ iR in |p1(x, t)|, we see that the soliton’s amplitude grows

exponentially if Im(λ4
1) > 0, while it decays exponentially if Im(λ4

1) < 0, but when

Im(λ4
1) = 0, the amplitude is constant over the time. If we choose x = x0 and

λ1 ∈ iR, we have a constant amplitude for the soliton indeed.

In this reverse-time case, any one-soliton does not collapse, either it strictly

increases, decreases or stays constant.

From the spectral plane, let λ1 = ξ + iη = reiθ, where r > 0 and 0 < θ < 2π then:

if



θ ∈
(

0,
π

4

)
∪
(
π

2
,

3π

4

)
∪
(
π,

5π

4

)
∪
(

3π

2
,

7π

4

)
,

then the amplitude of the soliton is increasing,

θ ∈
(π

4
,
π

2

)
∪
(

3π

4
, π

)
∪
(

5π

4
,

3π

2

)
∪
(

7π

4
, 2π

)
,

the amplitude of the soliton is decreasing,

θ ∈
{
π

4
,
π

2
,

3π

4
,

5π

4
,

3π

2
,

7π

4

}
, the amplitude of the soliton is constant,

θ ∈ {0, π, 2π}, we obtain one breather with constant amplitude.

(108)

This illustration is shown in Fig. 1.
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Fig. 1. (Color online) Spectral plane of eigenvalues.

Let us graph the one-soliton solution. When λ1 does not lie on the real axis

(η = 0), imaginary axis (ξ = 0) or the bisectors (η = ±ξ), the amplitude of the

potential grows or decays exponentially if Im(λ4
1) > 0 or Im(λ4

1) < 0, respectively.

Two examples are illustrated in Figs. 2 and 3, where we have growing and decaying

amplitudes.

Fig. 2. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton
in the focusing case with parameter values ρ1 = −1, ρ2 = −2, ρ3 = −1, λ1 = −0.01 + i, α1 = −1,

α2 = 1, β1 = −1, β2 = 1, w1 = (1, i, 2 + i, 1). The 2D plot is for time values, t = 0, 2 and 4.

When Im(λ4
1) = 0, the amplitude does not change. In that case, λ1 lies on the

imaginary axis, the bisectors or the real axis. If λ1 lies on the imaginary axis or

on the bisectors, then we have a fundamental soliton (Fig. 4), whereas if λ1 ∈ R,
then we have a periodic one-soliton with period π

λ1(α1−α2) which is a breather

(Fig. 5).
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Fig. 3. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton

with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 0.01 + i, α1 = −1, α2 = 1, β1 = −1, β2 = 1,

w1 = (1, i, 2 + i, 1). The 2D plot is for time values, t = 0, 2 and 4.

Fig. 4. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton

with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 2i, α1 = −1, α2 = 1, β1 = −1, β2 = 1,
w1 = (1, i, 2 + i, 1). The 2D plot is for any time value.

Fig. 5. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton
with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 0.5, α1 = −1, α2 = 1, β1 = −1, β2 = 1,
ρ = 1, w1 = (1, i, 2 + i, 1). The 2D plot is for any time value.

4.2. Two-soliton solution

A general explicit two-soliton solution in the reverse-time case when N = 2, w1 =

(w11, w12, w13, w14)T , w2 = (w21, w22, w23, w24)T , (λ1, λ2) ∈ C2 are arbitrary, and
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λ̂1 = −λ1, λ̂2 = −λ2, is given if λ1 6= −λ2 by

p1(x, t) = 2ρ2ρ3(λ1 + λ2)(α1 − α2)
A(x, t)

B(x, t)
, (109)

p2(x, t) = 2ρ1ρ3(λ1 + λ2)(α1 − α2)
C(x, t)

B(x, t)
, (110)

p3(x, t) = 2ρ1ρ2(λ1 + λ2)(α1 − α2)
D(x, t)

B(x, t)
, (111)

where

A(x, t) = ei[λ
4
2(β1−β2)t+λ2(α1+α2)x]

· [(w22M(λ1 + λ2)− 2w12Kλ1)w21λ2e
2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w2
11w21w22λ2e

2α1λ1x]

+ ei[λ
4
1(β1−β2)t+λ1(α1+α2)x] · [(w12N(λ1 + λ2)− 2w22Kλ2)w11λ1e

2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w12w
2
21λ1e

2α1λ2x],

B(x, t) = −4ρ1ρ2ρ3λ1λ2w11w21Ke
i(λ1+λ2)(α1+α2)x

· [ei(λ
4
1−λ

4
2)(β1−β2)t + e−i(λ

4
1−λ

4
2)(β1−β2)t] + ρ1ρ2ρ3w

2
21M(λ1

+λ2)2ei2(α1λ2+α2λ1)x + ρ1ρ2ρ3w
2
11N(λ1 + λ2)2ei2(α1λ1+α2λ2)x

+ ρ2
1ρ

2
2ρ

2
3w

2
11w

2
21(λ1 − λ2)2ei2α1(λ1+λ2)x + [(λ2

1 + λ2
2)MN

+ (2MN − 4K2)λ1λ2]ei2α2(λ1+λ2)x,

C(x, t) = ei[λ
4
2(β1−β2)t+λ2(α1+α2)x] · [(w23M(λ1 + λ2)− 2w13Kλ1)w21λ2e

2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w2
11w21w23λ2e

2α1λ1x] + ei[λ
4
1(β1−β2)t+λ1(α1+α2)x]

· [(w13N(λ1 + λ2)− 2w23Kλ2)w11λ1e
2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w13w
2
21λ1e

2α1λ2x],

D(x, t) = ei[λ
4
2(β1−β2)t+λ2(α1+α2)x] · [(w24M(λ1 + λ2)− 2w14Kλ1)w21λ2e

2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w2
11w21w24λ2e

2α1λ1x]

+ ei[λ
4
1(β1−β2)t+λ1(α1+α2)x] · [(w14N(λ1 + λ2)− 2w24Kλ2)w11λ1e

2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w14w
2
21λ1e

2α1λ2x],

and M = ρ2ρ3w
2
12 + ρ1ρ3w

2
13 + ρ1ρ2w

2
14, N = ρ2ρ3w

2
22 + ρ1ρ3w

2
23 + ρ1ρ2w

2
24 and

K = ρ2ρ3w12w22 + ρ1ρ3w13w23 + ρ1ρ2w14w24.

About the dynamics of two-soliton solution, many phenomena could occur.

Either the two solitons move (repeatedly or not) in opposite directions or one moves

while the other stays stationary or both are stationary.
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Now, since λ1 6= −λ2, let λ1 = ξ + iη and λ2 = ξ′ + iη′. If λ1 = ±a ± ib,

λ2 = ±a± ib where a 6= b and a 6= 0, b 6= 0 that means both λ1 and λ2 are symmetric

with respect to the real axis or the imaginary axis, then the two solitons will be

collapsing repeatedly or noncollapsing while moving in opposite directions. Each

keeping the same amplitude before and after interaction (see Fig. 6), or both keep

their amplitude before interaction, but the amplitude changes after the collision

to a new constant amplitude (as illustrated in Fig. 7), depending on the choice

of w1, w2.

Fig. 6. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two traveling

waves in the focussing case with parameter values ρ1 = −1, ρ2 = −2, ρ3 = −3, λ1 = 1 + 0.5i,

λ2 = −1 + 0.5i, α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 = (1 − 0.5i, 1 + 3i,−i, 1 + i) and
w2 = (−1 + 2i, 1− 1.5i, i, 1− i). The 2D plot is for time values t = −0.8, 0, 0.8.

Fig. 7. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton
with parameter values ρ1 = −1, ρ2 = 1, ρ3 = −1, λ1 = −0.4 + 0.8i, λ2 = 0.4 + 0.8i, α1 = −2,

α2 = 1, β1 = −2, β2 = 1, w1 = (1, 1− i,−0.1 + i, 1 + i) and w2 = (−1 + 2i, 1− 0.1i, 3 + i, 0). The
2D plot is for time values t = −4, 0, 6.

We may have the case of two soliton waves moving in opposite directions, and

after interaction, they get embedded into a single wave (Fig. 8). Also, we can have

the case where one soliton unfolds to two soliton waves19 (Fig. 9). The choice of

those eigenvalues may be helpful in explaining some physical phenomena.20

Remark 1. We note that Figs. 7, 8 and 9 resemble the collision of two Manakov

solitons.9,21
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Fig. 8. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton

with parameter values ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, α1 = −2,

α2 = 1, β1 = −2, β2 = 1, w1 = (1, 0,−0.1 + i, 1 + i) and w2 = (−1, 1− 2i, 3 + i, 0). The 2D plot
is for time values t = −2, 0, 1.5.

Fig. 9. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton

with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 1 + 1.5i, λ2 = −1 + 1.5i, α1 = −2, α2 = 1,

β1 = −2, β2 = 1, w1 = (1, 0,−2− i, 1− i) and w2 = (−1, 1− 2i, 3− i, 0). The 2D plot is for time
values t = −0.6, 0, 1.

If b = a, we have λ1 = ±a ± ia, λ2 = ±a ± ia, still λ1, λ2 are symmetric with

respect to the real axis or imaginary axis and they lie on the bisectors, then the

two solitons will be stationary and will have constant amplitudes.

For the other choices of λ1, λ2, if both lie anywhere on the real axis, imaginary

axis or the bisectors where both are not real, that means

λ1 = ±a+ ia, λ2 = ±b+ ib,

i.e., both lie on the same bisector or each on different bisector,

λ1 = ±a+ ia, λ2 = ib,

i.e., one lies on a bisector and the other one on the imaginary axis,

λ1 = ±a+ ia, λ2 = b,

i.e., one lies on a bisector and the other one on the real axis,

λ1 = ia, λ2 = ib, i.e., both lie on the imaginary axis,

λ1 = a, λ2 = ib,

i.e., one on the real axis while the other lies on the imaginary axis,

(112)
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then the two solitons could be noncollapsing or collapsing repeatedly and/or pe-

riodically creating a standing state wave (as shown in Fig. 10). Whereas if both

λ1, λ2 are real, i.e., λ1 = a, λ2 = b, we have two breather periodic waves with

period 2π
(λ4

1−λ4
2)(β1−β2)

in standing state (see Fig. 11).

Fig. 10. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton

with parameter values ρ1 = −1, ρ2 = 1, ρ3 = −1, λ1 = 2i, λ2 = −0.6 + 0.6i, α1 = −2, α2 = 1,
β1 = −2, β2 = 1, w1 = (1, 0,−0.1 + i, 1 + i) and w2 = (−1, 1− 2i, 3 + i, 0). The 2D plot is for time

values t = −10, 0, 20.

Fig. 11. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton
with parameter values ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 1, λ2 = 2, α1 = −2, α2 = 1, β1 = −2,
β2 = 1, w1 = (1, 0, 2 + i, 1− i) and w2 = (−1, 1− 2i,−i, 0). The 2D plot is for time values t = 0.8.

Remark 2. If λ1 6= −λ2 and λ1, λ2 are symmetric about the real axis, imaginary

axis or the bisectors or also if each lies anywhere on the real axis, imaginary axis

or the bisectors, then Im(λ4
1 + λ4

2) = 0.

Remark 3. If Im(λ4
1 +λ4

2) = 0 and |λ1|4 = |λ2|4, then λ1, λ2 are symmetric about

the real axis, imaginary axis or the bisectors.

If Im(λ4
1) = 0 and Im(λ4

2) = 0, then this means that each of λ1 and λ2 lies on one

of the real axes, imaginary axes or the bisectors.
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Remark 4. If λ1, λ2 are symmetric about the bisectors, then the dynamics of the

two solitons is different from when the two eigenvalues are symmetric about the

η-axis (or ξ-axis).

We can note that any λ1 and λ2 satisfying any condition mentioned previously

will satisfy Im(λ4
1 +λ4

2) = 0 as well. If λ1 and λ2 are symmetric with respect to the

bisectors i.e., λ1 = a+ bi, λ2 = b+ ai or λ1 = a+ bi, λ2 = −b− ai, then they still

satisfy Im(λ4
1 +λ4

2) = 0, but the dynamics of the two solitons will be different from

what was discussed previously.

Now, if λ1 and λ2 do not satisfy any of the above conditions, then the two

solitons move in opposite directions and could collapse repeatedly, where they will

be decreasing or increasing over the time (see Fig. 12).

Fig. 12. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton
with parameter values ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 0.1 + i, λ2 = −0.3 + 0.5i, α1 = −2,

α2 = 1, β1 = −2, β2 = 1, w1 = (1 + i, 1 − 3i, 2 + i, 1 − i) and w2 = (−1 + i, 1 + 3i, 2 − i, 1 + i).
The 2D plot is for time values t = −2, 0, 2, 3, 5, 7.

4.3. Three-soliton solution

The three-soliton solution is given, for which N = 3, w1 = (w11, w12, w13, w14)T ,

w2 = (w21, w22, w23, w24)T , w3 = (w31, w32, w33, w34)T , (λ1, λ2, λ3) ∈ C3, and λ̂1 =

−λ1, λ̂2 = −λ2, λ̂3 = −λ3, by

p1 = α

3∑
k,j=1

vk1(M−1)kj v̂j,2, (113)

p2 = α

3∑
k,j=1

vk1(M−1)kj v̂j,3, (114)

p3 = α

3∑
k,j=1

vk1(M−1)kj v̂j,4. (115)

For the three-soliton, if λi = −λj for i 6= j, i, j ∈ {1, 2, 3}, then we have the one-

soliton dynamics. Also, if two of {λ1, λ2, λ3} are equal, then we have the dynamics

of the two-soliton.
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Let λ1 = ξ + iη, λ2 = ξ′ + iη′ and λ3 = ξ′′ + iη′′. If two of the eigenvalues are

symmetric about the real axis, imaginary axis and the other eigenvalue lie on the

real axis, imaginary axis or on the bisectors, then we have two solitons collapsing

repeatedly or noncollapsing moving in opposite directions, while the third one stays

stationary. Either each keeps the same amplitude before and after interaction (see

Fig. 13), or they keep their amplitudes before interaction, but their amplitudes

change at the collision moment to new constant amplitudes (illustration in Fig. 14),

depending on the choice of w1, w2.

Fig. 13. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| for two traveling

waves and a constant-amplitude stationary wave with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1
λ1 = 1.2 + 0.5i, λ2 = −1.2 + 0.5i, λ3 = 2i, α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 =

(−1.5 + 2i, 2− 3i, i, 1− i) and w2 = (3 + 2i,−1 + 3i,−i, 1 + i), w3 = (1, 1, 2, 1). The 2D plot is for
time values, t = −0.5, 0, 0.5.

Fig. 14. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-
soliton with parameter values ρ1 = −0.5, ρ2 = −0.5, ρ3 = −0.5, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i,

λ3 = 0.8i, α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 = (1, i, 3 + i, 1 − i), w2 = (−1, 1 − 3i,−i, 0),

w3 = (2 + i, 1 + 2i, 1, 2i). The 2D plot is for time values, t = −2, 0, 2.5.

We can also have two other different cases of interaction. The first case is where

the three-soliton after interaction is embedded into two-soliton (Fig. 15). The sec-

ond case happens when the two solitons after interaction unfold to three-soliton

(Fig. 16). As said before, those phenomena may be relevant to some nonlinear

problems in applied physics.
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Fig. 15. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton

with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, λ3 = 0.75 + 0.75i,

α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 = (1, 0, 2 + i, 1 − i), w2 = (−1, 1 − 2i,−i, 0), w3 =
(2 + i, 1 + 2i, 1, 2i). The 2D plot is for time values, t = −2.5, 0,2.

Fig. 16. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton
with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = −1 + 0.5i, λ2 = 1 + 0.5i, λ3 = 0.75 + 0.75i,

α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 = (1, 0, 2 + i, 1 − i), w2 = (−1, 1 − 2i,−i, 0), w3 =
(2 + i, 1 + 2i, 1, 2i). The 2D plot is for time values, t = −2, 0, 2.5.

If λ1, λ2, λ3 are all real, then we have breather solitons as shown in Fig. 17.

Otherwise, if λ1, λ2, λ3 are not all real lying on the real axis, imaginary axis or the

bisectors, we will have three solitons collapsing repeatedly in standing state.

Fig. 17. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton

with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 1, λ2 = −2, λ3 = 0.5, α1 = −2, α2 = 1,
β1 = −2, β2 = 1, w1 = (1, 0, 2 + i, 1 − i), w2 = (−1, 1 − 2i,−i, 0), w3 = (1 + i, 1 + 2i, 0, 2i). The
2D plot is for time values, t = 0.5.
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If two of the λ1, λ2, λ3 are symmetric (but not real) about the η-axis (or ξ-

axis) and the third one lies off of the real axis, imaginary axis, bisectors, then we

can have three solitons interacting, with two solitons moving in opposite directions

with constant amplitudes. After collision, their amplitudes change, but still stay

constant, while the third soliton is stationary and its amplitude is either increasing

or decreasing, as shown in Fig. 18.

If λ1, λ2, λ3 all lie off the real axis, imaginary axis, bisectors, or one of them

is real or two of them are real, then we have two solitons that could repeatedly

collapse or noncollapse decreasingly or increasingly in their motion while the third

one stays stationary, as in Fig. 19.

Fig. 18. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton

with parameter values ρ1 = 2, ρ2 = 2, ρ3 = 2, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, λ3 = 0.04 + i,
α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 = (1− 2i, 1 + 3i,−i, 1 + i), w2 = (−1 + 2i, 1− 3i, i, 1− i),
w3 = (1 + i, 1 + 2i, 0, 2i). The 2D plot is for time values, t = −2.5, 0, 2.

Fig. 19. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-

soliton with parameter values ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 0.1 + i, λ2 = −0.3 + 0.5i,
λ3 = −0.2+0.7i, α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 = (2, 2i, 2+i, 1−i), w2 = (−1, 1−2i,−i, 0),

w3 = (−1 + i,−1 + 2i, 0,−2i). The 2D plot is for time values, t = −10, 0, 10.

5. Conclusion

In this paper, by using the Riemann–Hilbert technique, we have obtained the

N -soliton solution of a nonlocal nonlinear six-component fourth-order AKNS sys-

tem under a reverse-time reduction, and particularly, the one- and two-soliton
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solutions have been presented explicitly. What is interesting in this reverse-time

case is that the symmetry involution guarantees a pair of eigenvalues, one being

in the upper half complex plane and its symmetric partner being in the lower half

plane. Therefore, the Riemann–Hilbert problem becomes easier to solve than in

the reverse-space or in the reverse-space–time cases.22 Also, we have noted that

in comparison to classical solitons which keep their shapes and amplitudes over

the time, in the reverse-time case, the amplitude of the soliton potential changes,

and sometimes, the solution itself collapses while moving. Such solutions show that

they have singularities at a finite time. Moreover, at least two nonlocal solitons do

not always collide elastically in a nonlinear superposition manner like classical soli-

tons. Besides the Riemann–Hilbert approach, one could investigate the solvability

of those nonlocal integrable equations by the Hirota bilinear method or Darboux

transformation.
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