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1. Introduction

Integrable equations describe many physical phenomena such as magnetic fields,
plasma physics, nonlinear optics and quantum fields, etc. Especially, nonlocal ones
have been the center of interest of many studies nowadays.

Nonlocal equations describe PT symmetric dispersive waves. Interestingly, lo-
cal integrable equations can be reduced to nonlocal ones under the time parity
symmetry. 1-3

There are many techniques to solve integrable equations such as Darboux
transformation,* Hirota bilinear method® and the inverse scattering transform.>68
The Riemann—Hilbert technique is another powerful method to solve integrable
equations and generate their soliton solutions.? 2 In this paper, the associated
Riemann—Hilbert problems are formulated for a six-component AKNS system of
fourth-order equations in the AKNS multi-component hierarchy, and solutions to
the Riemann—Hilbert problems are worked out while taking the identity jump
matrix. 1316

The rest of the paper is structured as follows. In Sec. 2, we analyze the Riemann—
Hilbert problems associated with the corresponding matrix spectral problems,
which is closely related to the inverse scattering method. In Sec. 3, we will gen-
erate soliton solutions from the reflectionless problems, while in Sec. 4, we present
a few examples of soliton solutions and look into their dynamics. Finally, the last

section will be the conclusion, together with some remarks.

2. Riemann—Hilbert Problems

2.1. Sixz-component AKNS hierarchy of coupled fourth-order
integrable equations

Let us consider the pair of spatial and temporal spectral problems for the six-
component AKNS system?3:

"/}x = ZU% (1)
Wy = iV, 2)

where v is the eigenfunction.
The spectral matrix is given by

A p1 p2 3
T1 Oég)\ O O

U(U, )\) = ) (3)
T2 0 CVQ)\ 0

T3 0 0 042)\
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where X is a spectral parameter, a1,y are real constants, p = (p1,p2,p3) and

r = (Tla 7,2’,,,3)T
potentials.
The Lax matrix operator V4 is determined by

bhIN3 4 bEIA2
oAl el 4 ol

aldld 4 al2ln2 pltas 4 pPIn2

+ a4 qld
AP a2 afia - afi
+dfn+dly

BOICIECIT

+ 0[13]>\ + 6[14] + d[142]
V4l —
dig\* + di X2

+dg A+ dy

SN Nl 4 afi

(4]

teA e rdy

N N2 diz v dfn N+l

vt dll +dy

where all the involved functions are defined as follows:

al =y,
alll = 0,
3
a[Q} = _% DiTi,
S

i=1

2150035-3

+ E (piﬁwwx — DizxxTi + DixxTix — pi,wri,;rw)

bEIN3 4 bIN2
+ 0l 4 ol

dPIN? + dN

+dl]

doAN? + d5In
s
dignt + dig 22

+dSIN + dll

3
a[B} = _Zg Z(pirz,w pi,m’ri)a
i=1
2 3
all = o %’(Zpﬂ’?) + Z(pﬂ"m«r — DiaTix + p’LT’I‘Tl):| )
i=1 i=1
3 3
al®l = Z@ [6<Zpﬂ“i> - Z(pﬂ"z z pi,xri)
i=1 i=1

I

are vector functions of (z,t) and u = (p,r7)7T is a vector of six
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0 =0,

1B
bgc] = arkv

2] _
bk - _Zﬁpk,mv

3
s
bgcg] = _5 pk,mw+2 Zp

=1
=1

i=1

¢, =0,
1

ng] = ap/w
(2] _

Cp = iﬁrkﬂ;,

i=1

i=1

=1

3
[ _ P
bk - Zg |:pk,1»L»L + S(Zpﬂ’z

bf] aﬁ |:pk vzez T4 < szrz

3
5 |:Tk,wwwx + 4 ( Zpﬂ"i

Joe

)pk e+ 3(21& ﬂﬁ)pk}

=1

3 3
>pk zz T <6 Zpi,mri +2 Zpiri,z)pk,m
i=1 i=1
3 3 3 3 2
+ (4Zpi,m7"i +2 Zpi,ﬂ“z',z +2 me,m + G(me) )pk} ,
i—1 i—1 i=1 i=1

3
B
Cr :*5 rk,zm+2 E DiTi | Tk |,
N 5 3 3
4 .
G =i 7 |:Tk,a:a::1: +3< E pm)m,z +3( E pi,m)m},

i=1

3 3
)m,m + (6 > piria +2 Zm,m) ko

i=1 i=1

3 3 3 3
+ <4 Zpiri,zz +2 ZPi,mTi,z +2 Zpi,mcri +6 ( Zpﬂ”i) 2)%}
i=1 i=1 i=1 i=1
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and
dECOJ] = 62137
dyl =0,

(2] _
dij = —3PiTk;

3 .
dLJ] = _lﬁ(Pj,ka — PjTh,)

3
p
dE:l]] = 7? 3pj szrz Tk +pj,z:t7'k — DjaTk,x +pjrk,mm 3

i=1
. 3 3 3 3
dLJ] = o {QPj ( Zpi,ﬂ’i - Pﬂ‘i,z> T+ 4pj.e < me) Te — Dj <Zpﬂ”i> Tk,x
i=1 i=1 i=1

+pj,a:a:w7"k — DPjTk,xxx + Dj,xTk,xx — pj,a:a:rk,:v:| )

where & = a1 — ap and § = 81 — 2. We always assume that plil = (b[li]7l)[zi]ybz[;])7
il = (c[f],cg],c[gz])T and dl = (d%g)gxg, for i € {1,2,3,4,5}.

The compatibility condition ¥,; = 14, will lead to the zero curvature equation:
U, — VI [, v = o, (5)

which gives the six-component system of soliton equations

T [5]T
P [ ab
= = 5 6
Ut < r >t Z <—OZC[5]> ( )

where bl and ¢®! are defined earlier. Thus, we deduce the coupled AKNS system

of fourth-order equations®?:

3 3 3
Pkt = Z% |:pk,xacmr + 4(2}727"1)2%,“ + <6 Zpi,m/ri + 2 Zpiri,m>pk,m
@ i=1 i=1 i=1
3 3 3 3 2
+ <4 Zpi,mrri +2 Zpi,xri,m +2 Zpiri,zz + 6(21’1‘”) >Pk] ,
=1 =1 =1 i=1
(7)
B 3 3 3
Tkt = *Z? |:Tk,xxx$ +4 ( Zpiri)rk,rx + <6 Zpiri,:c +2 Zpi,zri) Tk,x
=1 1=1 =1

3 3 3 3 2
+ <4 Zpﬂ"mr +2 merm« +2 sz‘,mﬁ: + 6<Zpﬂ"i> >7"k] )
i=1 i=1 i=1 i=1

where k € {1,2,3}.
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2.2. Nonlocal reverse-time sixz-component AKNS system

Let us consider a class of specific nonlocal reverse-time reductions for the spectral
matrix

UT(z,—t,—\) = —CU(z,t,\)C~ ", (8)

1 0
0 =
YT =3 and det X # 0.

where C' = (

) and X is a constant invertible symmetric 3 x 3 matrix, i.e.,
As U(x,t,\) = A\ + P(x,t), for P = (2 g) and A = diag(aq, asl3), then we
have
PT(z,~t) = —CP(z,t)C~ " (9)
From the above (9), we get
pl(x, —t) = =%r(z,t) ie., r(z,t)=-2"1pT(z,—t). (10)
As VI (2,8, \) = MQ 4+ Q(,t,\) and from (9), we prove that
VI (@, -A) = oV (2,6, ) and
Q" (z,—t,—\) = CQ(z,t,\)C™ ", (11)
where Q = diag(81, 5213).

Importantly, the two Lax pair matrices UT (z, —t, —\) and V[4]T(x, —t, —\) satisfy
an equivalent zero curvature equation.

From this specific nonlocal reduction, the coupled six-component fourth-order
AKNS equations can be reduced to the nonlocal reverse-time six-component fourth-
order equations.

As ¥ is invertible and symmetric so diagonalizable, then we can take ¥ =
diag(pfl,pgl,pgl), for p1, p2, p3 nonzero real. Thus, X~ = diag(p1, p2, p3) leads
(10) to

ri(z,t) = —pipi(z,—t) for i€ {1,2,3}. (12)

Therefore, the coupled equations (7) reduce to the nonlocal reverse-time fourth-
order equation

3
Pkt ((E, t) = 7’% [pk,xzzx (.’E, t) —4 < Z PiPi (ZL’, t)pz (1’, _t)>pk,zz ((E, t)
i=1

3 3
- (6 Y piviala, Opie, —t) +2) pipi(e, Opia (e, —t))pk,x(% t)

i=1 i=1
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i=1 i=1

3 3
- (4 > pipiwa (@ Opi(w, —t) 2 pipi (@, t)pi o (x, —t)

3 3 2

i=1 1=1
(13)
for k € {1,2,3}.

We should note that if ¥ is negative definite i.e., each p; < 0 for i € {1,2, 3}, then
we obtain the focusing nonlocal reverse-time six-component fourth-order equation
due to the fact that the dispersive term and nonlinear terms attract. If p;’s are
not all the same sign for ¢ € {1, 2,3}, we obtain combined focusing and defocusing
cases.

2.3. Riemann—Hilbert problems

The Lax pair of the six-component fourth-order AKNS equations can be written as

follows:
e = iV =i\ Q+ Q) (15)
where Q = diag(81, B2, B2, B2), A = diag(ay, as, g, as) and
0 p1 p2 Dp3
rn 0 0 0
P = s
r, 00 0
r3 0 0 0
alPA2 4 aBln bl 4 plIaz plas 4 plinz gl g2
+al¥ N N SIS ) W
AU P2 Pl d®n a1 din a2 4 afdn
+eard? +dy +db]
Q= . (16)

N PN N dlN alN - dEn a2+ dfin
+ea ) d] +dby +dy]

N P2 e N aln - dn a2+ afin

+clBag +db] +db]
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Our purpose is to find soliton solutions from an initial condition
(p(x,0),rT(z,0))T to (p(z,t),rT (x,t))T at any time t. We assume that any p; and
r; decay exponentially, i.e., p; = 0 and r; — 0 as x,t — +oo for i € {1,2,3}.
Therefore, from the spectral problems (14), (15), ¢ will behave asymptotically
W(w, t) ~ Mz IOt

We can then expect the solution for the spectral problems to be

V(. t) = qﬁ(:c,t)ei’\Ax+i’\4Qt. (17)

17

For the Jost solution,”!7 we require that

d(x,t) = Iy, as x,t — Foo, (18)

where I, is the 4 x 4 identity matrix. Substituting (17) into the Lax pair, (14) and
(15), will result in the equivalent expression of the spectral problems

¢ = iX[Q, 9] +iQg. (20)

Now, we are going to work with the spatial spectral problem (19), assuming that
the time is t = 0 for the direct scattering process.

By Liouville’s formula,” as tr(iP) = 0 and tr(iQ) = 0, so det(¢) is a constant,
and using the boundary condition (18), we get

det(¢) = 1. (21)

To construct the Riemann—Hilbert problems and their solutions in the reflec-
tionless case, we are going to use the adjoint scattering equations of the spectral
problems 1), = iUv and 1, = iV [44). Their adjoints are

Ve = —iU, (22)
b = =iV, (23)
and the equivalent spectral adjoint equations read
b = —iA[§,A] — ioP, (24)
61 = —iX'[$, Q) — i¢Q. (25)

As ¢t = —¢p 1,071, we have from (19),
o7 = —iX[¢p™', A] —i¢p ' P. (26)

Therefore, we deduce that (¢*) ™! satisfies the adjoint equation (24). Similarly, we
can show that (¢)~! satisfies (25) as well.

Now, if the eigenfunction ¢(z,t, A) is a solution of the spectral problem (19),
then C¢~!(x,t,\) is a solution of the spectral adjoint problem (24) with the same
eigenvalue because ¢, ' = —¢ 1p, 0!, Also ¢T(x,—t,—\)C is a solution of the

2150035-8
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spectral adjoint problem (24). As both solutions have the same boundary condition
as ¢ — too which guarantees the uniqueness of the solution, so

oT (x,—t,—\)C = Cop~ (z,t,\) or ¢ (x,—t,—\) =Co  (x,t, \)C™'. (27)

This tells us that if A is an eigenvalue of the spectral problems, then —\ is also an
eigenvalue.

For the rest of the problem, we assume that o < 0 and 8 < 0 and Y* tell us at
which end of the z-axis, the boundary conditions are set. We know that

¢t — I, when 2 — +oo. (28)
‘We can then write
wi — (biei)\Ax. (29)

As 9T and ¢~ are two solutions of the spectral spatial differential equation of first-
order (14), they are then linearly dependent, and so they are related by a scattering
matrix S(A). As a result,

v =9SO, (30)
using (29), we have
¢~ = ¢teMTS(N)e M for A ER, (31)
where
S11 S12 S13 S14
S(A) = (8ij)axa = S ) (32)
531 532 533 534
841 S42 843 Saq
Because det(¢®) = 1, one has
det(S(\)) = 1. (33)
From (27) and (31), we have this involution relation
ST(—=x)=cCcst(ne (34)
From (34), we deduce that
511 () = s11(—A), (35)

where the inverse scattering data matrix S™ = (§;;)4x4 for i,j € {1,2,3,4}.

We can see that the recovery of the potentials will depend on the information of
the scattering data from the scattering matrix S(\). As ¢ — I, when  — oo,
we need to analyze the analyticity of the Jost matrix ¢* in order to formulate the
Riemann-Hilbert problems.

2150035-9
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One can write the solution ¢* in a unique manner by the Volterra integral
equations using (14):

€T

O (x, \) =14+ z/ ei’\A(m_y)P(y)q’)_(y, )\)e“‘A(y_”’)dy, (36)

—00

JrOO . .
¢ (2, \) = Iy —i / eMETY) Py) ¢t (y, N)e M) gy, (37)

If the matrix ¢~ is
b1 P12 P13 P1a
5 = ¢2:1 ¢2:2 ¢2:3 ¢2:4 ) (38)
P31 P32 P33 P34
by byp buz baa

then the components of the first column of ¢~ are

¢ =1 +i/m (P1(y) P21 (Y, A) + P2(¥) P31 (y, A) + p3(y) by (v, A)dy,  (39)

¢q =i / r1(y)dry (y, eV dy, (40)
b5 =i / ra(y)é7 (4, Ve~ @D dy, (41)
o =i / ra()6T (y, e Py, (42)

Similarly, the components of the second column of ¢~ are

b =i /_ " W) N)

+02(y) D32 (y, N) + p3(y) Bz (y, A)) eV dy, (43)
Gap =141 /_ ' m1(y) 912y, A)dy, (44)
on=i| " ()6 Ny, (45)
on=i| " s )én (v, Ny, (46)

and the components of the third column of ¢~ are

b =i / " o W)on N

+p2(y) 33 (1, ) + p3(y) P53 (v, N))e ) dy, (47)

2150035-10



Int. J. Mod. Phys. B 2021.35. Downloaded from www.worldscientific.com

by WAKE FOREST UNIVERSITY on 05/14/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Riemann-Hilbert problems of a nonlocal AKNS System

b =i [ " ()6m(n Ny, (48)
o =1+i [ " ()éns (v Ny, (49)
Gy3 =1 /_ ’ 73(y)P13(y, N dy, (50)

and finally, the components of the fourth column of ¢~ are

=i / RO ACES

+2(y)b34 (Y, N) + p3(y)daa (v, A)) eV dy, (51)
b =i [ " ()6ma(n Ny, (52)
G3q =i /_ ’ r2(y) 14y, N dy, (53)
on=1+i [ " s ()éna(y. Ndy. (54)

We can see that as & = oy — ag < 0, if Im()\) > 0, then Re(e~**(#=%)) decays
exponentially when y < z, and so each integral of the first column of ¢~ converges.
As a result, the components of the first column of ¢~, i.e., ¢17, b3y, P31, 04 are
analytic in the upper half complex plane for A € C,. and continuous for A € C; UR.
But, if Im(\) < 0, Re(e**(#=¥)) also decays, then the components of the last three
columns of ¢~ converge, and thus, they are analytic in the lower half plane for
A € C_ and continuous for A € C_ UR.

In the same way, for y > x, the components of the last three columns of ¢* are
analytic in the upper half plane for A € C; and continuous for A € Cy UR, and
the components of the first column of ¢* are analytic in the lower half plane for
A € C_ and continuous for A € C_ UR.

Now let us construct the Riemann—Hilbert problems. Note that
¢i — ¢ieiAAz7 S0 ¢i — 1/):t67i)\Ax. (55)

Let (bj[ be the jth column of ¢* for j € {1,2,3,4}, and so the first Jost matrix
solution can be taken as

P+(:U7)‘):(¢;7¢;7¢;7¢I):¢_H1+¢+H27 (56)
where 1 = (¢17, 0215 031, 011) " ¢35 = (D1, 932, Pzs 012) ", 03 = (D13, 035, P33,
043)7, 64 = (&4, 034, 054, 042) " and H = diag(1,0,0,0) and H; = diag(0,1,1,1).
P is then analytic for A € C, and continuous for A € C; UR.

To construct the analytic counterpart of P+ € C,, it is going to be simpler
to use the equivalent spectral adjoint equation (26). Because ¢t = (¢*)~! and

2150035-11
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Pt = ¢pteMT | we have
(¢5) 7 =P (pH) 7 (57)

Now, let é;t be the jth row of ¢+ for j € {1,2,3,4}. In the same way, we proved
for PT above, we can get

P (x,)) = (61,05, 01,00)" = Hi(¢7) "' + Ha(oh) 1. (58)

P~ is analytic for A € C_ and continuous for A € C_ UR.
From (56), (58) and (55) along with ¢7 (z, —t, —\) = C¢~1(x,t,\)C~, we have
the nonlocal involution property

(P (z,—t,—\) = CP~ (x,t,\)C~ L. (59)

Through what have been done above, we have been able to construct the matrix
of eigenfunctions P™ and P~ that are analytic in C, and C_, respectively, and
continuous in C; UR and C_ UR, respectively.

From (56) and (58), we have

P~ (z, \)PT(z,\) = e (H, + HyS)(Hy + S~ Hy)e ™ for AeR, (60)

where the inverse scattering data matrix S™! = (8;;)ax4 for 4,5 € {1,2,3,4}.
Using (31) in (56), we have

PH(z,\) = ¢T(ePeSe M 1 Hy), (61)

as ¢7(x, ) = I4 when x — +oo, then

811()\> 0 0 O
0 1 00
lim Pt = , for AeCpUR. (62)
z—+o0 0 010
0 0 0 1
In the same way, we have as well
1) 0 0 0
1 00
lim P~ = , for XeC_UR. (63)
Z—+—00 0 0 1 0
0 0 0 1
Thus, if we choose
s\ 0 0 0
1 00
Gt (z,\) = PT(z,)) and
01 0
0 0 01

2150035-12
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A1
S11 (M)

(G7) @A) =

0
0
) P~ (x, M), (64)
0

o O = O

0

then on the real line, the two generalized matrices generate the matrix Riemann—
Hilbert problems for the six-component AKNS system of fourth-order given by

GH(z,\) = G~ (2, \)Go(z,\), for AeR, (65)

where the jump matrix Go(z, A) can be cast as

57N 0 0 0
A 100 »
GU(LL',)\):@Z r (H1+HQS)(H1+S HQ)
0 01 0
0 0 01
st(A) 0 0 0
0 100 .
% e—z)\Aac7 (66)
0 01 0
0 0 01

which can be explicitly written as

GO ('7:7 >‘)
81_11§1_11 §12§1—116i/\x(a1—a2) §13§1—116i)\x(a1—a2) §14§1—116ikac(a1—a2)
B szlsl_lle_“‘x(al_(W) 1 0 0
N 33181_116_”‘9”(‘11_“2) 0 1 0 ’
34131_116_“‘9”(0‘1_"2) 0 0 1
(67)
with its canonical normalization conditions given by
G (z,\) > Iy as A€ CiUR — o0, (68)
G (z,\) =1y as AeC_UR— oo. (69)
From (59) along with (64) and (35), we obtain
(G (x,—t,—)\) = C(G) Lz, t, )C L. (70)
Also, from (66) and (35), we have this involution property
Gg(x, —t,—\) = CGo(z,t, )\)C_l. (71)

2150035-13
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2.4. Time evolution of the scattering data

The process of the inverse scattering transform requires the time evolution of the
scattering data. Differentiating Eq. (31) with respect to time ¢t and applying (20)

give
S, =iN'Q, 9], (72)
and thus,
0 iﬁ)\4812 iﬁ)\4813 ’L.B)\4814
—ifBAs 0 0 0
o | -
7Z‘ﬂA4831 0 0 0
—iﬁ)\4841 0 0 0
As a result, we have
812(t7 )\) = 512(0, )\)Biﬁ)\4t
Slg(t7 )\) = 813(0, )\)eiﬂ)‘4t,
s1a(t,A) = 514(0, 1) e, (74)
s21(t, ) = $21(0, X)e A",
831(t7 )\) = 831(0, /\)671‘6)\42
sa1(t, A) = s41(0, \)e~1BX"

and s11, S22, 523, 24, 532, 833, 534, 542, 543, S44 are constants.

3. Soliton Solutions
3.1. General case

In this section, we are going to write explicitly the one- and two-soliton solutions
from the NN-soliton solution based on the Riemann-Hilbert problems. In fact, the
Riemann—Hilbert problems generate a unique solution in the regular case, i.e., the
det(G*) # 0 when G* — I, as A\ — oo. However, there are possible contingencies
that det(G*) could be zero for some discrete A € C+ when nonregular. In that case,
it is opportune to transform the nonregular case to a regular in order to guarantee
a solution.
From (56) and (58) with (31), as det(¢*) = 1, we prove that

det(P*(z,\) = s11(\) (75)
and
det(P~(z, ) = 811(\). (76)
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Because det(S(\)) =1, so S7H(\) = (cof(S(N)))T; thus,

S22 523 S24
S11 = |S32 533 S34 (77)
542 543 S44
In order to get soliton solutions, the solutions of det(P*(z,\)) = 0 are as-
sumed to be simple. Let us suppose that s11(A) has simple zeros Ay, € C; for
ke{l,2,...,N} and $11(\) has simple zeros A\, € C_ for k € {1,2,..., N}, which
are the poles of the transmission coefficients.!”

From (35), we know that $11(A\) = s11(—A). Hence, we have the involution
relation

A=—\ (78)

Each Ker(P*(z,\z)) contains a singleton column vector wvg, and also
Ker(P~(x, Ax)) contains a singleton row vector 0y for k € {1,2,..., N} such that

PT(z, M), =0 for ke {1,2,...,N} (79)
and
P~ (z,\g) =0 for ke{l,2,...,N}. (80)

The Riemann—Hilbert problems can be solved explicitly when Gy = I4. This will
force the reflection coefficients so; = s31 = 541 = 0 and 315 = 13 = 5§14 = 0.
In that case, we can present the solutions to special Riemann-Hilbert problems

as follows!6-18.
" i vp(M™1)50;
GHa ) =1, — S 2 Jkily (81)
k,j=1 )‘_)‘j
and
1 Yo (M),
BE =1 LA el L A 2
(G (x,N) 4+;§=:1 S (82)

where M = (my;)axa is a matrix defined as follows:

LA YV
miy = 4 A~ M . kje{l2... N} (83)

0 if A\ =g

The scattering vectors vg and ¥y are functions of (x,t), but A\x and i are constants,
and so differentiating both sides of P*(x, A\;)vgr = 0 with respect to z and knowing
that P satisfies the spectral spatial equivalent equation (19) along with (79) give

P+(x,Ak)<‘§”“z‘AkAvk)o for k,je{l,2,...,N}, (84)
i
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and also differentiating it with respect to ¢ and using the temporal equation (20)
along with (79) give

P*(:c,)\k)<aZ:€ iAink> =0 for k,je{l,2,...,N}. (85)

In the same way, by using (80) and the adjoint spectral equations (24) and (25),
one can prove that

(dvk + i&kokA> P (2,5) =0 (86)
dx
and

(‘Z;’“ + z&i@kﬂ) P~ (z, M) =0. (87)

As vy, is a single vector in the kernel of PT, so % — i\ Avg, and % — iA{Quy, are

scalar multiples of v.
This permits one to obtain
vg(z,t) = EMRATHINQL Y o e {1,2,...,N}. (88)
In the same way, we will have for P~
O, t) = e AT for B (12 N, (89)

where the column vector wy and the row vector w; are constants.
Now from (79) and using (59), we get

vl (z, —t, =) (P (2, —t, = \p)
= v} (z,~t,~\)CP™ (2,6, \,)C~ =0 for ke {1,2,...,N}. (90)
Because v (z, —t, —Ar)C P~ (x,t, \x) could be zero and using (80) leads to
ol (z, —t, —Ap)COP ™ (x,t, \p) = Oz, t, \e) P~ (£, Ap)

= bp(z,t,—Ag) P~ (x,t, — ) = 0. (91)
As A, = =\ from (78), then we can take
oz, t, =) = v} (x, —t,—\g)C for ke{l,2,...,N}. (92)
These involution relations will give then
vp(z,t) = eMATHINDL Y for | € {1,2,...,N}, (93)
iz, t) = wle ™Az for ke {1,2,..., N} (94)

The jump matrix being G = Iy allows to recover the potential P from the
generalized matrix Jost eigenfunctions. Because P is analytic, we can expand G
as A — oo in this form at order 3,

1

G+(f£, )\) = I4 + )\

Gf(z)+0 <A12> when A\ — oo. (95)
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Because G satisfies the spectral problem, substituting it in (19) and matching the
coefficients of the same power of %, at order O(1), we get

P=—[A, GT] (96)
If
(G (G2 (G)is (G
(G2 (G2 (GP)2s (G )a
¢t = (GDa (G2 (G)ss (G)aa | o7
(G (Gaz (GY)az (G )aa
then
P =—[AG]]
0 —a(Gi )z —a(Gi s —a(Gi )
(G 0 0 0 . (98)
a(GY)3 0 0 0
a(GHa 0 0 0

As a result, we can now recover the potentials p; and r; for i € {1, 2,3} as follows:

pr=—a(G )2, 11 =a(G)a,
p2 = —a(G{ )3, 712 =a(G{)a1, (99)
ps=—a(G ), 713 =a(GY ).

Also, from (95), we have

G{ =X lim (GT(z,)) — Ly); (100)
A—00
so from (81), we prove
N
Gf == we(M 1) j0;. (101)
kyj=1
From (9) and (96), we easily prove the nonlocal involution property
(G (,~1) = CGF (,)C ", (102)

Using (99) along with (93), (94) and (101) will generate the N-soliton solution
to the nonlocal reverse-time six-component AKNS system of fourth-order

N
Di =« Z ’Uk1<M_1)kjﬁj7i+1 for i€ {1,2,3}, (103)
k

=1
where wy, is an arbitrary constant column vector in C*, and

T ~ ~ ~ ~ ~
Vi = (Uklvvk%kaw”avknJrl) , Vg = (Ukla'Uk%UkSa cee 7'Ukn+1)~
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4. Exact Soliton Solutions and Dynamics
4.1. One-soliton solution

A general explicit solution for a single-soliton in the reverse-time case when N = 1,
wy = (w117w12,w13,w14)T, A1 € C is arbitrary and Ay = — )y is given by

2;0203/\1 (041 _ aQ)wlezeMl(041+a2)56+i/\‘11(ﬁ1*52)t

pi(z,t) = - - , (104
) = apawh PN T (papgu, + prpaty T prosudyies (04
. 4
2p1p3A1 (01 — ag)wiywyge (el tidi(Bip)t
pa(z,t) = 2 2idarw P 2 T yoanaser  (105)
p1P2P3WT € + (p2p3wiy + prp3wis + p1p2wiy)e
9 A i i1 (a1 taz)z+idt (81— B2)t
ps(a,t) = p1p2A1 (o1 — az)wiiwige (106)

P1p2p3wi €2 4 (pap3wiy + p1pawis + prpawiy)eitiet’
We can get the amplitude of p;:

|p1 (I‘, t)| _ Qe*Im()\%(ﬁl —B2)t+A1(a1+az)x)

A1p2ps(ar — az)wiiwiz
P1p2p3wi 2T - (po 3wy + p1pzwiy + prpawty)etiioaT ||
(107)

X

About the dynamics of the one-soliton, we can see from p; that there is no speed,
i.e., the soliton is not a traveling wave. By choosing any arbitrary constant x = xg,
B1— P2 < 0and A ¢ iR in |p1(z,t)|, we see that the soliton’s amplitude grows
exponentially if Im(A}) > 0, while it decays exponentially if Im(\}) < 0, but when
Im(A\}) = 0, the amplitude is constant over the time. If we choose z = zy and
A1 € iR, we have a constant amplitude for the soliton indeed.

In this reverse-time case, any one-soliton does not collapse, either it strictly
increases, decreases or stays constant.

From the spectral plane, let A\; = & + in = re'®, where » > 0 and 0 < # < 27 then:

T T 37 51 3r Tmw
ve(0.3)u (2’4> Y (7“4) N (2’4)’

then the amplitude of the soliton is increasing,
06(71- 7T)U<37T >U<57T 371')U(77r2>
RS — T o — 4T ),
if 4’2 4 47 2 4 (108)
the amplitude of the soliton is decreasing,

T 7w 3m bw 3w Tw . . .
0 e {4, FIVEEITE 4}, the amplitude of the soliton is constant,

0 € {0,m,27}, we obtain one breather with constant amplitude.
This illustration is shown in Fig. 1.
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Constant Constant Constant
Increasing Decreasing
E
o,
|
e
Decreasing Increasing
‘ ‘ > w Constant
-2 -1 1 2
. ﬁj axis .
Increasing ecreasing
o
Decreasing Increasing

n=¢ £=0 n=-&

Fig. 1. (Color online) Spectral plane of eigenvalues.

Let us graph the one-soliton solution. When A; does not lie on the real axis
(n = 0), imaginary axis (£ = 0) or the bisectors (n = +£), the amplitude of the
potential grows or decays exponentially if Im(\}) > 0 or Im()\}) < 0, respectively.
Two examples are illustrated in Figs. 2 and 3, where we have growing and decaying
amplitudes.

\\ =‘| //
AN | y
A lncreasind y
\\\ ,‘ §1| //
N : /1 i
N B ncreasing
\\\ | //
R
b 2N f
Increasing N
// \\
y A
// I Increas;l;g\
// \\
// \\ 2
// J \\ *
n=¢ £=0 n=-§¢ [—t=0o—t-—2—1t=4|
Fig. 2. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton
in the focusing case with parameter values p1 = —1, po = =2, p3 = —1, A\; = —0.01 +4, a3 = —1,

as =1, 01 =-1, f2=1, w1 = (1,4,2+4,1). The 2D plot is for time values, t =0, 2 and 4.

When Im(Af) = 0, the amplitude does not change. In that case, A; lies on the
imaginary axis, the bisectors or the real axis. If A\; lies on the imaginary axis or
on the bisectors, then we have a fundamental soliton (Fig. 4), whereas if A\; € R,
then we have a periodic one-soliton with period X (a” which is a breather

1—2)
(Fig. 5).
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Fig. 3. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton
with parameter values p1 =1, p2 =1, p3 =1, \1 =0.01 +4, a1 = =1, a2 =1, 1 = -1, B2 =1,
w1 = (1,4,2 +¢,1). The 2D plot is for time values, t =0, 2 and 4.

Constant Constant Constant

n:& &:0 n:-t ; : -4 -3 -2 -1 0 1 i 3 4

Fig. 4. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton
with parameter values p;1 =1, p2 =1, p3 =1, \1 =2, a1 = -1, a2 =1, f1 = —1, Bz = 1,
w1 = (1,¢,2414,1). The 2D plot is for any time value.

Constant (Breather)
gt n=0

Fig. 5. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton
with parameter values p1 =1, p2 =1, p3 =1, A1 =05, a1 = -1, a0 =1, 51 = -1, B2 =1,
p=1,w =(1,4,2+14,1). The 2D plot is for any time value.

4.2. Two-soliton solution

A general explicit two-soliton solution in the reverse-time case when N = 2, wy =
T _ T 2 :
(w11, w12, w1s, w14)?, we = (wWa1, wa2, waz, was)’, (A1, A2) € C* are arbitrary, and
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A= =1, A2 = — g, is given if A; # — Ay by

D1 (.Z‘, t) = 2p2p3<)\1 + )\2)(0&1 — Ozg) gg‘z, 2, (109)
palant) = 201200 + Ma)(enr — ) 0, (110)
Pa(,1) = 2013 (M + Aa) (a1 — a)IB’Eg , (111)

where

A(x, t) — ei[Ag([%—ﬂz)t+k2((¥1+0¢2)$]

N(waa M (A + Xa) — 2wia KA )woy Ape2@2M1®

— p1p2p3(A1 — A2)wi warwa Aae>* M7

+ ei[xll(ﬁl—,Bz)t+>\1(0¢1+0¢2)$] . [(7«U12N()\1 + )\2) _ 2w22K/\2)w11)\162a2>‘2’”

+ p1p2pa( A1 — A2)wiiwigwsy Ay €122

B(z,t) = —4p1paps i dawwey K et M1HA2)(ertaz)z
: [ei(l\%_kg)(ﬁl_m)t + e_i(/\zll_kg)(ﬁl_m)t] + p1pap3ws M (A
+ Ag)ZetHnre AT o oo pawd) N (A + Ag)Zei2(@rhrFazta)e
+pipspiwtiws; (A — Ag) et AT L [(AF 4 AD)MN
+ (2MN — 4K?)A  Aglet2oz(itAz)e,
C(a,t) = elPa(Br=tdalonrtanal [ M (A + Ag) — 2wis K Ar g Age?2 M1

4
_ P1P2P3(>\1 _ )\Q)wflw21w23)\2620¢1>\1$] + ez[Al(ﬂ1—ﬁz)t+/\1(a1+a2)w]

’ [(w13N()\1 + )\2) — 2’1U23K)\2)w11)\162(12A2w

+ P1/’2P3(>\1 - )\2)w11w13w§1)\162a1>\2$]’

D(z,t) = oINS (B1=Ba)t+ A2 (a1 +az)a] | (waa M (A1 + Aa) — 2wia KA Jwar Ape232 415

— p1p2ps(M — Az)w%1w21w24)\262a1’\w]

+ et rtana] (4, (A + Ag) — 2was K A )wiy Ay 202222

+ p1p2p3(Ai — )\2)1U11w14w§1>\162a1>‘21],

and M = papswiy + p1pswis + prpawiy, N = pap3widy + p1pswis + p1pow3, and
K = papzwizwag + p1p3wizwaes + p1p2wi4Was.

About the dynamics of two-soliton solution, many phenomena could occur.
Either the two solitons move (repeatedly or not) in opposite directions or one moves
while the other stays stationary or both are stationary.
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Now, since A\; # —Xo, let Ay = £ +inp and Ay = & +in’. If Ay = da £ ib,
Ao = ta +ibwhere a # band a # 0,b # 0 that means both A\; and Ay are symmetric
with respect to the real axis or the imaginary axis, then the two solitons will be
collapsing repeatedly or noncollapsing while moving in opposite directions. Each
keeping the same amplitude before and after interaction (see Fig. 6), or both keep
their amplitude before interaction, but the amplitude changes after the collision
to a new constant amplitude (as illustrated in Fig. 7), depending on the choice
of wy, ws.

N | .
\\ //
NG
AN
/ AN
/ AN

- g w

n=¢ £E=0 n=-§ [—t=08—t=0—1t=0.38

Fig. 6. (Color online) Spectral plane along with 3D plot and 2D plots of |p1]| of the two traveling
waves in the focussing case with parameter values p1 = —1, p2 = =2, p3 = —3, \; = 1 + 0.54,
Ao = —1+05, 01 =2 as =1, =2 2 =1, wy = (1—056,1+3i,—i,1 +4) and

wg = (=14 24,1 —1.54,4,1 — ). The 2D plot is for time values ¢ = —0.8, 0, 0.8.

2 4 6 8

n=¢ £E=0 n=-§ ] [—t=-4—t=0—1=56|
Fig. 7. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton
with parameter values p;1 = —1, po = 1, p3 = =1, A\; = —0.44+ 0.8¢, A2 = 0.4+ 0.8¢, a1 = —2,
ar=1,81=-2 Bo=1,wy = (1,1 —i,—0.1+4,1+1) and wa = (=1 + 2,1 — 0.14,3 +,0). The
2D plot is for time values t = —4,0, 6.

We may have the case of two soliton waves moving in opposite directions, and
after interaction, they get embedded into a single wave (Fig. 8). Also, we can have
the case where one soliton unfolds to two soliton waves'? (Fig. 9). The choice of

those eigenvalues may be helpful in explaining some physical phenomena.2°

Remark 1. We note that Figs. 7, 8 and 9 resemble the collision of two Manakov

solitons.%2!
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n=¢& E=0 n=-& [—t=—2—t-0—1t=-15]
Fig. 8. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton
with parameter values p; = —1, po = —1, p3 = —1, \; = 14+ 0.5¢, Ao = =14+ 0.5¢, a1 = —2,

ag=1,p1=-2,62=1, w1 =(1,0,-0.1+4¢,1+14) and we = (—1,1 — 2¢,3 + ¢,0). The 2D plot
is for time values t = —2,0, 1.5.

[—t=-06—t=0 t=1]

n=§ £=0 n=-¢

Fig. 9. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton
with parameter values p1 =1, po =1, p3 =1, A\ =14+ 154, Ao = =1+ 1.5i, o1 = =2, ag = 1,
B1=-2,62=1 w =(1,0,—2—4,1 —4) and wa = (—1,1 — 24,3 — ¢,0). The 2D plot is for time
values t = —0.6,0, 1.

If b = a, we have A\ = +a + ia, Ao = +a * ia, still A1, Ay are symmetric with
respect to the real axis or imaginary axis and they lie on the bisectors, then the
two solitons will be stationary and will have constant amplitudes.

For the other choices of A1, Aq, if both lie anywhere on the real axis, imaginary
axis or the bisectors where both are not real, that means

A1 = ta+ia, Ay = £b+ b,
i.e., both lie on the same bisector or each on different bisector,

A1 = ta +ia, Ay = b,
i.e., one lies on a bisector and the other one on the imaginary axis,

A = ta+ia, Ao =b, (112)
i.e., one lies on a bisector and the other one on the real axis,

A1 =ia, Ay = ib, i.e., both lie on the imaginary axis,

)\1 = a,)\g = ib7

i.e., one on the real axis while the other lies on the imaginary axis,
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then the two solitons could be noncollapsing or collapsing repeatedly and/or pe-
riodically creating a standing state wave (as shown in Fig. 10). Whereas if both

A1, Ay are real, i.e., Ay = a,\o = b, we have two breather periodic waves with
2

period =30 (1=Fa) in standing state (see Fig. 11).

3 -25 -2 <15 -1 05 0 05 1 15 2 25 3

.
[—t=-10—t=-0—1t=20]

n=¢ £=0 n=-&

Fig. 10. (Color online) Spectral plane along with 3D plot and 2D plots of |p1]| of the two-soliton
with parameter values p1 = —1, po =1, p3 = —1, A\1 = 2i, A\a = —0.6 + 0.6, a1 = —2, ag = 1,
B1=-2,02=1,w =(1,0,-0.144,1+4) and wa = (—1,1—2¢,3+44,0). The 2D plot is for time
values t = —10, 0, 20.

n=¢g £=0 n=-¢

Fig. 11. (Color online) Spectral plane along with 3D plot and 2D plots of |p1]| of the two-soliton
with parameter values p;1 = —1, p2 = -1, p3 = -1, M1 =1, Ao =2, a1 = =2, a2 =1, 1 = -2,
B2=1, w1 =(1,0,2+14,1—14) and wa = (—1,1—2i,—4,0). The 2D plot is for time values t = 0.8.

Remark 2. If A\ #% —)\y and A1, Ay are symmetric about the real axis, imaginary
axis or the bisectors or also if each lies anywhere on the real axis, imaginary axis
or the bisectors, then Im(A] + \3) = 0.

Remark 3. If Im(Af+)\3) = 0 and |\;]* = [A2]%, then A1, Ay are symmetric about
the real axis, imaginary axis or the bisectors.

If Im(A}) = 0 and Im()\3) = 0, then this means that each of A\; and A lies on one
of the real axes, imaginary axes or the bisectors.
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Remark 4. If A\, Ay are symmetric about the bisectors, then the dynamics of the
two solitons is different from when the two eigenvalues are symmetric about the
n-axis (or &-axis).

We can note that any A; and Ao satisfying any condition mentioned previously
will satisfy Im(A] 4+ A3) = 0 as well. If \; and A are symmetric with respect to the
bisectors i.e., Ay = a + bi, Ao = b+ ai or \; = a + bi, \o = —b — ati, then they still
satisfy Im(A$ + \3) = 0, but the dynamics of the two solitons will be different from
what was discussed previously.

Now, if A\; and Ao do not satisfy any of the above conditions, then the two
solitons move in opposite directions and could collapse repeatedly, where they will
be decreasing or increasing over the time (see Fig. 12).

7
\\ v
N 7
N
Ne yd
SN
PR BN
v N
v N
\ x
N —t=2—t=0—1t=2 r=3|
n=¢ €=0 n=-& —t=5 —t=7
Fig. 12. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton

with parameter values p1 = —1, po = —1, p3 = —1, \; = 0.1 +4, Ao = —0.3 4+ 0.5¢, a1 = —2,
ar=1,1=-2,8=1w =(1+¢1-3i,24+4,1—1) and wp = (-1 +¢,1+ 34,2 — 4,1+ 7).
The 2D plot is for time values t = —2,0,2,3,5,7.

4.3. Three-soliton solution

The three-soliton solution is given, for which N = 3, w; = (wu,wlg,wlg,wM)T,
wy = £w21,w22,u{23,w24)T wy = (w31, W32, w33, w34)T, (A1, A2, Az) € C3, and A, =
_)\h )‘2 = _)‘27 )\3 = _)‘37 by

3

P =« Z v (M kﬂ)g 2, (113)
k,j=1

pr=a Z vk (M) 50,3, (114)
k,j=1

P3 =« Z Ukl kjf}jA- (115)
k,j=1

For the three-soliton, if A; = —A; for ¢ # j, 4,5 € {1,2, 3}, then we have the one-
soliton dynamics. Also, if two of {A1, A2, A3} are equal, then we have the dynamics
of the two-soliton.
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Let A1 =& +in, Ao =& +in and A3 = £’ +in”. If two of the eigenvalues are
symmetric about the real axis, imaginary axis and the other eigenvalue lie on the
real axis, imaginary axis or on the bisectors, then we have two solitons collapsing
repeatedly or noncollapsing moving in opposite directions, while the third one stays
stationary. Either each keeps the same amplitude before and after interaction (see
Fig. 13), or they keep their amplitudes before interaction, but their amplitudes
change at the collision moment to new constant amplitudes (illustration in Fig. 14),
depending on the choice of wy, ws.

n=¢ £=0 n=-§& [—t=-05—t=0—1t=05]
Fig. 13. (Color online) Spectral plane along with 3D plot and 2D plots of |p1]| for two traveling
waves and a constant-amplitude stationary wave with parameter values p1 = 1, p2 =1, p3 =1
A1 = 124056, Adg = —1.24 056, A3 = 2, a1 = =2, a2 = 1, 1 = =2, B2 = 1, w1 =
(=1.5+2¢,2—3i,4,1 — 1) and we = (34 2¢, -1+ 34, —4,1+14), w3 = (1,1,2,1). The 2D plot is for
time values, t = —0.5, 0, 0.5.
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N /
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* \ [ ]
o// \fw
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n=¢ £=0 n=-¢

Fig. 14. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-
soliton with parameter values p1 = —0.5, p2 = —0.5, p3 = —0.5, A1 = 1 4 0.5¢, A2 = —1 + 0.53,
As =08, a1 =2, a0=1 01 =2 Bo=1,w = (1,i,3+i,1 —1), wa = (=1, 1 — 3i, —4,0),
w3 = (2 + 1,1+ 2¢,1,2¢). The 2D plot is for time values, t = —2, 0, 2.5.

We can also have two other different cases of interaction. The first case is where
the three-soliton after interaction is embedded into two-soliton (Fig. 15). The sec-
ond case happens when the two solitons after interaction unfold to three-soliton
(Fig. 16). As said before, those phenomena may be relevant to some nonlinear
problems in applied physics.
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N ' s
n=¢ £=0 e [—t=-—25—t-=0—1t=2]

Fig. 15. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton
with parameter values p1 =1, p2 =1, p3 =1, A1 =1+ 0.5¢, Ao = —1 4 0.54, A3 = 0.75 + 0.754,
a1 = —2,a2=1,61 = -2 B2 =1 w = (1,0,2+4,1—1), wo = (—1,1 — 24,—4,0), w3 =
(2 414,14+ 24,1,2¢). The 2D plot is for time values, t = —2.5, 0,2.

n=§ £=0

Fig. 16. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton
with parameter values p1 =1, p2 =1, p3 =1, A1 = =14 0.5¢, Ao = 1+ 0.5¢, A3 = 0.75 + 0.754,
o =-2 =101 =-2 B2 =1, w = (1,0,244,1—14), wy = (=1,1 — 2, —i,0), ws =
(244,14 2:¢,1,2¢). The 2D plot is for time values, t = —2, 0, 2.5.

If A1, A2, A3 are all real, then we have breather solitons as shown in Fig. 17.
Otherwise, if A1, A2, A3 are not all real lying on the real axis, imaginary axis or the
bisectors, we will have three solitons collapsing repeatedly in standing state.

Fig. 17. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton
with parameter values p1 =1, pa =1, p3 =1, A1 =1, Aa = =2, A3 = 0.5, a1 = =2, a2 = 1,
Br=-2B2=1w =(1,0,2+i,1—1q), wy = (—1,1 — 2, —i,0), ws = (1 +4,1 + 2i,0,2i). The
2D plot is for time values, ¢t = 0.5.
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If two of the A1, A2, A3 are symmetric (but not real) about the n-axis (or &-
axis) and the third one lies off of the real axis, imaginary axis, bisectors, then we
can have three solitons interacting, with two solitons moving in opposite directions
with constant amplitudes. After collision, their amplitudes change, but still stay
constant, while the third soliton is stationary and its amplitude is either increasing
or decreasing, as shown in Fig. 18.

If A1, Ao, Az all lie off the real axis, imaginary axis, bisectors, or one of them
is real or two of them are real, then we have two solitons that could repeatedly
collapse or noncollapse decreasingly or increasingly in their motion while the third
one stays stationary, as in Fig. 19.

[—t=-25—t=0—1t=2]

n

Fig. 18. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton
with parameter values p1 = 2, po = 2, p3 = 2, A1 = 1+ 0.54, A\a = —1 4 0.5¢, A3 = 0.04 + 4,
o =-2,a0=1,081=-2 B2 =1, wy = (1 — 2,1 +3i,—i,1+14), wo = (—1+2i,1 — 34,4,1 — 0),
wsg = (141,14 2¢,0,2¢). The 2D plot is for time values, t = —2.5, 0, 2.

n=g £=0 i A [—t--10—t-0—1t-10]

Fig. 19. (Color online) Spectral plane along with 3D plot and 2D plots of |p1| of the three-
soliton with parameter values p; = —1, pa = —1, p3 = —1, \; = 0.1 + 14, Ao = —0.3 4 0.53,
X =—0.240.7i, 01 = 2, as = 1, By = —2, fo = 1, w1 = (2, 24, 2+4, 1—3), wp = (—1,1—2i, —3, 0),
w3 = (=141, -1+ 2¢,0,—27). The 2D plot is for time values, ¢t = —10, 0, 10.

5. Conclusion

In this paper, by using the Riemann-Hilbert technique, we have obtained the
N-soliton solution of a nonlocal nonlinear six-component fourth-order AKNS sys-
tem under a reverse-time reduction, and particularly, the one- and two-soliton
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solutions have been presented explicitly. What is interesting in this reverse-time
case is that the symmetry involution guarantees a pair of eigenvalues, one being
in the upper half complex plane and its symmetric partner being in the lower half
plane. Therefore, the Riemann—Hilbert problem becomes easier to solve than in
the reverse-space or in the reverse-space-time cases.?? Also, we have noted that
in comparison to classical solitons which keep their shapes and amplitudes over
the time, in the reverse-time case, the amplitude of the soliton potential changes,
and sometimes, the solution itself collapses while moving. Such solutions show that
they have singularities at a finite time. Moreover, at least two nonlocal solitons do
not always collide elastically in a nonlinear superposition manner like classical soli-
tons. Besides the Riemann—Hilbert approach, one could investigate the solvability
of those nonlocal integrable equations by the Hirota bilinear method or Darboux
transformation.
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