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8 ’ INTRODUCTION

9 The increasingly rapid development of metal organic fra-
10 meworks (MOFs) or porous coordination polymers (PCPs)
11 over the past two decades has attracted considerable attention
12 from both academic and industrial researchers because they
13 offer unprecedented levels of permanent porosity and excep-
14 tional opportunities for design of materials from the molecule
15 up.1a�n,2a�2k Furthermore, their chemical and structural di-
16 versity offers the possibility of combining porosity with other
17 important properties, such as magnetism, luminescence, semi-
18 conductivity, and catalytic activity.1f�h,m,p�u The fact that
19 MOFs are amenabled prior to design distinguishes them from
20 most other classes of materials and is a consequence of the
21 geometry of their chemical building blocks which manifests
22 itself in the topology of the resulting crystal structures.3a�g

23 “Design” implies a blueprint or some other formal description
24 developed prior to and in fact directing synthesis of the crystal in
25 mind.2c,d In this communication, we outline an algorithm for
26 generating such designs, and we present output from two
27 demonstration programs based on this algorithm. To discuss
28 these designs, we employ a formalism variously called (in various
29 communities) an “embedded net” or an “embedded graph” or a
30 “geometric graph” or a “Euclidean graph”, among other things; to
31 eliminate ambiguity, we will refer to an embedded net as a
32 geometric structure in 3D-space consisting of the following:

33• a set of points, which we call nodes (although they are often
34called vertices);
35• a set of line segments, which we call edges (although they are
36often called linkers), each with two nodes as end points.
37If an embedded net is employed as a blueprint for a MOF, the
38nodes would represent positions of atoms or molecular building
39blocks (MBBs), positioned at specific points in 3D-space, while
40the edges would represent bonds or molecular linkers between
41atoms or MBBs, each linking the two end point nodes.
42Such a geometric (as opposed to topological or combinatorial)
43representation serves as a de facto blueprint for the design of
44relatedMOFs because it tells us the shape ofMBBs and the range
45of their possible spatial arrangements; that is, just as a represen-
46tation is constructed from nodes linked by edges, a MOF can be
47constructed from metals or MBBs linked by organic ligands.
48We should distinguish the geometric notion of an embedded
49net from two other extant notions:
50• The combinatorial notion of a net (or a graph), consisting of
51nodes and vertices and incidence relations between the two,
52but with no spatial relations. Thus, two nets are combinato-
53rially equivalent if there is a one-to-one correspondence
54between their vertices and a one-to-one correspondence
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9 ABSTRACT: A new series of computer programs that enumerate three-dimensional
10 periodic embedded nets (i.e., representing crystals) is based on an algorithm that can
11 theoretically enumerate all possible structures for all possible periodic topologies. Unlike
12 extant programs, this algorithm employs algebraic and combinatorial machinery developed
13 during the 1980s in combinatorial and geometric group theory and ancillary fields. This
14 algorithm was validated by a demonstration program that found all strictly binodal periodic
15 edge-transitive 3,4-, 3,6-, 4,4-, and 4,6-coordinated nets listed in the RCSR database. These
16 programs could be used in two ways: to suggest new ways for targeting known nets, and to
17 provide blueprints for new chemically feasible nets. They rely on a discrete version of “turtle
18 geometry” adapted for these nets.
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55 between their edges, such that these correspondences pre-
56 serve the incidences between corresponding nodes
57 and edges.
58 • The topological notion of a net (or a graph), which is a net
59 with certain spatial relations; we will not discuss topology
60 in this contribution, with the following two exceptions.
61 (1) In the chemical literature, combinatorial equivalence
62 is often called “topological equivalence”, a denotation we
63 will not employ, as it conflicts with mathematical nomen-
64 clature. (2) Two nets are homeomorphic if “chains” of
65 2-coordinated nodes (with connecting edges) in one net
66 are replaced by single edges or chains of differing lengths
67 in the other; compare the middle and right columns of
68 Figure 1F1 for examples of embedded nets representing
69 homeomorphic nets.
70 In fact, some chemical papers refer to a “topology” when what
71 is meant is a “net” as understood above; henceforth, we will use
72 the word “net” instead of “topology”. To be precise, we will
73 discuss “embedded nets” as geometric objects and “nets” as
74 combinatorial objects (as understood above). Note that a net can
75 be regarded as a class of combinatorially equivalent embedded
76 nets. For example, the embedded net whose vertices are integer
77 points (i.e., (x, y, z), in which x, y, and z are integers, in Cartesian
78 coordinates in 3D-space) and whose edges bond vertices of
79 distance 1 apart (parallel to the Cartesian coordinate axes) is a
80 geometric representation of the net pcu (Figure 1), which has
81 infinitely many other geometric representations. We will fre-
82 quently be lazy and say that a net is observed or generated when
83 we mean that embedded nets representing that net were
84 observed or generated.
85 One of themore important databases of nets describing crystal
86 structures, originally developed by O. Yaghi and M. O’Keeffe, is
87 located at the Reticular Chemistry Structure Resource (RCSR)
88 Web site4a,16 (and we will use RCSR symbols for 3D-periodic
89 nets). The database contains most of the simpler nets that have
90 been observed experimentally. The RCSR database is an im-
91 portant source of nets that can be used as blueprints to design
92 new MOFs. For example, because of the wide availability of
93 appropriate MBBs, two of the most studied and most commonly

94observed nets for MOF structures are the diamond (dia) and
95primitive cubic lattice (pcu) nets,3b,2i,10 where dia and pcu are the
96symbols assigned to those nets by RCSR. Both nets are repre-
97sented by embedded nets in which the vertex figures are regular
98polygons or polyhedra: the vertex figure is a tetrahedron for dia
99and an octahedron for pcu. In order to designMOFs having such
100geometric properties, tetrahedral and octahedral MBBs would be
101the obvious choice to start with, and there are many examples of
102such an approach to design.10 Figure 1 shows the graphical
103representation of dia and pcu nets together with examples of
104structures having those topologies, i.e. being derived from those
105nets. Structures were obtained as a result of assembly of tetra-
106hedral or octahedral building units—in these cases, single metal
107coordination nodes. The other important regular nets (their
108dominant vertex figures in parentheses) include the following:
109SrSi (srs, triangles) (srs, pcu, and dia are especially common4b),
110NbO (nbo, squares), and body centered cubic (bcu, cubes); in
111addition, face centered cubic (fcu) has cubooctahedral units.
112While graphical representations of the molecular or atomic
113structure of crystals as nets goes back at least to Kepler (if not
114Leucippus and Democritus), the current thread is more recent,
115running through the connection between the “periodic” nets
116and crystal structures described by Wells2a and expanded upon
117by theoretical works, constructions, and surveys such as
118those by Chung and Klee et al.,15a,b Delgado-Friedrich and
119O’Keeffe,2b,i,3b,3j Eon,2e Koch and Fischer et al.,2f�h Blatov,
120Baburin, Calucci, Ciani, and Proserpio3n�q (see also refs 2j,
1212k,4c�4f), and others;3a�g this is merely a biased sample of work
122involving several communities going back to the 1960s.
123Roughly speaking, a material is a crystal (in the classical sense)
124if its atomic or molecular structure can be represented by a 3D-
125periodic embedded net. In this paper, we consider these
126embedded nets as potential blueprints for designing the crystals
127that they might represent. Today, MOF design often starts by
128manipulating a known net taken from a standard database,4a,5,6 to
129obtain a “blueprint” for a new structure.3a�i However, geometric
130methods have been developed to enumerate such nets from
131scratch. Treacy and Rivin developed an algorithm enumerating
132tetrahedral nets, using crystallographic groups generated by
133reflections.7a,b Le Bail composed a program which enumerates
1343-, 4-, 5-, and 6-coordinated three-dimensional embedded nets.8

135Delgado-Friedrichs, O’Keeffe,Yaghi, and collaborators employed
136an algorithm based on tiling theory9a and have been generating
137nets, especially edge-transitive nets.2i,9c�9e The nets with only
138one kind of edge (“edge-transitive” nets) are of special impor-
139tance, as they have topologies most commonly observed so far in
140MOFs’ crystal structures.2i,3b,3c,9c�9f,10

141The above is only a small sample of current activity, which
142spans a wide range of approaches from the lifting of nets
143embedded in hyperbolic 2D-space into Euclidean 3D-space3k

144to systematic or stochastic searches for nets “near” known nets
145(within some searchable metric space).3l

146We present here results of net enumeration using programs
147based on an algorithmmotivated by a different approach from
148those above (although it could be regarded as a formalization
149of the Le Bail algorithm) involving algebraic and combinator-
150ial developments of the last few decades. The underlying
151algorithm, called the Turtlebug because of its relationship
152with turtle geometry,14d is based on an application12 of geo-
153metric group theory14e to a model of computational self-
154assembly.11a,b We call the resulting algorithm for generating
155embedded nets the Crystal Turtlebug, and from this algorithm

Figure 1. Graphical representation of dia (top) and pcu (bottom) nets:
(left) geometric embeddings generated by the Crystal Turtlebug (in
red) showing vertex figures (in blue), (center) embedded nets at a
distance, and (right) corresponding examples of crystal structures having
dia and pcu topologies.
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156 we have developed—and are developing—a series of pro-
157 grams for enumerating embedded nets.
158 The programs we have developed from the Crystal Turtlebug
159 algorithm use as their parameters the point groups that generate
160 the configuration figures about the initial vertices and the initial
161 edge(s). One of these programs has enumerated all (strictly)
162 binodal periodic edge-transitive 3,4-, 3,6-, 4,4-, and 4,6-coordi-
163 nated nets listed in RCSR, while another found feasible, yet
164 apparently unlisted and hence probably novel nets; the algorithm
165 itself can (in theory) enumerate embedded nets representative of
166 all 3D-periodic nets.12b

167 This program and its algorithm are generalizations of an
168 algorithm developed into a working program developed by
169 W. E. Clark, whose program had the theoretical ability to enu-
170 merate (embedded representatives of) all uninodal nets.13 In
171 this contribution, we will present a qualitative description of
172 the algorithm (with additional description in the Supporting
173 Information), and then we will describe some of the nets
174 enumerated by these Crystal Turtlebug programs.

175 ’CONCEPTS AND DEFINITIONS

176 Before we begin, it is important to define several terms.
177 This paper lies at the intersection of several fields, but we
178 shall endeavor to stay reasonably close to the nomenclature
179 of (classical!) crystallography, although there will be some
180 exceptions.
181 • An isometry is a mapping of 3D-space to itself that preserves
182 distances and is thus a reflection, a rotation, or a rotational
183 reflection (if it has any fixed points) or a translation, glide
184 reflection, or a screw rotation (if it does not). These are the
185 elements of crystallographic space groups.
186 • The symmetries of an embedded net are those isometries that
187 map nodes of the embedded net to nodes and edges
188 to edges.
189 • An embedded net is 3D-periodic if there are three transla-
190 tions along three axes among its symmetries and if any finite
191 ball in 3D-space contains finitely many vertices. We say that
192 a net is 3D-periodic if it is combinatorially equivalent to a
193 3D-periodic embedded net.
194 • Two edges of an embedded net are in the same orbit if there
195 is a symmetry of that embedded net mapping one to the
196 other. Similarly, two nodes are in the same orbit if there is a
197 symmetry mapping one to the other.
198 • An embedded net is uninodal if there is one orbit of nodes; it
199 is binodal if there are two orbits of nodes.
200 • An embedded net is edge transitive if, for any two edges, there
201 is a symmetry sending the first edge to the second.
202 • A binodal net is bipartite if there is no edge connecting two
203 nodes of the same kind. A binodal edge transitive net will not
204 be connected if it is not bipartite. All nets (but one!) in this
205 contribution are bipartite.
206 Two versions of the program have been developed:
207 • A one-edge version that enumerates (necessarily) bipartite
208 edge-transitive binodal embedded nets. We will call this
209 Version 1/3.
210 • A two-edge version that enumerates bipartite binodal em-
211 bedded nets with two orbits of edges. We will call this
212 Version 2/3.
213 The “/3” is to remind us that these are demonstration
214 programs and that a more comprehensive program is desirable.

215While these programs enumerate binodal periodic embedded
216nets, the mathematical formalization12a�c based on a variant of
217the group action rationale13a,b of “Bass�Serre” theory14a�c

218(related to the “vector method” of 15a-b) asserts that these
219programs can be generalized to enumerate embedded nets of
220crystals of arbitrary complexity. We shall outline how the one-
221edge version works, but first we need some preliminaries on
222computational practicalities and on crystallographic point
223groups, which we will treat qualitatively. We take a very abstract
224view of the situation, since we will then be in a better position to
225focus on practicalities.
226It should be emphasized that we do not have an algorithm to
227generate all 3D-periodic embedded nets; we only generate
228representative embedded nets for all 3D-periodic nets. To be
229precise:
230• The collection of all 3D-periodic embedded nets is “un-
231countable” in the sense that if we enumerated embedded
232nets, one after another, it would be impossible to enumerate
233them all even given infinite time: the collection of all 3D-
234periodic embedded nets is “uncountable”. (This is a straight-
235forward exercise in combinatorial set theory.)
236• However, the collection of all nets representing 3D-periodic
237embedded nets is countable, albeit infinite. (One would
238enumerate quotient graphs,15b and the number of quotient
239graphs is infinite but “countable”.) Thus, there is a desire for
240an algorithm enumerating 3D-periodic embedded nets
241which would, given infinite time, enumerate representatives
242of all topologies, i.e., of all nets.
243As a practical matter, we would like a computer program that
244effectively implements this algorithm; that is, it should enumerate
245(geometric representatives of) interesting and important nets
246fairly quickly. One way to do this is to have the computer
247program have a bias toward embedded nets of high symmetry,
248for nets of high symmetry appear to be disproportionately
249represented among known nets.4b,10 Since this algorithm is
250based on symmetries, the fact that we quickly found interesting
251and important nets using two primitive implementations of it
252bodes well for future programs.
253The claim that this algorithm eventually enumerates represen-
254tatives of all nets of 3D-periodic embedded nets is explored
255elsewhere,12a,b although the rationale is outlined very briefly in
256this communication (and explored further in the Supporting
257Information) for the curious reader. However, we will focus on
258two particular implementations of this algorithm and present
259empirical evidence that this and related implementations should
260effectively enumerate representatives of interesting and important
261nets within a reasonable time.

262’EXPERIMENTAL SECTION

263Two programs implementing the algorithm for binodal em-
264bedded nets were composed in the programming language
265Maple (because of its utility in engineering demonstration
266projects). The program used Cartesian coordinates and, for
267efficiency, placed nodes on integer points, i.e., points (x, y, and z)
268in 3D-space such that x, y, and z were integers. Both programs
269generated embedded nets from two nodes, one at the origin
270(0, 0, 0) and the other at an integer point (x, y, z), with an edge
271joining the two nodes.
272The first program, which we call Version 1/3, is described in
273the Theoretical Supplement in the Supporting Information. The
274program enumerated edge transitive embedded nets (i.e., one
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275 orbit of edges) as follows. For each (x, y, z), �3e x, y e 3, and
276 0e ze 3 satisfying (x, y, z) 6¼ (0, 0, 0), and each assignment of two
277 point groups (of appropriate order) to the two nodes, it would
278 attempt to generate an embedded net. Thus, it would proceed
279 systematically through up to several thousand initial conditions,
280 attempting to generate an embedded net from each one, and
281 reporting all successes.
282 In theory,12b enumerating each integer point (x, y, z) and
283 generating a net from that point (and the origin) would produce
284 a complete if infinite list of representatives of binodal edge transitive
285 3D-periodic embedded nets. In practice (or at least in this computer
286 experiment), just checking 195 integer points (x, y, z) satisfying
287 �3 e x, y e 3 and 0 e z e 3 and (x, y, z) 6¼ (0, 0, 0) sufficed
288 to generate representatives of all edge transitive strictly binodal 3,4-,
289 4,4-, 3,6-, and 4,6-coordinated nets listed in RCSR4a and TOPOS17

290 (Table 1T1 ). This suggests that, for such a search, generating a
291 sufficiently long list of integer points would often suffice.

292To give an idea of how the algorithm works, we describe in the
293Supporting Information how Version 1/3 would generate (an
294embedding of) the net pto. As in the programs, we useCartesian co-
295ordinates and place the nodes (and edges) in 3D-space in positions
296with respect to the standard x-, y-, and z-axes.Here is a description of
297the “search space” for Version 1/3; for a more complete description
298of Version 1/3, see the Supporting Information.
299To generate a net, we first decide that we are working in the
300lattice of integer points. (If we were generating a hexagonal
301embedded net, we would work in a hexagonal lattice.) Notice
302that the point group of this lattice is the maximal point group
303m3m. We need the following:
304• We must fix the valencies of the two types of nodes. For
305example, suppose that we decide that we are generating a
3064,3-coordinated net.
307• We place a node at the origin, (0, 0, 0). For example, suppose
308that we decide that the node at the origin is to be 4-coordinated.

Table 1. List of Some Edge Transitive Nets Found by Version 2/3 of the Programa

3,4-coordinated nets 4,6-coordinated nets

TD10 name dmin Dmin point symbol TD10 name dmin Dmin point symbol

248.14 * * 1.10 (42.204)3(4
3)43,4T7 1100.6 stp 1.15 1.31

819.86 bor 1.15 1.73 1188.0 * * 1.00 (43 3 6
12)2(4

6)34,6T4

819.86 tbo 1.15 1.37 1228.2 toc 1.15 1.15

894.43 ctn 1.57 1.55 1304.0 * * 0.67 new (43 3 8
12)2(4

6)3
905.00 pto 1.41 1.41 1463.4 gar 1.10 1.10

2957.3 * 0.44 0.65 new (123)4(12
6)3 1464.2 iac 1.10 1.10

3237.3 * 0.51 0.62 new (123)4(12
6)3 1767 * * 0.85 new (415)2(4

2
3 8

4)3
3245.0 * 0.00 0.63 new (123)4(12

6)3 1931.0 ibd 1.00 1.00

1988.2 soc 1.00 1.00

2071.4 she 1.00 1.00

3441.8 ifi 0.65 0.65

4,4-coordinated net 3,6-coordinated nets

TD10 name dmin Dmin point symbol TD10 name dmin Dmin point symbol

584.4 * * 1.00 new (42 3 12
4)(46) 721.7 spn 0.58 1.41

785 lcv uninodal; not found 807.7 cys * 1.04 known

791.0 sod 1.41 1.00 1419.0 pyr 1.29 1.29

933 ana uninodal; not found 3079.0 * 0.54 0.63 new (815)(83)2
977.0 pts 1.15 1.60

981.0 dia 1.63 1.60

1028.0 rhr 1.15 1.00

1127.0 lvt 1.15 1.31

1137.0 ssb 1.15 1.00

1161.0 lcs 1.52 1.00

1169.0 nbo 1.41 1.32

1198.0 ssa 0.82 1.31

1205.0 pth 1.15 1.41

1231.0 qtz 1.41 1.46

2168.0 * * 0.60 new, uninodal, 86

2249.0 * 0.82 0.82 new (64 3 10
2)(66)

2324.0 * * 0.77 new (62 3 8
4)(64 3 8

2)

3797.0 * 0.58 0.71 new, uninodal,

4593.0 ssc 0.65 0.65 (62 3 8
4)

a See the Supporting Information for node and edge positions. dmin = Systre’s minimal nonbonded distance;Dmin = largest minimal nonbonded distance
found by Version 1/3. lcv and ana are italicized to stress their problematic nature (see text).
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309 • We choose an edge by choosing a point for a node of the
310 other (3-coordinated) kind. Suppose that we chose (1, 1, 0)
311 for the position of the other node, so that the edge is the line
312 segment from (0, 0, 0) to (1, 1, 0), so that the second node is
313 at (1, 1, 0).
314 • We choose a 4-element point group (which has the origin as
315 a fixed point)—a subgroup of m3m—to apply to the edge
316 {(0, 0, 0), (1, 1, 0)} to obtain the four edges (and hence the
317 four neighbors) of the first node. For example, suppose we
318 chose the “conjugate” of mm2 whose reflecting mirrors are

319the xz- and yz-planes. (“Conjugates” are defined and
320discussed in the Supporting Information.)
321This is the initial position depicted in Figure 2 F2, where the
322computation begins. In essence, the computation runs by devel-
323oping the edges and adjacent nodes of every node developed,
324replicating the operations on the first pair of nodes, until there are
325enough nodes to characterize a unit cell; e.g. Figure 3 F3. Again, for
326more, see the Theoretical Supplement in the Supporting
327Information.

328’RESULTS AND DISCUSSION

329We consider two classes of results.
330First of all, for purposes of surveying the landscape, Version 1/3
331is more effective because its (infinite!) theoretical search space
332is apparently more faithfully exemplified by the (finite!) search
333space employed by the program. So here are several global
334observations about the results from Version 1/3, including the
335question of the faithfulness of this exemplification.
336• While Version 1/3 did generate all binodal edge transitive
337nets listed in RCSR, Version 1/3 did not generate all
338uninodal edge transitive nets listed in RCSR. For example,
339among the 4-coordinated nets, Version 1/3 did not generate
340any examples of ana or lcv. As we shall see in the Theoretical

Figure 2. We start with a first (blue) node at the origin and a second
(green) node at (1, 1, 0). Two mirrors, on the planes of the xz- and yz-
axes, generate three additional green images of nodes adjacent to the first
node. The axis of rotation through (1, 1, 0) generates two additional blue
images of nodes adjacent to the second node.

Figure 3. The outputted net for the initial conditions in the 4,3-
coordinated example of the text, using the neighbor (1, 1, 0), applying
the conjugates described above, and repeatedly iterating until one
obtains a complete quotient graph. The first node is at the intersection
of the three axes; it is a vagary of the program that it often builds the
quotient graph in one direction from the first node rather than in all
directions more equally.

Figure 4. (a and b) Graphical representations of Net 248; (c) graphical
representation of the srs net; (d) example of structure topologically
equivalent to net 248 found in CSD (REFCODE: 3,4T7; (e and f)
examples of building block (CSD REFCODE: ACUBEF) and ligand
(CSD REFCODE; HOXMUC) amenable to form the structure with
248 topology; (g) graphical representations of Net 584; (h) graphical
representation of nbo net; (i) graphical representation of Net 1188; (j)
graphical representation of Net 1767.
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341subsection, Version 1/3 would not list lcv for any integer
342point (x, y, z), so this is not a surprise: Version 1 (now under
343development) will not have the theoretical constraints of
344Version 1/3, so we do not expect this limitation in Version 1.
345However, ana does not have the combinatorial problem lcv
346has, and so we would have expected ana to appear (as did
347other uninodal nets such as dia and qtz). So we expect ana
348to appear for some integer point (x, y, z), and this experi-
349ment merely shows that, for such an integer point for
350obtaining ana, at least one of x, y, or zmust have an absolute
351value greater than 3. How much greater is uncertain.
352• Version 1/3 found a number of “dense” nets in the sense
353that the “topological density” (td10 = the mean number of
354nodes within edge distance 10 of an average node9h,16a) is
355high in the following sense. RCSR lists 47 4,6-coordinated
356nets, and the one with the highest topological density was ifi,
357with td10 = 3441.8. The majority of the 50 distinct 4,6-
358coordinated edge transitive nets enumerated by Version 1/3
359were not listed in RCSR, and only nine had td10 < 4000,
360with four having td10 > 20,000.
361• Version 1/3 found a few nets that were not barycentric9h,16a

362(or locally stable) for which Systre would abort an analysis
363with the message that the inputted embedded net had
364“vertex collisions” or was “not locally stable”. One of these
365is the td10 = 248 embedded net of Table 1. These nets
366tended to be of low topological density.
367• Version 1/3 did not find any barycentric novel nets of any
368obvious importance.
369In the Supporting Information, we provide CGD files (and
370Systre output) of the following:
371• embedded representatives of all 3,4-coordinated periodic
372nets found by Version 1/3;
373• embedded representatives of all 3,6-coordinated periodic
374nets found by Version 1/3;
375• embedded representatives of all 4,4-coordinated periodic
376nets found by Version 1/3 of topological density at
377most 4593;
378• embedded representatives of all 4,6-coordinated periodic
379nets found by Version 1/3 of topological density at most
3806240.2.
381As Version 2/3 was even hobbled in theory (for logistical
382reasons) and thus unsurprisingly missed many extant bipartite
383binodal nets of two orbits of edges, the primary interest of results
384from Version 2/3 is the interesting novel nets that it found,
385suggesting that, unlike the binodal edge transitive nets (which
386appear to have been well-explored prior to this contribution), the
387binodal bipartite nets of two orbits of edges include much
388interesting but unexplored territory. Some of the novel nets
389found by Version 2/3 are described in the discussion or pictured
390in Figure 4 F4or Table 2 or listed in the Supporting Information.
391Version 2/3 searched for binodal nets T2of two orbits of edges;
392again, because of certain constraints on the program, a compre-
393hensive survey was impractical, so we make no global comments
394on the results here. Comments on specific novel nets are below.
395All CGD files for (embedded representatives of) nets in Table 2,
396and examples of 3,6-, 4,4-, and 4,8-coordinated embedded nets
397found by Version 2/3 are provided in the Supporting Informa-
398tion, along with TOPOS outputs of some of them.
399The two programs found many novel nets, but the nets found
400that seem to be most feasible from a crystal engineering point of
401view are nets with topological density TD10 = 248, 584, 1188,

Table 2. Examples of New Nets Found by Version 0.7 of the
Programa

a See Supporting Information for node and edge positions.
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402 1304, and 1767 (see below and Tables 1 and 2); again, the
403 most feasible novel nets were found by Version 2/3. Note that
404 Nets 248 and 1188 are recognized by TOPOS17 as having
405 topologies (nets) of structures from the CSD database
406 (Recodes: 3,4T7 and 4,6T4).
407 • Closer analysis of those five nets reveals an interesting
408 correspondence to well-known nets. The embedded net
409 found of Net 248 is a 3,4-coordinated net with tetrahedral
410 and pyramidal nodes (Figure 4a,b), with chiral symmetry,
411 and with the I4132 space group, and it can be represented as
412 trigonal bipyramids. This is similar to the well-known srs
413 net. By applying local rules—connecting centroids of bipyr-
414 amidal polyhedra—Net 248 can be reduced to srs. While
415 Nets 248 and srs are distinct, they possess the same chiral
416 symmetry and have the same type of helices.
417 • Analogous nets are as follows: Net 584 (TD10 = 584.4,
418 Figure 4g,h), which is a 4,4-connected net with tetrahedral
419 and pyramidal nodes. Net 584 can be reduced to an nbo
420 type net, and nets 1188 (4,6), 1304 (4,6), and 1767 (4,6) are
421 similarly adjustable (Figure 4i,j).
422 Again, most of the new nets found are relatively dense
423 (although some look feasible from a crystal engineering point
424 of view). More plausible nets found by Version 2/3 and not
425 listed in the RCSR4 and TOPOS17 databases are enumerated
426 in Table 2.
427 The fact that most of the plausible and new nets found thus far
428 were found by Version 2/3 suggests that in looking at embedded
429 nets with two orbits of edges rather than nets with just one, we are
430 crossing something akin to a contemporary frontier. This also
431 suggests that, for a comprehensive exploration of this frontier, the
432 search space should (at least) involve choosing one of 195 edges,
433 and then one of the 341 remaining edges (in that entire 7� 7� 7
434 box), for a total of 66,495 pairs of edges. This large number of
435 initial conditions to test is another reason for composing a new
436 version of the program.

437 ’CONCLUSIONS

438 Two demonstration programs of the Crystal Turtlebug algo-
439 rithm generate all known edge-transitive binodal nets of four
440 classes of nets of high symmetry, plus several new nets not
441 presented in RCSR4a and TOPOS17 databases. Among the new
442 nets are some that appear feasible from the point of view of
443 crystal engineering. Subsequent programs should be able to
444 generate more complex nets in a reasonable time. Further, in
445 addition to the theoretical point that such a program can
446 enumerate all the infinitely many nets (in its scope) given infinite
447 time—and thus that, in such an enumeration, any given net will
448 eventually be enumerated—the results of this preliminary version
449 suggest that a user will not have too long to wait before
450 interesting nets are enumerated.
451 One limitation of the current program is the restriction of
452 vertices to integer points (or, in the case of embedded nets,
453 images of integer points under a particular linear trans-
454 formation). While the embedded nets of maximal symmetry fall
455 in this class, most embedded nets generated are not of maximal
456 symmetry. Thus, the output may require additional massaging
457 and/or filtering as well as analysis by other programs.
458 In order to design these structures, the crystal engineer must
459 analyze the geometry of targeted nets and choose the right MBBs
460 and the right linker ligands. Special attention should be directed
461 to the shape and conformation of the linker ligands. For example,

462Eddaoudi et al.1v showed that it is possible to design a crystal
463structure by controlling the linker conformation by using 2-bro-
464mo-1,4-benzenedicarboxylate instead of 1,4-benzenedicarboxy-
465late. Specifically, when the former is reacted with Cu(II) ions to
466form “paddlewheel” nodes, a square grid type structure is formed
467whereas the latter generates an NbO net. The Br substituent
468causes the adjacent of the carboxylate moiety to be orthogonal to
469the plane, which in turn causes the paddlewheel nodes to be
470twisted with respect to each other. Crystal Turtlebug programs
471will generate many embedded nets, which should provide
472sufficiently many conformations so that some should be suitable
473for targeted nets. Crystal Turtlebug has already produced a
474number of nets that are novel and nets that were only observed
475experimentally. One example is the 4,4-connected net 1641
476(Table 2); it is composed of square planar nodes and distorted
477tetrahedral nodes. The net was found by our program but is
478recognized by TOPOS17 as having the topology of a structure
479reported in the CSD database—4,4T3 (Table 2). That validates
480that variants of net 1641 are indeed feasible to design from a
481crystal engineering perspective. The analysis of the entire set of
482new nets is now in progress, and we believe it will result in several
483novel “feasible to design” nets, and these will be delineated in a
484future contribution. Meanwhile, a catalogue of embedded nets
485(as CGD files) is listed in the Supporting Information: compre-
486hensive lists of representatives of nets of particular coordinations
487and of sufficiently low density found by Version 1/3, and a
488sample of representatives of novel nets found by Version 2/3
489appears as well.

490’ASSOCIATED CONTENT

491bS Supporting Information. Theoretical information about
492crystallographic point groups, generating a net, and the rationale;
493CGD output for some nets; and TOPOS outputs of selected
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