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Notes on Uninodal Nets
W. Edwin Clark

Basic Definitions.

We represent Euclidean 3-space with the standard metric by R® and we write ISO(3) for the group of all
isometries of R3 and Aff(3) for the group of all affine mappings of R? . If X is a subset of R? we let Syr
(X) denote the group of all isometries ¢ in ISO(3) such that ¢(X) = X. The elements of Sym(X) are saic
to be symmetries of X.

By a netwe mean a graph 77 = (V,E) with vertex set V < R and edge set E consisting of certain 2
element sets {v,w} with v,w €R3 such that V is a uniformly discrete set of points in [R3 (that is, there i
ad > 0 such that the distance between any two points of V is at least d). Since nets are graphs we freel;
use graph theoretic language when discussing them. For example, an automorphism of a net is the sam
as an automorphism of a graph, a connected net is the same as a connected graph, etc. In particular Aut
(77) denotes the group of graph automorphisms of the graph 71.

By a slight abuse of notation, by the symmetry group Sym (70) of lthe net 71 we mean the subgroup
consisting of ¢ in Sym(V) such that ¢ restricted to V is in Aut(??). If Sym(7]) contains d but not d-+1
linearly independent translations we say that 71 is d-periodic.

We say that a net 71 is uninodal if Sym(??) acts transitively on the vertices of 71.
Some Characterizations of Space Groups. (We confine ourselves to dimension 3 here.)

Following [2] we say that a subset X of R? is a crystal structure if Sym(X) contains three linearly
independent translations and there is a real number d > 0 such that any non-zero translation in Sym(X)
has length at least d. We say that a subgroup G of ISO(3) is a space group (also called a
crystallographic group) if G = Sym(X) for some crystal structure X in R3. The following theorem
collects some characterizations of space groups that we will need.

Theorem 1. The following are equivalent for a subgroup G of ISO(3).
(a) G = Sym(X) for some crystal structure X in R3.

(b) G is discrete (in the sense that the orbit Gp of every point p in &3 is a discrete subset of R3)and G
contains three linearly independent translations. [2]

(c) G is discrete and the set of translations T in G is a free abelian group of rank 3 which is normal in (
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and G/T is finite.

(d) G is discrete and there is a compact subset S of R? such that the union of the orbits Gp, pin S, is all
of R3. [4]

Corollary 1. If 1= (V,E) is a 3-periodic net then Sym(?) is a 3-dimensional space group.

Proof. By assumption V is a uniformly discrete set of points. Since Sym(V) contains Sym(/1), Sym(V)
contains 3 linearly independent translations and it follows that is a crystal structure. This shows that Sym
(V) is a space group. Sym(??) is discrete since it is a subgroup of a discrete group and hence from
Theorem 1 (b), Sym(?)) is a space group.

Theorem 2. If G, and G, are space groups and f: G; — G, is a group isomorphism, there is an f € Aff

(3) such that f(g) = s gS for all g € G,. Hence two space groups are isomorphic if and only if they are

conjugate in Aff(3). There are 219 affine conjugacy classes of space groups in 3-dimensions and 230 if
one restricts isomorphism to conjugation by a proper affine mapping. [1,2]

Theorem 3. If G is a space group then G is isomorphic to a space group G' which is a subgroup of
P6/mmm (IT 191) or Pm3m (IT 221) .[This is asserted in [Vainshtein, p. 145] and can also be proved by
direct calculation from the representations given of the 230 space group in the GAP package CrystCat
http://www.gap-system.org/Packages/crystcat.huml which is taken from {2]. Details can be found in the
Maple worksheet SubGroupsOfP6mmmOrPm3m.mw}]

Cayley Graphs and their orbits.

Let G be a group and H be a finite set of generator of G which satisfies 1 & Hand HV=pq4 (here

H V= {h( D:hin H}. The Cayley graph Cay(G,H) is the graph with vertex set G and edge set {{g,
gh} : gin G, hin H}. Suppose in addition that G acts on a set X. Let p € X such that H N Stab(p,G) =
@. Then we define Cay(G,H)p to be the graph whose vertex set is the orbit Gp = {gp: g in G} and
whose edge set is {{gp, ghp}: gin G, hin H}.

We collect below some facts that are well-known and/or easy to establish:
1. Cay(G, H) is vertex transitive, connected and of valency |H).

The left regular action of G on G is a transitive action on the vertices of Cay(G,H). Thus Cay(G,H) is
regular of valency [H| and connected since we assume that H is a set of generators for G.
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2. Cay(G,H)p is vertex transitive, connected and of valency |Stab(p,G)Hp| = | {ghp : g in Stab(p,G) and
h in H}|. In particular the valency of Cay(G,H)p may be greater than or less than the valency of Cay(G,
H).

For g in G the the mapping v— gv is an automorphism of Cay(G,H)p. This provides a transitive action
of G on the vertices of Cay(G,H)p. That is, Cay(G,H)p is vertex transitive. Note that the neighbors of p
in the orbit Cayley graph are the points ghp where h is in H and g(p)=p. It follows that Cay(G,H)p is
regular with valency |{ghp: hin H, g in Stab(p,G)}| . Since we assume that Stab(p,G) NH= @, p# hp
for h €H and hence also gp #ghp for g in G. If g;p = g,p then g,= g, g' where g' € Stab(p,G) hence {{
(gp, gg'hp}: hin H, g' in Stab(p,G) } are the edges incident to gp. In particular, {{p, ghp}: hinH.gin
Stab(p,G)} is the set of edges incident to p. Note that if Hp is not invariant under Stab(p,G) then the
valency of Cay(G,H)p may be greater than the valency of Cay(G,H). Also it is possible for the valency
of Cay(G,H)p to be less than the valency of Cay(G,H) when for example Stab(p,G) is trivial but there are
distinct h, h' in H such that hp = h'p.

3. A sufficient condition for Cay(G H)p to be isomorphic to Cay(G,H)q.

Let p and q be elements of X and let f be an automorphism of G such that f (Stab(p,G)) = Stab(q,G).
Then it is easy to show that the the graphs Cay(G,H)p and Cay(G,f(H))q are isomorphic via the
mapping gp — f(g)q. Specifically this happens if q = gp then gStab(p, G) g( b =Stab(g, G) . Thus the
number of graph isomorphism classes of Cay(G,H)p, p in X, is at most equal to the number of conjugacy
classes of the groups Stab(p,G) in the group G. In particular, if G is a space group and we consider its
action on R3 then it is known that there are at most 27 such conjugacy classes (the so-called Wychoff'
positions) (5, page 724]. Apparently there are fewer conjugacy classes if one classifies the stabilizers of
point by conjugacy via the normalizers of the space group in the Affine group. These are called Wychoff’
sets. [5, page 725].

4, If Stab(p,G) = {1} then Cay(G,H) is isomorphic to Cay(G,H)p.

The mapping g + gp gives a graph isomorphism from Cay(G,H) to Cay(G,H)p. This is the case for all p
if G is one of the 10 fixed point free space groups.

Theorem 4. (This is essentially Theorem 2 of Sabidussi[6] ) Let I'=(V,E) be a connected graph. Let G be
a group of automorphisms of I which acts transitively on V. Let p be any fixed vertex in V, let H = {h
€ G: h(p) is a neighbor of p}, then I' = Cay(G', H)p where G' is the subgroup of G generated by H.
(Note that generally G' will be a proper subgroup of G.)

Actually we prove slightly more, namely, if I has valency k there is a k-element subset Hyof H such

that if M is the monoid generated by H, we have:
(@ V={y(p):y €M} and E={{v(p)v(1(p)}: v € Mandh, € Hy}.
() Ifh, € Hythen b (p) € N).
(c) The set N(p) of neighbors of p is invariant under Stab(p,G).

Proof. For each v in N(p) there is at least one h in G such that h(p) =v. Forh € H, his an
automorphism of the graph so 7Y is also an automorphism. Since {p,h(p)} is an edge, it follows that {
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A ’l)(p),p} is an edge and hence H is closed under inversion. Also h(p) # p so h & Stab(p,G).

Let N(p) = {V},...,v;} where k is the valency of I'. Choose for each i, 4, € G such that v=h(p). Let
H,= {h,,....h}. Note that if o, € H then although we need not have hg e H, since h; “Disan

automorphism of the graph I it is true that hl( 'I)(p) € N(p). Let M be the monoid generated by H, and
let G' be the group generated by H.

Claim 1. Let A be the graph with vertex set V' = {y(p): y € M} and edge set E'= {{ y(p),y(2(p))}, ¥
€ Mand#, € Hy}. Then A=T.

Claim 2. " = Cay(G',H)p, that is, V = {y(p): y € G'} and E = {{ ¥(p),y(#(p))}.y € G'and h € H}.
Proof of Claim 1. Clearly since M consists of automorphisms of I, A is a subgraph of I'. Also note that
since the N(p) = {v},...,v} = {#,(p),...(p)}, and each y € M is a graph automorphism, the degree of
each vertex in V" has degree k. Thus it suffices to prove that A is connected. Note that each vy in M is the
product of a finite number of elements in H,. Say that y is a product of n elements of /. By induction on
n we show that there is a path in A from pto y(p) . If n=1 then y €H, and hence y(p) is adjacent to p.
Suppose true for y a product of k elements of /4, and let n = k+1. Then we can write y = 3h for some &
which is a product of k elements of Hyand h in /. Then by assumption we have a path from p to 3(p)

and by definition of A we have the edge {8(p),8(h(p))}. Thus we have a path from p to y(p) and the claim
is established.

Proof of Claim 2. Note that A is a subgraph of Cay(G',H)p which is a subgraph of I". So by Claim 1 we
must have I' = A = Cay(G',H)p. QED

Theorem 5. Let 1= (V,E) be a 3-periodic uninodal net . Then there exists a set H" of isometries in G
where G is either P6/mmm or Pm3m and a point q in R? such that 7 is isomorphic via an affine mapping
to Cay(G",H")q where G" is the subgroup of G generated by H". Furthermore G" is a 3-dimensional
space group. Note that generally G" is a proper subgroup of Sym(?7).

Proof. By Theorem 4 since Sym(/l) acts transitively on V, if we let p be any fixed vertex in V and H
= {h € Sym(?): h(p) is a neighbor of p}, then 71 = Cay(G',H)p where G' is the subgroup of Sym( 77)
generated by H. By Corollary 1 the group Sym(??) is a space group and so by Theorems 2 and 3, Sym(
70) is conjugate in the affine group on R3 to a subgroup G of P6/mmm or Pm3m. Suppose S is an affine
mapping of R3 such that the mapping g — SgS’ ("Disan isomoprhism from Sym(??) to the group G. and
let S(p) = q. Let G" = S(G') and H" = S(H). Then S restricted to V is an isomorphism from 1= Cay(G',
H)p to Cay(G", H")q. To see this note that if y €G' then SYp) = S;S( b (g)) so S maps vertices of
Cay(G',H)p to vertices of Cay(G",H") and if { y(p),y#(p)}. ¥ € G’ and & € H, is an edge of Cay(G',H)p,

then {5 p),Syi(p)} = {55 (q), S ""shS "V(@)} is an edge of Cay(G"H")q.

To prove that G" is a space group it suffice to prove that G' is a space group. G'is a subgroup of the
space group Sym(7) so is itself a discrete group of isometries that acts transitively on V. So it suffices by
Theorem 1 (d) to prove that there is a compact subset S of R3 such that the union of the orbits G'p, pin S,
is all of R3. V is discrete and invariant under a 3-dimensional lattice L. If we let P be the closed unit cell
of L then the translates v + P, v in V, cover the whole space. Let B the a closed ball centered at the
origin that contains P. Then the union of the orbits G'p, p in B, is the whole space. QED.
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