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Determinant Solutions to a (341)-Dimensional
Generalized KP Equation with Variable Coefficients*
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Abstract A system of linear conditions is presented for Wronskian and Grammian so-
lutions to a (341)-dimensional generalized vcKP equation. The formulations of these
solutions require a constraint on variable coefficients.
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1 Introduction

Although partial differential equations that govern the motion of solitons are nonlinear,
many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious
method to obtain exact solutions to nonlinear partial differential equations in the soliton theory,
such as the KdV equation, the Boussinesq equation and the KP equation (see [1-2]). The
multiple exp-function method, oriented toward the ease of use and the capability of computer
algebra systems, provides a direct and efficient way to search for generic multi-exponential
wave solutions to nonlinear equations including bilinear equations (see [3]). Interestingly, some
nonlinear equations even possess linear subspaces of their solution spaces (see [4]). Moreover,
a necessary and sufficient condition was given for Hirota bilinear equations to check whether
they possess linear combination solutions to exponential waves (see [5]).

Solitons and positons (a kind of periodic solutions) can be expressed as Wronskian deter-
minants (see [6-7]). Particular solutions combining exponential functions and trigonometrical
functions are presented and called complexiton (or briefly complexitons) (see [8]). Lattice
soliton equations have a similar situation (see [9]). Complexitons are also shown to exist for
source solution equations (see [10]) and soliton equations with sources (see [11]). For higher-
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dimensional soliton equations, there exist Grammian solutions and Pfaffian solutions (see [1]).
Grammian solutions to the KP equation were constructed by Nakamura [12]. Pfaffian solutions
to the BKP equation were presented by Hirota [13].

Recently, Wronskian and Grammian solutions, nonsingular and singular soliton solutions
and the Bécklund transformation in the bilinear form to a (3+1)-dimentional generalized KP
equation

Ugzry + 3(uxuy)z + Uty + Uty — Uzz = 0

have been presented in [14], [15] and [16], respectively. This equation can be written in the
Hirota bilinear form and reduced to the KP equation by taking y = x, but does not belong to
a class of generalized KP and Boussinesq equations (see [17])

M
(U )y zy — OUUL, )y + E QijUg,z; =0, a;; = constant, M € N.
ij=1

In this paper, we consider the following generalized KP equation with variable coefficients:
(ut + 01 () Upay + 32 (t)Uatly)s + a3(t)ury — aa(t) sz + as(t) (ue + as(t)uy) =0,

where «; (i = 1,2,3,4,5) are nonzero arbitrary analytic functions with respect to t. Under
a certain constraint, we show that this generalized vcKP equation has a class of Wronskian
solutions and a class of Grammian solutions, with all generating functions for matrix entries
satisfying a linear system of partial differential equations. The Pliicker relation and the Ja-
cobi identity for determinants are the tools of constructing the corresponding Wronskian and

Grammian formulations. Two particular cases are discussed in Section 4.

2 Wronskian Formulation

Let us introduce the following helpful notation:

|N_.]_17217 7Zj|

=[0® oM ... eWN=I=D o) ... ¢l

=det(®@, oM ... dW=i=b i) ... ) 1<j<N-—1, (2.1)

where i1, -+ ,4; are non-negative integers, and the vectors of functions ®U) are defined by
G) o) @ GNT LG
q) - (d)l a¢2 I 'y YN ) 9 ¢i - 8l‘j ¢Z' (22)

A Wronskian determinant is given by
We also use the assumption for convenience that if i < 0, the column vector ®*) does not appear
in the determinant det(---,® ...). We consider the following (34-1)-dimensional nonlinear
equation:

(ut + 1 () Upay + 302 (t)Uuatty)s + ag(t)ury — a(t)uss + as(t) (ue + as(t)uy) =0, (2.4)
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where «;,1 = 1,2, 3,4, 5 are nonzero arbitrary analytic functions with respect to t. When a; =1
fori=1,2,3,4, as =0 and z = y, the equation (2.4) is reduced to the KP equation. So we call
it a generalized vcKP. The KP equation was also generalized by constructing decomposition of
(241)-dimensional equations into (1+1)-dimensional equations (see [18]).

Through the dependent variable transformation

_aa(t)
=2 (65) (t)

the above (341)-dimensional generalized vcKP equation is mapped into the Hirota bilinear

(ln f)xa (2-5)

u

equation
(1 (t)D3D, + Dy D, + az(t)Dy Dy — as(t)D?)f - f =0, (2.6)
under the constraint
a1 (t) = Coag(t)e S a5t (2.7)

where Cy # 0 is an arbitrary constant, and D,, Dy, D, and D, are Hirota bilinear differential

operators (see [1, 19]), which are defined by
0 0 )" ( 0 0

— _ m o7
or o) Loy 8;/) gz, y) f(2",y)

DDy g(w,y) - flay) = (

’
— ! —ay!
=T, Y=Yy

where n,m > 0.

Indeed, the v¢KP equation (2.4) is written in the form

ai(t)(In f)mrry +6Coaa(t)e” / as(t)dt[(ln [)ez(In f)zy]x + (In f)raa
+ as(t)(In f)tzy — ca(t)(In f)azz = 0. (2.8)

By integrating with respect to x and taking the integration constant to be zero, we get

D3D,f-f 3ai(t) (D2f - f\ /DaDyf - D2f - f\ (DuD,f -
P 3000 (LD O P (L
DD, f- D,D,f- D2f .
+ P00 a0 i L <o (2.9)

from which the equation (2.4) can be written in the bilinear form (2.6).

Equivalently, we have

(al(t)fxxxy + ftz + a3(t)fty - a4(t)fzz)f - 3a1(t)fxxyfx + 3a1(t)fxyfzz
— 1 (t)fyfzzz - ftfx - a?)(t)ftfy + a4(t)(fz)2 =0. (210)
In the next theorem, we would like to present a system of three linear partial differential

equations for which the Nth order Wronskian determinant solves the generalized Hirota bilinear
vcKP equation (2.6).
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Theorem 2.1 Let the set of functions ¢; = ¢i(x,y, z,t) satisfy the following linear partial

differential equations:

o _a2a4(t) 4
(bz,y = 3041(t) (bz,xa
d)i,z - a¢i,zz7 (211)

d)i,t - ﬂ(t)d)i,zzza

where
B 4a”ay (t) oy (t)
0= 30,(0) - aaz (B (t)’

1 <4< N, ais an arbitrary nonzero constant, Z‘l* is an arbitrary constant, and a2a33 ) s not

equal to that constant 3‘1‘ for all values of t. Then the Wronskian determinant fn = |]7—\1|

defined by (2.3) solves the (3 + 1)-dimensional generalized bilinear veKP equation (2.6).
Proof Using (2.11) and the following equality:
N N
8laij
> 1Al = Z Aij gt
k=1 i,j=1

where A = (a;;)nxn, and |A];; denotes the determinant resulting from | A| with its kth column
differentiated [ times with respect to z, whereas A;; denotes the co-factor of a;;, we can compute

various derivatives of the Wronskian determinant fy = |m| with respect to the variables x,

y?z)t)
fN,I: |N_27N|7
fN,xx: |]7_\37N_17N|+|]7-—\2,N+1|,
fNoer=|IN—A4,N—-2N—1,N|+2N-3,N—1LN+1|+|N—2,N+2],

2 —
fNy = —‘;514(%) IN 2, N,
a’ay(t) —
INay = — Son (1) (IN=3,N—-1,N|+|N —2,N + 1)),
2au(t)  —— — _
ey =="g0tt) (N —4,N—-2,N—1,N|+2|N —3,N —1,N+1|+|N _2,N +2)),
IN iy = —‘?i“é?(ﬂf—\sw “3,N—2,N—1,N|+3N —4,N—2,N—1,N +1]

+2I[N—3,N,N+1|+3[N—3,N—1,N+2|+|N—2,N+3]),
fve=a(N=2,N+1| = |N =3,N - 1,N]),
fyee=a*(—[N—4,N—2,N—1,N+1|+2|N —3,N,N+1|+|N —2,N + 3|

+|N-5,N—3N—2N—1,N|—|N—3,N—1,N +2|),
fNe=Bt)(N—-4,N—2N—1,N|—|[N—3,N—1,N+1|+|N—2,N +2|),
Fyie=BE)(N—B,N—3,N—2 N—1,N|—|N—3,N,N+1|+|N—2,N +3|),
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3 a’ay(t)B(t)
3a1 (t)

—|IN—3,N,N +1|+|N —2,N +3|).

Iy = (N=5N—-3N-2N-1,N|

In these derivatives, we use the condition that 3‘1‘ is an arbitrary constant.
In the above expressions, the column ®™—5 does not appear if N < 5, as we assumed

before. Therefore, we can now compute that

a1 () [N zaay + [Nt + a3(t) Ny — aa(t) fN 22
— —4aay(t)|N = 3,N, N + 1|,
=301 (t) N wayfNe — 1(O) [Ny [N zwe — [Nt INe — as(t) fnifny
= 4a®au(t)|N —2,N||N —3,N — 1, N + 1],
300 (t) [N oy SN ze + a(t)(fi,2)°
= —da’o4(t)]N —3,N —1,N||N — 2, N + 1.
Furthermore, we obtain
(a1(t)D3Dy + DyDy + a3(t) Dy Dy — as(t)D2) fn -
= 2(a1(t) [N woay + [Nte +as(t) frey — aa(t) fnzz) v — a1 (t) (6N 2oy fN o
— 6N ayfNwe + 2fN g N wee) — 20N fN e — 203(8) fn e fny + 20a()(fr,2)?
= —8a’ay(t)((N —1||N —3,N,N+1|— [N —2,N||[N —=3,N — 1,N + 1|
+|N—3,N—1,N||N—2,N+1))
=0.
This last equality is nothing but the Pliicker relation for determinants

|B7A17A2||BaA37A4| - |B7A1aA3||BaA2aA4| + |BvA1aA4||BvA2aA3| =0,

where B denotes an N x (N — 2) matrix, and A; (1 < i < 4) are four N-dimensional column
vectors. Therefore, we have shown that f = fuy solves the (341)-dimensional generalized Hirota

bilinear vcKP equation (2.6), under the condition (2.11).

The condition (2.11) is a linear system of partial differential equations. It has an exponential-

type function solution

P 2
iy a“oay(t
(ﬁi = E dije"”, Nij = kijJ? - 30414(55)) kijy + akz‘QjZ + k?jh(t)7 (2'12)
Jj=1

where
) = [ Bt (2.13)

dij, kij are free parameters, and p is an arbitrary natural number.
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3 Grammian Formulation

Let us now introduce the following Grammian determinant:

fN = det(aij)lgi,jgj\], aij = Cij +/ qbﬂ/)jdx, Cij = constant (31)
with ¢; and v; satisfying
a’ay(t)
iy = — ier Giz = @iz, it = B(t)Pizaa, 1<i<N, 3.2
¢,y 3041('&)(;3’ ¢, a¢, ¢,t 6( )d), 1 ( )
a’ouy(t .
wi,y = - 4( )wi,x; wi,z = _awi,xm wi,t = ﬁ(t)wi,x:c;m 1 <1< N7 (33)

3041 (t)

where 3, a1, a3, aq and a are as in Theorem 2.1.

Theorem 3.1 Let ¢; and v; satisfy (3.2) and (3.3), respectively. Then the Grammian
determinant fy = det(aij)i<i,j<n defined by (3.1) solves the (3 + 1)-dimensional generalized

bilinear vcKP equation (2.6).

Proof Let us express the Grammian determinant fn by means of a Pfaffian as
fN:(]-72;"'7N7N*a"'72*a1*)a (34)

where (7,7%) = a;; and (4,7) = (%, 5%) = 0.
To compute derivatives of the entries a;; and the Grammian fy, we introduce the new

Pfaffian entries

o

(dn,J*) = axn%,

@i=2" & (3.5)
n7Z - axn 19 .

(dm,dy) = (dp,i) = (d),,7°) =0, mn=>0

as usual. In terms of these new entries, by using (3.2)-(3.3), derivatives of the entries a;; =

(i,7%) are obtained

0

8xa”ij = ¢ﬂ/)] = (doadaai7j*)a

8 z 2 t x

s = [ s+ ot == ) [ 6+ o0
~adPou(t),  dPau(t) .
- = 3041(t) QS“Z)] - 30[1(t) (d07d07zv‘7 )7

8 J—

aza” o

ww%+@%gmza/<mm%—@%mmx
(bz,ij - (btwj,x) = a[_(d17 d67iaj*) + (d07 dT7iaj*)]a
(

S
Il

d)i,twj + ¢iwj,t)dx = ﬂ(t)/ (d)i,xxij + d)zw],zzz)dx
t)(¢i,zzwj - ¢i,zwj,z + ¢iwj,xx)
t)[(dQﬂdSaZm?*) - (dl,di,i,j*) + (d07d§7Z7]*)]

/
a(
woo =]
A
B(
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Then, we can develop differential rules for Pfaffians as in [1], and compute various derivatives

of the Grammian determinant fy = det(a;;) with respect to the variables z,y, z, t as follows:

f (d07d07 )a
fN,zz:(dlde )+(d0ady1‘a.)v
fN,:C:C:C = (d27d07 ) + 2(d17d1fa .)) + (d07d§7.)5
_dPau(t) .
fN,y - 3@1( ) (d07d07.)a
a’ay(t) ) .
Iy =— 3@14( iy (1,5, ) + (do, i, o)),
2
t
Py = = "Dy, a5, 0) + 2(d1, 5, ) + (doy 5, o)),
3a1( )
2
fN,xxmy - agoi‘l(()) [(d?); d(); ) + 3(d27 dTa .) + Q(d(); da; d17 dT; .) + S(dla d;; .) + (d07 d;v .)]7

fnz = a[—(di,dg, ®) + (do, d7, )],
INze = a®[(d3, d5, @) — (do, df, ®) + 2(do, d, dy, df, @) — (di,d5, @) + (do, d, )],
Ine = B#)[(d2, dy, @) — (d1,d7, ) + (do, d3, )],
fnie = B)[(ds, dy, ®) — (do, d, dr,dy, ®) + (do, d3, )],
2

a a4(t)ﬂ(t) [(d?); d;; .) - (d07 dSﬂ dlv dT? .) + (do’ d;;’ .)]’

Iy = 3o (t)

where the abbreviated notation e denotes the list of indices 1,2,--- , N, N* ... 2% 1* common
to each Pfaffian.

Under the conditions on aq, a3, oy and a, we can now compute that

1 () N wzzy + fNia + 3(t) [Ny — @a(t) [N 22
= —4a®ay(t)(do, d, dy, d7, @),

=3a1() fNaayfNe — 1 () Ny fNwee — [N tING —as(t) NNy
= 4a%y(t)(do, di, @) (dy, d%, e),

301 () [N 2y fN e + aa(t)(fn,2)?
= —4aPay(t)(dy, dg, ®)(do, d}, e),

and further obtain that

(a1() D3 Dy + Dy Dy + as(t) DDy — ca(t) D) v - [
= 2(c1(t) fN zaay + [Nta + a3(L) [Nty — @a(t) [N 22) N — 201 (8) BN 2oy N«
— 3fNayfN e+ INyINzzz) — 20N e SN2 — 203() fN Ny + 204(t) (fr.2)?
= —8a”ay(t)[(e)(do, d, di, dy, @) — (do, dg, ®)(dy, d}, @) + (di, d5, )(do, dj, ®)]
=0.
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The last equality is nothing but the Jacobi identity for determinants. Therefore, we have
shown that fy = det(ai;j)1<ij<n defined by (3.1) solves the (3+1)-dimensional generalized
Hirota bilinear v¢KP equation (2.6) under the conditions of (3.2)—(3.3).

The systems (3.2)—(3.3) have solutions

p 2
a~ o t .
¢i = Z dije",  mij = kijz — 3041((75)) kijy + akZz + kh(t), (3.6)
j=1
a 2
. a“ou(t .
b= ejie’t,  Gi=lw — 30614((75)) Lisy — al3;z + I3;h(t), (3.7)
i=1

where

h(t) = / B(t)dt, (3.8)

dij, €ji, kij, lj; are free parameters, and p, ¢ are two arbitrary natural numbers.

4 Conclusions and Remarks

Under certain constraint on the variable coefficients, we have verified that the (3+1)-

dimensional generalized vcKP equation
(ur + 01 () Ugay + 32 (t)Uuatiy)s + a3(t) Uy — aa(t) s + as(t)(ug + as(t)uy) =0

has two classes of exact determinant solutions. One is formulated in the Wronskian determinant
and the other in the Grammian determinant. Indeed, we have shown that the above vcKP
equation was reduced to the Pliicker relation for determinants and the Jacobi identity for
determinants in the cases of the obtained determinant solutions. In our solutions, there is a

free parameter a which satisfies
3a;(t) — a®az(t)ay(t) #0 for all values of t.

Theorems 2.1 and 3.1 present the main results on these solutions.

We remark that in order to get more solutions to the above vcKP equation, we have tried
to replace this arbitrary constant with an arbitrary function with respect to t. But we faced a
problem with a compatibility condition of the system of the linear differential equations (2.11).
It is unavoidable that ;' must be a constant. Actually, if we computed the derivative fn .y
without this condition, the term
a’ d (a4

5 dit Loy IV 2]

aq
would appear and the vcKP equation could not be reduced to the Pliicker relation for determi-
nants or the Jacobi identity for determinants, in addition fn i, # fv,ye-

In particular, if we put a1 = as = a3 = a4y = 1 and as = 0, then we will get an equivalent
solution to the one given in [14, Theorem 2.1] with a condition on the parameter a, which

accepts any real number except ++/3 for a.
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On the other hand, if we choose a1 = as = a3 = a4 = —1 and a5 = 0, then we will have
the equation

Uggzy T 3(U;C'U'y):c — Uty + Uty — Uz = 0.

Note here that the coefficient of the term wu;, is —1. By using Theorem 2.1, one can get the

following Wronskian solution:

UIQ(lan)zv fN:W(¢17¢2a"'7¢N)7

where .
1, 9 4a®
¢i =) diye™, ny=kijx - 3@ kigy +akiz = o Skt
j=1
di; and k;; are free parameters, and p is an arbitrary natural number. There are not any
restrictions on our parameter a here.
However, it should be mentioned that this generalization is non-trivial. For example, the

KdV equation with the variable constraint
up + a1 () Uggr + a2(t)uu, =0

is a trivial generalization of

Ut + Ugpr + 6UU, =0

by a simple change of variables (z,¢,u). In this paper, one can always set a;(t) = 1, as = 3,
a5 = 0 under the constraint (2.7) by a similar change of variables. But introducing as(t), ay(t)

makes our generalization non-trivial.
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