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A k x n grid graph is the product P, X P, of a path P; of length % and a path £,
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conjecture is also a lower bound for % sufficiently large.
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CHAPTER 1

INTRODUCTION

A dominating set in a graph G is a set S of vertices having the property that
every vertex is either in S or adjacent to a vertex in §. The domination number v(G)
of G is the cardinality of a smallest dominating set in G. For an extensive survey
of domination problems and a comprehensive bibliography we refer the reader to the

recent survey volume edited by Hedetniemi and Laskar [1].

FERENEREBERADER

Figure 1.1: A dominating set for Ps x Py7

A path P, of length m is a-graph having vertex set {v1,va,...,0n} and edge set
{v;vig, 11 =1,2,...,m —~ 1}. Here ab denotes the unordered pair {a,b}. Ak xn
(complete) grid graph P, x P, is the product graph of a path of length % and a path
of length n. We take the vertex set of the grid graph Py, x P, to be the set of ordered

pairs of positive integers (¢,7) where 1 <¢ £ k and 1 £ j € n. By the definition of
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the product graph, there is an edge from vertex (z,7) to vertex (p,¢) if and only if

i — p| +|j — g} = 1. To illustrate, in Figure 1.1 we represent a dominating set for
the 5 x 17 grid graph. The elements of the dominating set are indicated by black
dots. The intersections of the vertical and horizontal lines are the vertices. Using the
terminology of the oriental game Go we call the elements of a dominating set stones.
The dominating set in Figure 1.1 has 22 stones. This shows that the domination
number s 17 of the grid Py x P, is less than or equal to 22. In fact 5,7 = 22.

One of the applications of the domination problem is resource allocation and
placement in parallel computers, Livingston and Stout. [2]

A Co player might be interested in the question, “How many stones are required
to dominate the Go board, a 19 x 19 grid?” In Figure 1.2 we give a dominating sef
for Pig x Py of cardinality 84. This shows v(Pis X Pg) < 84. We suspect but cannot
prove that in fact ¥(Pyg x Pig) = 84. In Figure 1.2, the slanted lines with slopes £2
or :l:-li are not part of the grid graph. They are drawn in just to bring out the pattern
formed by the vertices of the dominating set.

Jacobson and Kinch [3] established vz, = v(Pr x P} for k£ = 1, 2, 3 and 4.
Beyond k = 4 the problem becomes much more difficult. E. O. Hare [5][6] developed
a dynamic algorithm to compute i, and using the output of an implementation of
her algorithm she was able to find expressions for 4z, for a number of different values
of k and n. In {7] Cockayne, et al, establish some upper and lower bounds for vna

(the square case).
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For ease of reference we list below the results of Jacobson and Kinch {3] for & =

1, 2, 3, 4. The results for k =1, 2, 3, were also established by Cockayne, et al, [7].

n
Mn — [g-l
n+1
72;71 = ]- 2 -I
7 — 1
73,11. = n - L 4 J

n+1 for n=1,2,3,5,6 or 9
Tan =

n otherwise

The following results were obtained by E. O. Hare [3].

TFor 8 <n < 500:

n+4
o

’Ys,n:n‘*‘l‘

For 4 <n < 500:

’

n + [2=2] ifn=1mod?7

Yom = n 424 [EE] ifn=3mod7

n+ 1+ [22=2] otherwise

Hare also obtained the values of v, for k =7, 8, 9, 10, 11, 12 for limited range

of n. (See chapter 3 below)

In Chapter 2, we establish the following upper bound:

(k+2)(n+2)
3

Yem S | =4, forn>k>8.
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For small %, this bound is not tight. In Chapter 3, we give improved bounds for

k=25,6,...,10, and all n by constructing dominating sets. We prove, in Chapter 4,
that Hare’s formulas for s, and 75, extend to all positive integers n. It is our hope
that the methods used here will eventually lead to a determination of «y, for all &
and n. We conjecture that (1.7) holds with equality for % and n sufficiently large. In

chapter 5 we discuss recent results due to David Fisher.

The domination problem has also been studied in coding theory; there it is called
the covering problem. For a given finite metric space (X, d), a p-cover of X is a subset

S of X such that for every z € X, the distance from z to S
d(z,S) :=mind(z,y) <p.
ves
The p-covering number v,(X) is
(X)) = min {]S}: S is a p-cover}.

The Hamming metric (8] in coding theory is the same as the path metric of K7,
where K, is the complete graph with ¢ vertices. The Lee metric [8] is the same as the
path metric of C7, where Cy is the cycle with ¢ vertices. Both the Hamming metric
and Lee metric have been studied extensively. Now we define a mefric space on the

product of n paths. Let P, be paths, 7 =1,...,n, then the set

with the metric

d(z,y) = Z Imi - yt'|7 i, U € Px‘

=1
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is a metric space. If we take ¢; = ¢ for all 7 we get the class of graphs P analogous
to K and CF. Note that both K7 and (7 are vertex tramsitive, but for ¢ > 2
£ is clearly not vertex transitive; in fact, not even regular. In this dissertation we

concentrate on P x P,. In this case

d((%,3), (g} = li = pl + 15 — 4l.

This metric 1s the same as the path metric on the k& x n grid graph. The 1-covering

number is the same as the domination number.

For convenience we list some basic notation:

1. P, x P, is the k x n grid graph. Sometimes we use Py, x P, itself as the vertex

set of the grid graph. P, is a set of ¢ consecutive integers, but in most cases

P=1{1...,q}

2. “Ypn is the domination number of P, x P,. Since 7y, = Yok, we always suppose

n > k.
3. C; is the set of vertices in the j-th column of Py x F,.
4. R; is the set of vertices in the i-th row of P, x P,.

5. If § is a dominating set of Py x P, then S; = SN ;. And s; is the number of

elements in S;.

6. S is always a dominating set or “would be” dominating set of P, x F,. A stone

is an element of 5.



. The distance between v = (z1,71) and v = (2, ¥2) is

d(u,v) = [z — 21| + lya — 0l

. A vertex v is said to be covered by a vertex u if v = u or v is adjacent to u,

equivalently d(u,v) < 1.

. The boundary of P x P, is the set of vertices having at least one coordinate

equal to 1 or k or n.



CHAPTER 2

BOUNDS FOR THE DOMINATION NUMBERS OF P x F,

Upper bounds and lower bounds for the square grid graphs F, x P, were given

by Cockayne, Hare, Hedetniemi and Wimer [7]. They gave the formulas: for ¢ > 2,

v

i(n®+4n—-16) n=5¢—2

e

(n*+4n—17) n=>5¢-1

Yan < (?12 -+ 4dn — 20) n = 5q

enfmi

%(?12—1—47’&—20) n=>5qg+1

k %(ng—}-!&n—l?) n=>5q¢+2

In this chapter we will establish the following “standard upper bound”:

XD < l_

(k+ 2)5(71 - 2)_[ —4 forn>k>8. (2.1)

When k is small, say £ < 16, this bound is not tight. We will show this for £ < 10

by constructing dominating sets in next chapter.

2.1 Standard upper bound

Let Z denote the additive group of integers, Z? = Z x Z, the product of Z with

itself and Zs, the group of integers modulo 5. Let f : Z2 — Z; be the homomorphism



given by f(z,y) = = + 2y, for (z,y) € Z%. Let e; = (1,0) and e; = (0,1). Then
flute) = flu)£1land flute) = f(u)x2, forall u e Z%

The unit ball B(u) about a vertex u € Z? is defined as the set

B(u) = {v: J(v,u) <1}
So
B(u) = {u,u e1,ux ey}
Hence
F(B(w) = {f(u), f(u) £1, f(u) £ 2} = f(u) + Z5 = Z;
So f restricted to B(u) is a bijection from B(u) to Z5. Hence if v,w € B(u) and

flv) = f(w), we must have w = v. In fact it is easy to verify that

)
B(u) N B(v) = ¢, if u,v € f~1(t) and u # v.

A perfect dominating set S of a graph G is a dominating set such that every vertex
is covered by one and only one element in S. For fixed £, there is exactly one element
in B(u) N f71(¢) for all u € Z*. Thus f~'(t) is a perfect dominating set of Z?, which
may be consider as an infinite grid graph with no boundaries.

In a finite grid graph, we define
V)= f'@)n{Px B,) t=0,1,2,3,4.

In general V(¢) is not a perfect dominating set since there always exist vertices on
the boundary of P, x P, left uncovered. The only grid graphs for which a perfect
dominating set exists are Py X Py, P4 X P, and P, x P, (n is odd)[2]. But |V (2}

always gives a lower bound for the domination number.



10
Lemma 2.1 Let S be a dominating set of P, x P, then |S| > |V (¢)] for all t.

Proof Since S is a dominating set, every u € V(&) must be covered by an element
s € S. If we chose one s € S, which covers u, as the image of u, a mapping from V()
to S is well defined. If v # u, v € V({) is also covered by s we have s € B{u) N B(v),
a contradiction. Hence u +— s is 1-1 so [S] > |V(#)]. B

The number of vertices in |V (t)| can be easily counted as in the following Lemma.

Lemma 2.2
E <@l or
and there exist ty, 11 such that
V(t0)| = L5 and [V(ia] = 21

Proof It is easy to verify that every five consecutive vertices u, u + e;, u + 2e;,
u + 3ey, u+ 4ey in the same column (or row) will have all five different values under
the mapping f and f(u) = f(u + 5e;). Therefore in the same column (resp. row),
the number of vertices in V(t) is either {£] or [£] +1 (vesp. |2] or 2] +1). In
particular if kn = 0 mod 5, then |V (t)] = &2 = |£2] = {52, for all t. So the lemma

is true for this special case. The rest of proof is for the case kn #£ 0 mod 5.

For fixed t, f(u) =t <> f(u-+e;) =t+1. Therefore in two consecutive rows R;

and R;.,, we have
R NV(E+1)] = [RAV(E)] fori=1,2... k-1

But

HENV(E+1) - [Bn V()] ] <1,
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since both of By N V(¢ +1)| and |Rx N V{(¢)| are between |2 and [§] + 1. Thus the

number of vertices in V(¢ -+ 1) differs from the number of vertices in V{¢) at most
one. The same argument is true for |V (¢t — 1)| and |[V(¢)}. Since f(u-+ez) = f(u)+2
we apply the above argument to the columns and obtain |V(t + 2)| differs from |V (t}|

at most one and |V(¢ — 2)| differs from [V (¢)| at most one.

Now, let V(#y) be the class having smallest number of vertices. Then each of the

other classes has either |V{#)} or |V (#o)| + 1 vertices. Since
V(o) UV(te —1)UV{te —2)UV(te+ 1)UV (o +2) = Px X P,
we have that
5V (to)| < [V (to — 1) + [V(to — 2)[ + [V(Eo)| + [V{to + )] + [V(to + 2)| = kn,
hence |V (2o)] < %‘ and |V (to)] < [£2]. Also
IV (ta)l +4 2 [V(to — D) + [Vt — 2)| + [V(Eo)| + [Vt + 1] + [V(Eo + 2)| = kn
implies |V (t0)] 2 %" — 1. In the case kn # 0 mod 3,
Vi) 2 (51 -1= 15
Thus |V (2o)| = |%2]. Since any class has number of vertices at most one more than
|V {%)|, we have
L%“'lj < V() < [%nj +1= [%”1, for all £.

Since kn is not divisible by 5, it can not happen that |V (t)} = %], for all . So there
must be a class V() having [£2] vertices. B

By Lemma 2.1 and Lemma 2.2, a lower bound for vz ,, in the next theorem follows.
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Theorem 2.1 If S is a dominating set of Py x P, then |S| > ff‘sﬁ'l

Theorem 2.2

k+2 2
Ten S [( + )5(n+ )J ~4, fork €n <8.
Proof Consider the induced subgraph of Z? with the vertex set
V={0,1,...,k+1} x {0,1,...,n+ 1},

this is a graph isomorphic to Pyyg X Poyg. Let V(1) = VN f~1(2), then by Lemma 2,

we can choose t so that

(k+2)(n+2)

V)= g

Every vertex in Py, x P, = {1,...,k}x{1,...,n} is covered by V(t). If we move every
stone in V/(t), which is on the boundary of Prys X P,1 and not a corner vertex, one
step inside, we can get a dominating set of P, x P,. And morever we’ll show that
one stone can always be eliminated near each of the four corners for any V(¢). By
constructing such a dominating set, the inequality in the theorem follows.

We discuss the construction in detail for any ¢ and for the upper left corner. This
construction is also shown in Figure 2.1. In the figure we number the rows from the
top down beginning with 0 and we number the columns from left to right beginning
with 0. In Figure 2.1, the vertices indicated by empty circle will be the stones deleted

and the vertices indicated by framed dots will be the stones added in.

In Figure 2.1, the construction of a dominating set on the upper-left corner is

described as following.
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@ o & =
l [o] ® ® {;E l
¢ ®
& o—
O [@] T ® AT ® ® T—
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< o
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i =3 t=4
Figure 2.1: Eliminating a stone in the upper left corner.

t=0: The stone (0,0) does not cover any vertex of Py x P, it can be simply deleted.

t=1: Originally, the vertex (1,1) was covered by stone (1,0) and the vertex (1,3) was
covered by stone (0,3). By deleting those two stones on the boundary of V(1)
and adding in a stone (1,2), we can get a dominating set with number of stones

one less than [V(1)}].
t=2: By adding a stone (1,1), both of stones (2,0) and (0,1) can be deleted.

t=38: By moving the stone form (0,4) to (1,3) and moving the stone from (1,1) to

(2,1), the stone (3,0) can be deleted.

t==4: By moving the stone form (0,2) to (1,2) and moving the stone from (2,1) to

(3,1), the stone (4,0) can be deleted.
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A similar discussing can be done for the other corners. We omit the details.

Noticing the structure of V(2), all the stones on the bounbary of Prys x Pryp that
have been deleted have the other coordinate less than 4. Hence, ior other corners, all
the stones that were deleted have the other coordinate greater than n—3 or £—3. So
when n > k > 8, none of stone will be deleted for more than one corner. Therefore

we can always construct a dominating set of P, x P, having cardinality

(k+2)(n+2)
L 5

|~4.1

We call 2 dominating set constructed as in the proof of Theorem 2.2 using any V(¢)

a standard dominating set of P, x P,. If a standard dominating set has cardinality

L(k+2)5(n+2)J 4

then it is called a minimal standard dominating set. Formula (2.1) is call the standard

upper bound for Y.

2.2 Butterfly upper bound

When k= 1 mod 3 andn =1 mod 3, k > 4, n > 4, we can construct a dominating
set called a butterfly dominating set. When k is sm;ll a butterfly dominating set gives
an upper bound for v, smaller than the standard upper bound. An example of a
butterfly dominating set is given in Figure 1.2 for Pig X Pyg. (The 12 stones with the

slanted lines in row 1 to 7 and column 4 to 10 form a picture resembling a butterfly.)
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The set S; of stones in the j-th column of a butterfly dominating set for P, x 7,

is defined by

S = {(2+6¢,1):q=0,1,...}U{(6+6¢,1):g=0,1,...}
S; = {(4+6¢,2):¢=0,1,...}
S35 = {(14+6¢,3):¢=0,1,...}
Sy = {(3+6q,4):¢=0,1,..3U{(5+6¢,4):¢=0,1,...}
Ss = {(1+6¢,5):9=0,1,...}
Se = {(¢+6¢,6):¢=0,1,...}

S; = {(z,7):(z,7 —6) € Si_e} forg>7

The number of stones in a butterfly dominating set can be easily counted. Recall

s; = |.5;| and note S, = Sy or Sy.

E—1 k-1
81 = §4 = Sy = , 89+ s3=585+sg=———+11
3 3
Hence
k-1
Sei=Ye =22t 4
=1 =4 3
Therefore
3 6 n—-1
lSl = ZS:,'-{-ZS_,'—]--H—}- Z 8;F 8n
7=1 j=4 j=n—3
n—1/[ k-1 k-1
= 2 1 _
3 ( 3 + )—l_ 3
(n—1D(k-1) n—1 k-1
= 2. .
9 L R

This gives an upper bound called butterfly bound for 7 .
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Theorem 2.3 Ifk=1mod 3 andn =1mod 3, k>4, n >4, then

(n=1)(k-1) n—-1 k-1

99
g T3t (22)

Ten S 2-

We now compare the standard bound to the butterfly bound. Let £ =3p+1 and
n=3q+1, qg>p2>3. Thebutterfly bound can be written as

n—lk—1+n—1+k-—1
3 3 3 3

Tkmn S 2

= 2pg+p+yq.

And the standard bound can be written as

e < L(k+2)5(n+2)J_4
Bp+1+2)(3g+1+2)
L 5

_ L9(p+lg(q+1)J_4_

| —4

Observe that when p > 4 we have

9p+1)(g+1)
5

—4<2pg+p+gq
9pg + 9p + 9¢ + 9 — 20 < 10pg + 5p + 5¢
dp+4qg—pg—11 <0

g4 —p)+4p—-11<0

1

4p — 11 5
=44 —
q > p—4 +p—4

Therefore when p > 4,

(p+1)0g+1)
5

5 9
q>4+m==>t |—4<2pg+p+yg (2.3)

By (2.3) together with some simple calculations, we have the results:
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1. Wheng > p > 7,1.e.,n > k > 22, since the left side inequality in (2.3) is always

satisfied, the standard bound has less stones.
2. When p=6,1.e., k=19

For ¢ > 7, i.e., n = 22, the standard bound is better by (2.3).

When n =19, i.e., g = 6, they have the same number of stones which is 84.
3. When £k =16, ie,p=25:

For ¢ > 9, i.e., n > 28, the standard bound is better by (2.3).

When n = 16, 19, 22 and 25, they have the same number of stones 60, 71, 82

and 93 respectively.

4. When k = 13, i.e., p = 4 the butterfly bound becomes 9¢ + 4 and the standard

bound becomes 9¢+5. The butterfly bound is smaller than the standard bound.

5. When &k = 10, i.e.,, p = 3, then

L9(P +1)(¢+1)
5

36(q + 1)

[

1—4—-2pg+p+q)
|—4—Tg—3

+1 |
- L___.q5 | +7q+T—4~Tg~3

L%EJ > 0.

This shows that the butterfly bound is betier than the standard bound. In
next chapter, we will show there an upper bound for Pig x P, smaller than the

butterfly bound.
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2.3 Lower bounds for vy,

The structure of f~1(¢) and Hare’s data lead to the conjucture that for k and n
large enough the standard upper bound may be itself a lower bound. This has not
been proved yet. But some small lower bound may still be helpful.

The lower bound [£2] given in Theorem 2.1 seems too low. In 7} the lower bound

%(n2 + 1 — 3) < yun is established. By a similar argument one may show

kn—]—%k—l—%n

T 2= | 5 I
If -
> Lkn +5k+nJ,
or
i > L(L +2)5(n—t— 1)J,

can be proved, then of course they provide much better low bound. But there is still

a big gap between this and the minimal standard upper bound.
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CHAPTER 3

UPPER BOUNDS FOR P, x P,, 1 <k <10

For ease of comparison we have converted the values of ;. ,, found by Jacobson {3]

and Hare [5] into the standard form:

an + b
P

| Js

where @, b and p are positive integers depending on k and in some case b depends
on the value of n mod p. The converted results are shown in the following formulas:

Formulas (3.5) and (3.6) will be proved for all n in the next chapter,

T = LnT—l—QJ (3.1)
= 125 (32)
Tm = |_?m i 4] (3.3)

4

n+1, n=1,2,3,5069
'Y_.;‘n = (3.4)

n, otherwise
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|#2 ), n=2,3,7 :
Ysn = (35)
|8248], otherwise

|22l n>6andn=1mod 7
Yom = (3.6)

Llﬂn__._;l-lzj, otherwiseif n > 4

n+3

Trm = | 5 2<n <500 (3.7)
157 + 14
Yon = L% ], T<n<500 (3.8)
23n + 2
Yo = L%O |, 4<n<233 (3.9)

BudITY . for n =0 or 3 modl3 and n # 13,16
T1on = (3.10)

Pt |, otherwise for 10 < n < 125

In this chapter we will construct dominating sets for k =5,...,10 and alln > k&
of cardinality agreeing with the right hand side of the formulas above. Therefore we
obtain upper bounds for v ,, for k = 5,...,10. Now we compare the new upper
bounds to the standard bounds and the butterfly bounds. Note that the standard
bound applies only when k,n > 8 and the butterfly bounds, only when £k =n =1

(mod 3). We have that

1. for k =8, 9, 10, there exists an n such that the new bounds is strictly less than

the standard upper bound,
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Now for given k, first we construct blocks A and B of dimensions k x p, where
p is the integer appearing in the denominators of Formulas (3.5) to (3.10). Actually
B is the symmetric image of A with respect to the horizontal line passing through
the center point of A. Then we construct a few smaller blocks B; and D;. Thus we
have a certain number of basic blocks. Finally we concatenate these basic blocks to

construct dominating sets of the form
S = E(AB)°'F or E(BAY'F,

where s is a nonnegative integer, £ and F' are basic blocks. The number of stones of
each basic block are given, hence we can easily calculate the number of stones in the
dominating set S.

Using the above described representation we give in Figure 3.1 (a) and 3.1 (b) some
sample dominating sets for the & x n grid graphs. We will show our concatenations

of these dominating sets in later sections.
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3.2 Dominating sets for Ps x P,

25

We construct here dominating sets S for Ps X P, when n > 5 and n # 7 of

cardinality

do(m) = |22,

Since n > 5, n may be written in the form

n=>5¢+r wherel <r <5 and ¢g>0.

Then from (3.11)

¢'5(n) = 6q + b,

where

51:2, 6224:, 63:5, b4=6, 5527

To construct our dominating set S for Ps X P, we use the blocks A, B, By, By,

B3, B4 and Bs of Figure 3.2.
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We let (BA)® = BABA... BA denote the concatenation of BA with itself s > 0

times. Note that (BA)® is a 5 x 10s block with 6 - 2s stones with only two vertices
that are not covered by these stones.

Nowlet n =5¢g4r,1 <7 <5. If g is even then ¢ = 25, s > 0. One easily verifies
that the stones in (BA)*B, give a dominating set for P; X P, with 6¢ + b, = ¢5(n)
elements. If ¢is odd, write ¢ = 25+ 1; then the stones in A(BA)° B, give a dominating

set with 6g + b, = ¢5(n) elements.



3.3 Dominating sets for Fz X P,

Here we will construct a dominating set S for Py x P, of cardinality

) [12410) n >6andn=1mod 7
¢s(n) =

X2 | otherwise if n > 6

Let n=Tqg+r,1 <r <7, then from (3.11)
¢5(n’) = loq + br:

where the values of b, are given by the following table:

r |1y21314|5)16 |7

b- 12141671810} 11

Table 3.1: b, for constructing 5 in P x Py.

Now use the blocks n Figure 3.4, to construct 5. Note that A and B each have

10 stones and B, has b, stones. Again we have two cases:
g = 2s: (BA)* B, gives a dominating set with the desired number 10g - b, of stones.

g=2s+1: A(BA)*B, gives a dominating set with the desired number 10¢ + b, of

stones.
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3.4 Dominating sets for P x B,

Here we will construct a dominating set § for P; x P, of cardinality

5n+3

¢7(n) = | 3 J-

Let n = 6g+ 7,1 <r <6, then from (3.11)

457(71) = 10q + br,

where the values of b, are given by the following table:

r |[1]2(3[4(|5]6

b | 2146|7911

Table 3.2: b, for constructing S in P; X P,.

—® l —e [4] I——T —® L A & l — l ®
. Hl e Hl e L —
® & —— *— —¢— * e
T Hi o Hl e -9 T
’—c T e [] T——-. e T . ] T I——$ r o
A B Bs By B Bs

Figure 3.5: Blocks for constructing S in Fr x P,.

We use the blocks in Figure 3.5 to construct S. Note that A and B each have 10
stones and B, has b, stones for r = 1, 4, 5, 6. We must handle the cases r = 2 and
3 separately from the other values of r. For each case we exhibit below a particular
concatenation of the blocks in Figure 3.5 in which the stones form a dominating set
of P; x P, of cardin;'a,lity 10q + b, = é7(n) where n = 6g+ r, 1 < r < 6. Note that

since n > 7, we have ¢ > 1.
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r = 2: AY'B,B; has 10{qg — 1) + 14 = 10g + 4 stones.

r = 3: B3A" 1B has 5+ 10(¢ — 1) + 11 = 10¢ - 6 stones.

r = 1,4,5,6: A?B, has 10q - b, stones.

3.5 Dominating sets for Py x B,

Here we will construct a dominating set S for Pg x B, of cardinality

gs(n) = L%J :

Ifn=8+r,1<r<§, then from (3.11)
d)g(n) = 15(]‘ -+ br,

where the values of b, are given by the following table:

r (11213415 |6 |7]38

b, 3517|1911 |13 |14 |16

Table 3.3: b, for constructing S in Py x FPy.

We use the blocks in Figure 3.6, to construct S. Note that &, is the number of
stones in the block B,, the blocks A and B each have 15 stones and the blocks A’
ans B’ each have 16 stones. As in previous sections we simply exhibit an appropriate
concatenation in each case which has ¢g(n) = 15¢g + b, stones given n = 8¢ + r,
1<n<8.

For 1 <r £ 6, we take
(AB)y*B, ifg=2s

A(AB)B, ifqg=2s+1
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For r =17, we take

B:BAYB ifg=2s+1
Br(BAYBA' if ¢ = 2s

For r = §, we take

A(BAYB ifg=2s+1

(BAYB' if¢=2s
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3.6 Dominating sets for Py x P,

We now construct a dominating set S for Py X P, of cardinality
23n 4+ 20
$o(n) = |[—7—I-
Ifn=1l¢+7r,1 <r <1}, then

¢9(n) = 239_’ + bf‘:

where the values of b, are given by the following table:

r |11213{4 |5 |6|T7T|8}19 {1011

b, 136 |8|10112]14(16]18]120 (2224

Table 3.4: b, for constructing S in Py x P,.

We use the blocks in Figure 3.7. For r # 6,7, the blocks named B, have b, stones

and the blocks A and B have 23 stones each. It follows that if r £ 6,7, the desired
dominating sets are given by

(AB)*B, ifg=2s

B(ABYB, ifg=2s+1.
To handle the cases » = 6 and 7 we use the remaining blocks P and Q. In the case
of r = 6, we take
P(AB)*Bg fg=2s+1

QB(AB)*'Bs if ¢ =2s;

and in the case of r = 7, we take

-

P(AB)* By fg=2s+1

QB(AB)*'By if ¢ = 2s.
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3.7 Dominating sets for Pig x P,

We now construct dominating sets S for Py X P, of cardinality

brolm) |43 for n =0 or 3 mod13, but n # 13, 16
1w} =

300424 -
LTJ otherwise.

Iin=13¢+ 7,1 <r <13, then except for n = 13 and 16 we have

@”10(?1) = 30q + b‘r:

where b, is given by the following table:

r {12314 (5167189 110{11]12]13

by 46911 1315118 (20|22 |24 |27 129 |32

Table 3.5: b, for constructing S in Pyg X Fh.

We now refer to the blocks in Figure 3.8(a) and 3.8(b).

For the special cases n = 13 and 16 the blocks D3 and Dy in Figure 3.8 (b) give,
respectively, domina,t:ing sets with ¢10(13) = 31 and ¢10(16) = 38 sbones. If ¢ =0,
we have only the remaining cases n = 10, 11 and 12. In these cases one may obtain
a dominating set by replacing the first two columns of B,, r = 10, 11 and 12, by Es.

We may now assume that ¢ > 1 and if ¢ = 1 then » # 3 since we have already
handled the exceptional case n = 16. The blocks A, A’, B, B’ have 30 stones each
and the blocks B,, for r # 4, 6, have b, stones each. So for r # 4, 6 we obtain the

required 30¢ + b, stones by taking

A'(BA) B, ifg=2s+1,520

B'A(BAY'B, ifq=2ss>1.
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For r = 4 note that I, has 5 stones which with the 6 stones in B, gives 11 = b

stones. So we take
Dy(BAY B, ifg=23821
DyA(BAY™ By ifg=2s+1,s>0.
For r = 6, we note that Bg has 45 = 30+ 15 = 30 + b5 stones. So if ¢ > 1 we take
A(BAY 'Byy ifg=2s5821
B'A(BAY 1By ffg=2s+1,52>1.
If g = 1, then n = 19. In this case we replace the first two columns of Byg by E,. This

produces a block with a dominating set consisting of requisite 30 + bg = 45 stones.
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B2 Bis §
Big Dy Dy E,
Dis Dis

Figure 3.8: (b) Blocks for constructing S in Po X Fy.
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Remark. Using her algorithm, Hare has also obtained the domination numbers:
Min, for 7 < 1225 4195, for n < 84; yi35, for n < 92.

Using an enhanced version of Hare’s algorithm, Fisher [10] calculated the domi-
nation numbers ., for & < 16 and all n. We discuss his methods in chapter 5. We
note however that at last communication Fisher's algorithm did not produce mini-
mal dominating sets for all n. We emphasize that it is easier to find the domination

numbers than it is to find the dominating sets of minimal cardinality.
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CHAPTER 4
THE DOMINATION NUMBERS OF THE 5 xn AND 6 x n GRID

GRAPHS

In section 3.2 and 3.3, we gave upper bounds for v;, and 5. In this chapter we
will prove these upper bounds themselves are lower bounds, so they are actually the
domination numbers. For convenience, we reformulate the formulas {3.5) and (3.6)

as follows : (We denote them by ¢ and ¥ respectively.)

n-+1+ %] for n=23,0r7,
#{n) = (4.1)
41 L%ﬂ otherwise,

and

n+l1+4+ (28] ifn=1lmodTorn=3
Wh(n) = (4.2)

n+1+ Lg%ﬂj otherwise

Definition 4.1 Let S be a dominating set of P, x F,. The dominating sequence

is a sequence of nonnegative integers s1,8y,..., 5y, where
s; =[S NGl forj=1,2,...,n.

Clearly 7x, is the minimum of sy + s +--- + s, over all dominating sequences
(81,82,...,5,) for Py x P,. We will use the following notation: for a dominating

sequence for P, X P, we write

. i
Ef = Z_Sg.

=1
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Qur strategy for proving -, is as follows: First we establish a number of special
cases and inequalities which must hold for any dominating sequence for P x B,.
Then using these special cases and inequalites we prove by induction on n (for fixed
k) that yxn > @x(n). However the details of the 6 x n case are considerably more
complex. Asin any proof by induction we must have the answer in advance. Professor
Hare’s formulas were of utmost importance and we are grateful to her for sharing her

results with us.

4.1 The domination number ;.

First we list the following statements P1-P9. The proofs are given below.

PL v, < ¢(n),n = 1.
P2.1

131 = 2, 5,2 — 3,')’5,3 = 4,’75,4 = 6,

5,5 = 7, 756 = 8,’)!5,7 = 9, Y58 = 11,

P2.2 For later convenience we restate P2.1 as follows:

n+ 1+ |22 forn =13
Yo = n—l—l—l—‘_ig.:—zj forn=20or7
n+ 1+ |22 forn=1,4,5,6,8

-

P30<s<5
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> 75,41 for j = 2.

=,

P4.1 &
P4.2 Y% > y5,_; for j < n.

P4.3 TF > 5 iy for j >0 +2.

P5.1 81“—-_0-_6532:5.

P52 s;=0=>3;_1+sp>25for2<:<n-1

P6.1 s; > 1fori=l1, 2 = %2 >3
P6.2 s;>1lfor k<i<k+4=3%i>6.

P6.3 s;>1for1<:<6= 5¢>8.

P7 ifs; =0forsome j,2<j<n—1ands;>1forall:<j, then
. Vs,5~1 T 4 if j=4 or 8
5tz

Vs,5-1 3 otherwise

P81 fn=0>5and s; >3 then 25 > 7.

P8.2 If n =9 and s; > 3 then Zj > 12.

P9 If (s1,52,--.,5,) is a dominating sequence for Py x Py, then so is the reversed

sequence (S, Spo1y-- -, 51)-

We now prove the above statements P1-P9. P1 is an jmmediiate consequence of

the following lemma which was proved in section 3.2.
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Lemma 4.1 For alln > 1, there is a dominating set S for P5 x P, containing at

most
$(n)=n-+1+ LHTHJ

elements.

Proof of P2.1. The values for 45, for 1 < n <9 are well-known. They were
determined by E. O. Hare[5] by computer. We omit the proofs. However, these values

are easy to establish using the method of this paper. |l
Proof of P2.2. Immediate from P2.1. B

The following lemma is crucial.

Lemma 4.2 Let S be a dominating set for Ps x P, and assume that each of
columns i, i-+1, 1-+2, i+3 contains precisely one element of S. Then2 <1¢,14+3 <n—1
and there are only the two possible configurations for S in columns i, 1+1, i+2, i+8
shown in figure 4.1. It follows that the wvertices indicated by white circles in the

columns i-1 and i+4 must lie in S.

1 & *— —@ £

, 4L o

3 © O Gy O

: ! !

5 —@ O G *—
f1 0 ik Bk 43 i 10 L 42 143 s

Figure 4.1: The configurations of Lemma 4.2
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Proof. We call vertices in 5 stones and we say that a stone v covers vertex w
if w = v or w is adjacent to v. If v is a stone in the ¢-th column, then v covers
exactly one vertex in column 7 — 1, exactly one vertex in column ¢ 4 1 and two or
three vertices in column 7 depending on its location. Let v; denote the single stone

in the j-th column, 7 =14, 4+ 1, 22,2+ 3.

We note that the stone v;y; in column ¢ + 1 cannot lie in row 1 or row 5. For if
so it would cover only 2 vertices in column ¢ + 1, leaving 3 vertices to be covered by

only two stones in the adjacent columns. Similarly, viys cannot lie in row 1 or 5.

Now if v;,, were in row 3 then it would leave uncovered (1,7 + 1} and (3,7 + 1)
to be covered by the stones in colummns ¢ and 7 + 2. But as just noted the stone in

column ¢ + 2 cannot lie in either row 1 or row 5, so this cannot happen.

This leaves only row 2 and 4 for v;y;. Suppose v;x; = (2,7 4+ 1). This leaves
(4,7 + 1) and (5,4 + 1) to be covefed by v; and v;4o. Since v;o cannot be in row 5
we must have v; = (5,1) and viy2 = (4,74 2). This forces vips = (1,7+3) as desired.
This gives the configuration on the left. By symmetry, if v;4q = (4,7 4+ 1) we get the

configuration on the right. i
Proof of P3. Obvious.

Proof of P4.1. If the elements of S in columns 1,...,7 — 1 do not cover column
4 — 1 we can move the vertices of S that lie in column j to column j — 1. This will

give a cover with 57 clements of Ps x Pj_y. I

Proof of P4.2. Similar to P4.1. R
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Proof of P4.3. As in the proof of P4.1 if (s1,...,8i,...,8;,-..,5,) i a dominat-

ing sequence for Ps X Py, then
(8: + 8i41, Sig2, - - -5 85-2,5j-1 + 55)
is a dominating sequence for Ps x Pj..;.; and P4.3 follows. R

Proof of P5.1 and P5.2. Obvious. I

Proof of P68.1. If 5y = s5 = 1, then at most 4 elements of the first column can

be covered. Hence sy, > 2 or s > 2 andso X2 > 3. K
Proof of P6.2. Immediate from Lemma 4.2. B

Proof of P6.3. If B$ < 7, then s; ++ s, = 3 by P6.1 and hence 53 = 84 = 85 =
sg == 1. Then by Lemma 4.2 we have s, = 2 and we can assume (1,2) and (3,2) are
the only elements of S in column 2. This leaves (2,1), (4,1) and (5,1) uncovered in

column 1. There is no way to cover these three with a single vertex in column 1. B

Proof of P7. We first handle separately the cases j = 2, 3,4, 5, 6, 7, 8§ and then

we complete the proof for j > 9 with a single argument.

For the cases 7 = 2,3,...,7 we use the exact value of ;; from P2.1 as well as
P5.2 and P6.1.
j=2:

We=514+0+53>5=:+3
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j=3:
E% = Sl—i-zg
2 1+5=6=“/5,2+3
=4
o5 = Bi+%3
> 3+5=8=3-+4
j=35:
¥ = Bi4s+ b
2 3-}“1—}“539:’]{5,44-3
j=6:
5T = E§+53+34+E§
> 34+1+145=10="55+3
=T

5 = B sgtosgtss+ 28

> 341+14145=11=4+3

j=8: Here we need P6.3 to obtain

=584+ 09>845=13=15714
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Now let 7 > 9. Consider first the sequence

87,88y .+35j~2

of length n = j — 8. Let n = 5¢+r, 0 < r < 4. Then grouping the elements by fives

and using P6.2 we get
S >6g+r=5¢+rtg=n-+ L-g-]

That 1s,
zfzzj—8+tl§§y
Using this, P6.2 and P5.2 we get
i = 284 pi? 4 ni]

. i — 8
> 84j -8+ =] +5

42
= 3+L3-J—g-—-J+3
. 143
- ;—1+1+Ll—g——J+&

Then using P1 we get

E’{'+1 2 Y551 -|- 3 I

Proof of P8.1. If s, > 1 and ss > 1 we can use P9 (which is obvious) and apply

P6.1 to the reverse of (s1,52,...,85) to get £ > 3. Nowifs; > 1,2 < ¢ < 5, we have

3> s +s+s+Ei>3+24+3>T.
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Otherwise, let 7 be the largest integer ¢ such that s; = 0. Then s;_1 4+ 5j41 = 5

(s;-1 =51if j = 5) and hence if j = 3, 4 or § we have
E? > 5 +3j...1+8j+1 >3+5>T.
It 7 =2, then sy > 1, s5 > 1 so as above

B3z st s+ 254+3>7.10

Proof of P8.2. Suppose first that s; > 1, 1 <12 < 9. Then since the reverse of a

dominating sequence is a dominating sequence we have 59 > 8 by P6.3, hence

E? = 731+32+83+Eg

> 3+1+148=13> 12

Otherwise we let 7 be the largest integer i such that s; = 0. We consider in turn the

eight cases 1 = 9,8,...,2.
j=9: By P4.3 we have £] > 754 = 6 and by P5.2 we have sg = 5. Hence

W +28]+5523464+5=14>12.

j=8: sg = 0 implies 87 + sg > 5. If we take any vertex not covered by the elements
of S in columns 1-5 we can cover them by adding at most sg vertices to 5. Now

it follows from P8.1 that £$ > 7. Hence

E?=E§+S7+39>7+5=12
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j=T: We must divide this case into several subcases depending on the values of s,

83, 84, S5.
subcase 1: s; > 1 for :=2, 3, 4, 5: In this case we have

) = s+ 35+ 38+ s

> 3+44+54+1=13>12.
subcase 2: s3 = 0: In this case we have

) = 51+ 35+ 85+ 28+ sg

> 3+54+0+5+1=14> 12
subcase 3: s, = 0: In this case we have
B = s1t s+ i+ B8+ s
> 34+04+5+54+1=14>12
subcase 4 ss = 0,8, =0,53>1,s4>1: Hence
5 = D345+ %3
> 5+543=13 > 12.

Here we use P9 and P6.1 to get L3 > 3. The other two inequalities come

from P5.2.
subcase 5 : s5 =0, 85 2> 1, 53 > 1, 84 > 1: Hence
¥ o= s +83+5i+ 253

> 3+24+5+3=13> 12
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subcase 6 : s =0, s5 > 1, 54 > 1, s3 > 1: Hence

Z? = E?+34+35+Eg+39

> 5+14+1+5+1=13>12

% = s+ i+ S14 5

> 3efysy +5+3=3+2+45+3=13> 12,

j=5: In this case we consider the reverse sequence:

(‘99)587 .-y 58, 0) 54, 83, 52, 51)'

Since s5 = 0 and s; > 1 for i=9, 8, 7, 6, we can apply P7 to get £ > vs4 + 3.

Hence

¥ = s14s2t+s3+ X
> S1+82+ 83+ 754 +3

2 s1tstss+0

If 5, = 0, then 51 + 53 > 5 s0 B = 14 > 12.

If s3> 1, then s; + 53+ 53 > 4s0 £ = 13 > 12.
j=4: As in the previous case we apply P7 to
(89,88, ---,85,0,83,82,81).
to get X3 > 55 + 3 = 10. Hence

=5y +s+Xi>34+10=13>12.
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j=3: As in the previous case IJ > vs6 +3 = 11. So

D9 =5 4+ 39> 3+11 =14 > 12,

j=2: As in the previous case

22275,7+4=13>12.l

Lemma 4.3 If (s1,83,...,8,) 15 a dominating sequence for Ps x P, such that
s; 2 1 for dall i, then for n > 8§,
TPz n+ 1+ 2]

Proof. We use repeatedly in this proof the fact that if s; > 1, for £ <7 £ and

I — k + 1, the number of terms in X!, is divisible by 5, then by P6.2 we have

Let n =5¢+r, 0 <7 <4. We consider the five cases r = 0, 1, 2, 3, 4.
r=0: By (4.3), and P6.1 twice (once applying P9),

NP = DI+ EF %+ s+ B0,

_5
> 3+6”—5—~+1+3:n+1+%

= ntl+[
r=1: Similarly,
B o= D4 st +I0,

—6 -1
> 3+6”T+1+1+3=n+1+”5

= n+1+L£§§J. -



r=2: Using (4.3) and P6.3 twice (once applying P9),

by
r=3: Similarly,

1
r=4: Finally,

bt

Theorem 4.1

Vs =

>

n+1+ =

nt+ 1+ |28

IR D D Vil

n_12+8=n+1+n;—3

86

n+1+ 2]

PRI WA ¥

8+6n_8+3:n+1+n;—2
n+ 1+ 2.

B34+ 330 4 20
3+6”_4+3=n+1+n;1

nt 14 (2] 0

forn=2 8 or7

otherwise

i

53

(4.4)

Proof. For n < 8 the theorem follows immediately from P2.2. So we may assume

n > 9. By Pl it suffices to show that if (sy,82,...,8m), ™ > 9, is any dominating

sequence for Ps x P, then

D > m 4 14 |22

(4.5)
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We prove (4.5) by induction starting with m = 8. Let n > 9 and assume (4.5) holds

for § <m < n.

If s, > 1 for 1 €7 < n, then by Lemma 4.3, (4.5) holds. So we can assume
s; = 0 for at least one . Now let 8¢ = s,_i11, s0 (s],385,...,s,) is the reverse of
(51,82, .., 8,). Weset

7 = min{é|s; = 0 or s; = 0},

that is, j gives the location of a zero closest to one of the two ends of (s, s2,...,55).

For the arguments below we use repeatedy the simple result

a a -+ be
3]+ e= 222 (¢.)

which holds for all positive integers a, b, c.

Now we show that (4.5) holds for m = n for all values of 3. We do the cases
7 =1,2,...,10 successively and finally handle § > 11 in a single argument. Of course

j is always at most [Z].

j=1: By symmetry assume s; = 0. This imnplies s, = 5 by P5.1. Hence by P4.2 and
the induction hypothesis or P2.2 (whichever applies) we have

Y = s+ X520+ Ysmes

(n—3)+1
—

vV

5+(n—-3)+14+|

A%

b1+ B0

8
n-§-1+]_n-|5_ |

Av4

IV

n+ 1+ |22
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j=2: Again we can assume sy = 0, by symmetry. Using P5.2 and P4.2 we have
Yt =3814+8+ X} 25+ V504

Since n > 9, we have n —4 > 5 so by P2.2 or the induction hypothesis

(n—4)+2
5 )

Ysnea = (n—4)+14 [

Hence

—9
22 n+ltl+ [T

> n+4 14 2]

Now for j > 3 we use the following pattern. First we note that by P7
S > i #3486 (4.7)
where § = 1 if § = 4 or 8 and § = 0 otherwise. Next we take
=it v,
and use P4.2 and (4.7) to obtain
T8 > sg-1+ 3 + 6+ Y5 amie2- (4.8)

Now we apply the induction hypothesis to obtain lower bounds on s ;_1 and 5,42
if j—1 > 8orn—j—2 > 8, otherwise we use P2.2 to get a lower bound. Unfortunately

we must consider separately the cases j = 3,4,...,10.

We note for further use that once we have established j =1, 2,..., k, then

when establishing j = k-1 we can assume s; 2 1, si > 1 for 1 < 1 <k,
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and s; = 0, so there are at least 2k + 1 entries in (s1,82,...,8m), 1€

n > 2k+ 1.

j=3: In this case sincen > 9 wehaven —j —2 =n—5 > 4. We consider two

subcases: n # 12 and n = 12:

ns12: In this casen — 5 # 7 and n — 5 > 4 so by P2.2 or the induction

hypothesis (if n — 5 > 8) we have from (4.7) and (4.8)

XY 2 Y2+ 3+ Y55

v

3+43+n—5-+1+ |22

n—2

= n+1+ 2]

n = 12: We must also divide this into two subcases: X2 = 3 and £? > 4. (note

by P6.1, £2 > 3).

¥2 = 3: Now since s; > 1 and s, > 1 we have s < 2. Since s3 = 0 by
P5.2 we have s, > 3. Now the sequence (s4, 85, - . . , $12) is a dominating

sequence for Ps x Py since s3 = 0. Also sq > 3 so by P8.2, ¥1* > 13.

Hence
2 = 224352 >3413=16
= 1241+ Ll;z—g—gj-
2 > 4: Then

TP =01+ 532 2 4+ yae
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and by the induction hypothesis since 9 < 12 we have 49 = 12 s0

L1* > 4412 = 16, as desired.

j=4: Appplying (4.7) and (4.8) we have

j=5: As above,

j=6: As above,

z3

Y

v

v

v

v

Ys3+ 4+ Y506

4444+ —6)+1+]

7 —3

not b 24 [

n—+5

n+1+4| 5 ]

n+1+ =2,

Y54+ 3+ Vs n_r
6+3+(n—T)+1+|

—6
n+1+2+LnTJ

n+4
7

n+ 1+ 28]

n+14+]

V55 + 3+ Vsn-s

T+3+(n—=8)+1+]
—7

n+1+2+[%-]

n+1+ 2.

(n~—6)+1

(n—

—

(n—8)+1

S

7)+1

—



J==7: As above,
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2? 2 5.6 -+ 3 -+ Y5,n-9

2 3+3 +')"5,n—9

and by the remark preceding the case }J=3, n>2-6+1son—-92>4so0

Hence

Y5,n~9

e

(n-9)+1+ 270

-

n—f

5J'

n—8+|

n—"1

> n4+1424] 5]

n+1+ [2E2.

j=38: In thiscasen > 2-741son — 10 > 5. Hence

and hence

Ysa-10 2 (n—10)+1+4+1|

v

v

A%

(n—10)+2
—

J=9: Inthiscasen >2-8+1son—11 > 6 so

Fsmor 2 (n— 11+ 1+

Vs, -+ 4 -+ Y510
94a+n—9+n28
—38
n+l+3+ [T ]
+7
n-i—l—l—l_n ]
5
n+1+ (28]
(n—11)+2

5 J-
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So

YT 2 s +3+ Pse-u

11+3+'n_11+1+L(n5_9J

]

Y

n—98

= n+14+34] 5

6
= n+1+ [P0

v

n+1+ |22,

j=10: In thiscasen > 2- 9+ 1son — 12 > 7. Since n > 9 by induction vz = 12

has already been established. Hence

B2 vse+ 3+ vsp—12

—12) 42
— 10
= n—l—l—i—3—}—|_n z |
5
= a1+ T

v

n4+14 2.

j>1l: Inthiscasen>2(j—1)+1son—j7j—-227—-3>8 Sobothj—-128
and n—j — 2 > 8. So we can apply induction to v5;_; and ¥sn—jz in (4.7) to

chtain

+mwjmm+1+ﬁn_jga+3j

= ne it ) | D

oz -10+1+]

(n—Jj+1
5
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Now we use the easily verify fact -that for real numbers x and y we have
1+ =]+ [y] 2 |z +3]. (4.9)

to show that £ > n+ 1+ |22]. This finishes the proof of Theorem 4.1. K
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4.2 The domination number ~,

First we list the following statements Q1-Q7. The proofs are given below.

Q1 Yen S ¢(n)

Q2 v61=2, 762=4%4, Y62=79,

Yoa =17, Y5 =8, Yap = 10.
Q3. 0<s <86.
Q4.1 ¥ > ye5-1 and B2 > v, 2<j S~ 1.
Q4.2 B > 5,51, 1<i<j<n,j—i22
Q5.1 5, =0= s, = 6.
Q5.2 8;, =0= 8;_1 + 5;41 = 6.

Q6 If s; > 1 for all ¢ in each of the summation ranges below, then the following

hold.
Q6.1 s; s3> 3 and
if 57 =1, then 55 > 3.
Q6.2 Bit? > 4.
Q6.3 5 > 6 and if £7 < 4, then X} > 7.
Q6.4 =6 > 9.

Q6.5 £7 > 10.
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Q6.6 X3 > 12.

Q6.7 T1° > 15.
Q6.8 Ti'® > 20.
Q7 If (s1,82,...,8n) is a dominating sequence for Ps x P, then so is the reverse

sequence (8}, 35, ...,5),) where s = 8,_i11.

Q1 is immediate from the following lemma which was proved in section 3.3.

Lemma 4.4 There is a dominating set S for Ps x P, with ¥(n) elements.

Proof of Q2. The values of v = V6 for k = 1, 2, 3, 4, follow from the results
of Jacobson and Kinch[3]. The cases k = 5 and 6 were established by computer by
Hare[5). They may be easily established by the methods of this paper, however we

omit the proofs. B
Proof of Q3-Q6.2. Obvious. R

To establish Q6.3-Q6.8 we need some lemmas.

Lemma 4.5 Let S be a dominating set for Ps x P, with dominating sequence

(81,82, .,3,) Suppose for some ¢
(si, Six1, Sies siga) = (2,1,1,2).

Then 2 < 3,14+ 3 < n—1 and up to isomorphism there are only the two possible

configurations for S indicated in Figure 4.2. .
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[ l ® [ | ¢

® [H =1
L &
® ! H1] ®
iiF1 Qb2 i3 i i1 if2 i3

Figure 4.2: The configuration of Lemma 4.5

Proof. For a vertex v, let N(v) demotes the set of vertices w such that w = v or

w is adjacent to v. By hypothesis we have
ISﬂO;I = |Sﬂ C;+3| =2

and

SN Cipr = {via}, SN Ciyz = {viga}.

The vertices in S N C; and S N Ciy3 cover exactly 4 of the 12 vertices in Ciyq U Clza.
This leaves 8 vertices in these two columns to be covered by v;y1 and viyo. But each
of these can cover at most 4 vertices in Ciyy U Ciro. Hence each must cover exactly
4 with no overlap. Hence N{v;41) N N{(viy2) = ¢ and neither v;yq nor viye can lie in
the 1-st row or the 6-th row. This leaves up to isomorphism only the two possiblities
shown in Figure 4.2 for viyq and v,-+.2. In each case the location of stones of S in
C; and Ciy3 are forced. This leaves the boxed vertices uncovered, so they must be

covered by stones of S adjacent columns. B
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Lemma 4.6 Let S be a dominating set for FPs x P, with dominaling sequence

($1,82,--.,5,) Suppose for some i
(Si: Sit1s Sit2s Sid-3s Sitd, Si+5) = (1: 2,1, 1,2, 1)

Then 2 < i, i+ 5 < n—1 and up to isomorphism there is only the one possible

configuration for S shown in Figure 4.5.

T

e

FTF

i

i+1 i+2 i+3 it4

Figure 4.3: The configuration of Lemma 4.6

Proof. Immediate from lemma 4.4.

Corollary 4.1 Let (s, $2,...,8,) be a dominating sequence for Py x P, with s; >
1, for all 2. Then

1. (s1,89,---, %) =1{(2,1,2,1,2,1,1,2,1) is not possible.

2. (Sp_gy---s8n1,8.) = (1,2,1,1,2,1,2,1,2) is not possible.

3 (8iy.--58i48) = (2,1,2,1,2,1,1,2,1) where the two stones in column i are in

either row 2 and row 4 or row § and row § is not possible.
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4. (8iy...,8i48) = (1,2,1,1,2,1,2,1,2) where the two stones in column t + 8 are

in either row £ and row 4 or row 8 and row 5 is not possible.

Proof. To prove 1 we note that by Lemma 4.6 the two stones in column 3 are
forced (up to isomorphism) to lie in row 3 and row 5. Now it is easy to check that no
combination of two stones in column 1 and one stone in column 2 will cover the first
two columns.

For 3 we note again that by Lemma 4.6 up to isomorphism the two stones in
column ¢ + 2 are fixed. It is easy to see that neither of the two possiblities stated for
the two stones in column ¢ are possible.

Statements 2 and 4 follow respectively from 1 and 3 by symmetry. &
Lemma 4.7 Let S be a dominating set for Ps x P, with the dominating sequence
(51,82} ...,8,). Suppose for some :
(S,‘, LHS FIOY Si-l-S) = (1, 1, 2, I, 2, 1, 1)
Then 2 < 1, i+ 6 < n—1 and up to isomorphism there are only the two possible
configurations shown in Figure 4.4 below for column i through i 4 6.
Proof. Let

{y} = SF‘ICL {33} = Sﬂ CI'+1 {Z,UJ} =8N C,:+2 {T'} = Sﬂ Ci+3
{5,t} = 5N Cipqg {u} =S Cips and {v} = 5N Ciys

By symmetry we can assume z lies in tow 1, row 2 or row 3. Since there are only

three stones of S in the columns adjacent to Ciy1, = must cover three vertices in Ciyq
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(—* ° e ®
b I )
e ® @ ® H
gk . i +—
2l H
® T ® H] © T o]

i i+1  i4+2 i4+3 i44 i+5 i46 i P41 i+2 43 44 i+5 46

Figure 4.4: The configuration of Lemma 4.7
which is not possible if z lies in row 1. Suppose then that z lies in row 2. Then there
remains the three vertices (4,7 + 1), (5,¢ + 1) and (6,7 + 1) that must be covered by
stones of S in adjacent columns. Once ¥ is selected, z and w are forced. So we have

the three possibilities given in Figure 4.5.

1 T £ 1
[ LTl [
r r ] - [
- - [ = =
1
M
r | [N a4 ]
J 5 [ g | EW]
[ T h X1r 11
i J i W |
11z L3¢ I r d
A vy - J )
i- i+l i+2 043 i i+1 42 i43 i¥4 i+5 i+6 i i$1  i+2 i43 i+4  i4d  i46

(a) (b) (¢)

Figure 4.5: The cases of Lemma 4.7

In Figure 4.5(a) once z, y, z and w are placed there are the two boxed vertices
remaining in Cyyo that must be covered by a single stone r in Cjya, which is impossible.
In cases 4.5(b) and 4.5(c) once &, y, z and w are selected, r, s and ¢ are forced, leaving
the four boxed vertices uncovered in Ci.s which cannot be covered by a single stone

in Ci;5 and a single stone in Cis. Hence z must lie in row 3. But again there are
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three uncovered vertices in Ciy1, namely (1,2+1), (5,7+1) and (6,7+1). If we choose

y = (1,7) so as to cover (1,7 + 1), then z and w are fixed as in Figure 4.6(a). This
leaves the two boxed vertices uncovered. Since they cannot be covered by a single

stone in Cjy3 this case is not possible. This leaves us with the the two cases in Figure

4.6(b) and 4.6(¢).

AL f 1 ] L ¥4
. L] o Y o
1 o b
[ [ M
e : HI %
hli]
£
fad T ] 11
J H1 \
A AT L] | d!
i i1 2 i3 i 141 i+2  i+3 i+4  i45 {46 i i1 i+2z  i+3 i+4 i+5 e

(a) (b) ()

Figure 4.6: The cases of Lemma 4.7

In Figure 4.6(b), one of the stones in column 7 + 4, say s, has to be fixed in row 2.
By symmetry to column i+ 1, u© must be either in row 3 or in row 4. If u is in row 3,
then there are three vertices (1,2 +5), (5,74 5) and (6,7 +5) left uncovered. It is not
possible to cover these vertices by stone t and stone v. If u is in row 4, then ¢ and v
are forced. This is isomorphic to the left block in Figure 4.4.

In Figure 4.6(c), there are the only two possible configurations for the three right
most columns shown in Figure 4.7(a) and 4.7(b). Indeed, up to symmetry all other
cases have been discussed.

In Figure 4.7(a), the four boxed vertices in column ¢ + 3 can not be covered by a

single stone r.
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(b)
Figure 4.7: The cases of Lemma 4.7

In Figure 4.7(b), either one of the boxed vertices in column 7 4 3 can be the stone r

and this configuration is equal to or a symmetric image of the right of Figure 4.4. B

Corollary 4.2 4 dominating sequence (51,382, .., 3.} for Fe X Py with
(Si: Sitiye-- 7‘5i+13) = (15 1,2,1,2,1, 1127 2: 1, 1)2: 1 1)
is not possible.

Proof. If such a dominating sequence is possible, by Lemma 4.7 we may assume
that column Ciys and Ciye are configured as the right most two columns of the
left block in Figure 4.4. These two columns together with the specified dominating
sequence forces the placement of the elements of S up to column (i+4-12) as in Figure
4.8. However, this leaves uncovered the two boxed vertices in Cjt12. Both of these

cannot be covered by a single vertex in Ciyqa. 8

Corollary 4.3 A dominating sequence (8q,52,...,5,) for Ps X P, with
(Sg, Sigly - 331'-}-8) = (1,2, 1, 1,2, 1,2,1, l)

is not possible.
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_l ® l °o—

N
o

aREN

i45 i+6 147 i48 i+ 1410 i411 i+12 i413

Figure 4.8: Configuration of Corollary 4.2

Proof. By Lemma 4.7 we may assume that since s;43 = 2 that the configuration
for columns 7 + 2 to ¢ + 8 are fixed as in the left-right mirror image of Figure 4.4.
This forces the configuration given in Figure 4.9. This leaves 2 uncovered vertices in

Ci11 to be covered by a single vertex in C, which is not possible. #

[]loa

= *——¢—

11

i i+1 i+2 i3 ida  id5  i+68 47 48

Figure 4.9: Configuration of Corollary 4.3

Corollary 4.4 Let(sy,59,...,5,) be a dominating sequence for Py x P, salisfying

s; 2 1 for all 5. Suppose

(Si,S;‘.H_, . .,Si+5) = (1, 1,2, 1,2, 1,1)

Then if i > 3, then 5,2 + s;i.1 =2 4 and if i +8 < n, then s;47 + 8148 2 4.
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Proof. By Lemma 4.7 we have s;_1 > 3 and s0 s;.3 -+ s;_1 > 1+ 3 =4, or else

s;i—1 = 2. But by Corollary 4.3 s;_2 > 1 50 5,2 + s;_1 = 4. The rest follows by

symunetry. K

Lemma 4.8 Let(s1, Sq,--.,5n) be a dominating sequence for Ps x P, and suppose

s 21 fori <t <i1+6. Then
1. T > 9 and
2. If T8 = 9 then

(S,‘, Sitly .- ,S,’+6) = (1, 1,2, 1,2, ]., 1)

Proof. Write £it% = B2 4 5% + s;06. By Q6.1 we cannot have s; = 83 =
siz2 = 1 so we must have 72 > 4. Similarly Zi¥] > 4 and (1) follows. If T = g
then clearly Bi%? = T3 = 4 s0 s;46 = 1. By symmetry s; = 1 so {siy1, 542} =
{1,2} and again by symmetry {sit4, 5i45} = {1,2}. This leaves four possibilities for

(8i; Sit1y-- - Size):
a) (1,2,1,1,1,2,1)
b) (1,2,1,1,2,1,1)
¢) (1,1,2,1,1,2,1)
d) (1,1,2,1,2,1,1)

a) is impossible by Q6.2 and b) and c)are ruled out by Lemma 4.6. This leaves

only d) as desired.
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Proof of 6.3. If £¢ < 5, then £% < 4. Then by Q6.2, &3 = 4. But if £} = 4

by Q6.1, 83 = 2, 53 = 83 = 1. By Q6.2 also s4 > 2. But s4 = 2 is not possible by

Lemma 4.5. So 84 > 3 and therefore 3 > 7. &
Proof of Q6.4 and Q6.5.
75 — 53 4 %8,

Hence if £3 > 5 we clearly have X§ > 9 by Q6.2. If % < 4, then by Q6.2, X} = 4

and by Q6.3 X} > 7. Hence
8?274-55-}-86?_9.

Now

S =5 +s>9+1=10K

Proof of Q6.6. If 5y = 1 then 3, > 3. So
S s b s+ 44444212

by Q6.2. Similarly, the results holds if s; > 3. If sy = 2 and s, = 1, then I} < 12

implies £5 = 5% = 4. By Lemma 4.8 this leaves only the possibility
(51, 82,-..,98) = (2,1,1,2, 1,2,1,1)
which is impossible by Lemma 4.7. B
Proof of Q6.7.

E%0=E§+Sg+310 2-12+1+1214:
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If 31 > 7, then

O -4 BT+ B0 > T 4444 =15

Suppose T < 6, then by Q6.3, 5} = 6 and X% = 5. This gives £} = 5, s4 = 1,

¥ =3 = 4. By Lemma 4.8
(54,85, 810) = (1,1,2,1,2,1,1).
But then by Q6.1 and Q6.3 we have s; = 1 and s3 = 2 so
(82,83,--.,810) = (1,2,1,1,2,1,2,1,1)
which is not possible by corollary 4.3.

Proof of Q6.8.
B 2 5310 4 5
If ¢ > 10 and 2113 > 10 we are done. From Q6.2 each of Tit® and T2 is at
i 137 i 17

least 9. We show that if one is 9 then the other is at least 11. Suppose L' = 9. By

Lemma 4.8,
(Si, Sit1y ey SH_G) = (1, 1, 2, 1, 2, l, 1)

By Lemma 4.7 we know s;4.7 == 2 or s;37 = 3. If s;37 > 3 then

SEP = s+ S R 234444211

So we can assume s;p7 = 2 and D" = I = 4. Now s5 = 1 leads to a

subsequence

(S;,. .. ,Si+3) = (1,1,2, 1,2,1,1,2,1)



73

which is ruled out by Corollary 4.3 (via symmetry). Hence s;1s = 2 so since D =4

we have s;.9 = ;410 = 1 which gives
(siy.-.y8410) = (1,1,2,1,2,1,1,2,2,1,1)
Now Q6.2 rules out s;11; = 1 80 ;431 = 2, Sip12 = Siya3 = 1. This gives
(8iy--.,8413) = (1,1,2,1,2,1,1,2,2,1,1,2,1,1)

which is not possible by corollary 4.2. Hence in any case 221%3 > 11. By symmetry

if % =9, then ° > 11. B

Lemma 4.9 If (s1,82,...,8,) is a dominating sequence for Ps x P, with s; 2 1

for all i, then

57 > $(n). (4.10)

Proof. From Q2 the lemma is immediate for n < 6. So we may assume n > 7.
Write n = T¢+7, 1 <r <7, then ¢(n) = 10¢ + b,. We prove (4.10} by considering

the 7 cases r = 1,2,...,7, each divided into two subcases: q even and ¢ odd.

In examining these cases we use @6.1 — Q6.8 repeatedly without comment. In

particular, by Q6.8, if the number ¢ — s + 1 of terms in X% is divisible by 14 we have

t—s5+1

B2 20(—— )

Observe that we leave the case 7 = 3 to last since it requires a different approach.

Note that since n > 7, ¢ > 1 except when n = 7.
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n=7q-+1, q odd:

%= B4
n—_8
> 12 420(———) = 10¢ + 2.
14
n=7qg+1, q even:
2 o= DP4IFT 4 I

n—15
14

> 12420 ) +10 = 10g + 2.

n=7q+2, q odd: If £3 > 5, then

2= R4,

> 5+20(”1;9

)+ 9 =10g +4.

By symmetry the result also holds if X_, > 5. So we can assume X3 < 4 and

so ¥4 > 7 by Q6.3. Similarly £7?_, > 7. Hence

n—3 =

NP = DI+ Bt dsas+ I,

7 -9

> 74 20( 1"4 Y147

> 144 20(311—_43) = 10g+ 4.

n=7qg+2, q even:

D o= D4 E4 B,

n— 16

> 9+ 20( ) +15 = 10q + 4.



n=7q+4, q odd: If %2 > 5, then

27

If 23 < 4, then ] > 7 and

2

o=
>

n=7q+4, q even:
o=
>

n=7q-+5, q odd:

=

n=7q+5, q even:

5

EEDH el Vi

n_

11
T }+12=10g+47.

5 + 20(

I IRED YD YA

—11
14

T+ 20(—"2) 4+ 10 = 10g + 7.

S+ B4 I,

n—18
14

15 4 20( ) +12 = 10g + 7.

64 26 4 3

I
14

9 - 20( )+9=10¢+38.

= BI04 7%+ suss+ B0y

n—19

14

> 15 + 20( )+1+12

10¢ + 8.

n=7q-6, q odd: If Z¥ > 5 then

i

v

S DN DA

n—13

5+ 20( e

) + 15 = 10q + 10.

75
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Suppose % < 4, then X} > 7 so

o= D4 B4+ B+ I

n_

13
9= 10.
) +9=10¢+10

> T+4+420(

n=7q+6, q even:

Sp o= DR+ I+ 5

n-—9
n—20
14

> 15+ 20( ) + 15 = 10q + 10.

n=7q+7, q odd:

B o= SR+ NE

n—14
14

Y

6 + 20( ) +15 = 10g + 11.

n=7q+7, q even: If &% > 5, then

Bpo= SI4TT 4TI,

n._.

2 5+20(—

)46 =10g + 11.
If 3 < 4, then %} > 7 so0
o= Bi4nit4nn,

n—1

14

v

7 ++ 20( ) +4 = 10g + 1L.

Now we consider the remaining case n = 7q 4+ 3, n > 10. Since the proof of
this case itself is long and complicated we will combine several lemmas and introduce

sorne notations.
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We define for sequences A = (a1, a2,...,an) and B = (b, bs,...,bn), the product

AB = (al,ag,...,am,bi,bg,...,bn).

This product is clearly an associative operation and we allow the empty sequence of

length zero to act as an identity. We will write for 5 = (81, 83,...,8,):

LS =Y s and [S|=n.

i=1

Lemma 4.10 Let S = (s1,52,-..,8), n = T¢-+3 > 10, be a dominating sequence

of Ps x P, with s; > 1 for all 1. And suppose
59 < #(1S5]) = 10¢ + 6.

Then S = (2,1,2,1)T'(1,2,1,2) for some sequence T.

Proof First we will show £ < 6 and B°_, < 6. Suppose £j > 7. First let ¢ be

odd. By symmetry from Q6.4, £7?_. > 9. Then using 6.8 as above we have

z7

DDA Vi

n— 10
S 749 ( )
> T+20 m +9

= 7+10g— 1049 = 10q + 6.

Next suppose ¢ is even. Then by Q6.2, Q6.7 and Q6.8 we have 3235 > 4, and

Y g 2 15. Hence

Xp o= DI+ TP+ T

n—17
14

> 7+20( )—I—4+15:10q+6.
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Therefore ¢ < 6. By Q6.3, &} = 6 and ¥} > 5. Hence s, = 1 and X = 5. By

symmetry s,z =1 and 2_, = 5.

Now we will show ©2 < 3 and Z7_, < 3. Suppose X} > 4. Suppose ¢ is odd. By

(36.6, Z_. > 12. Hence

o= D24nytun,

Tqg+3 —

> 4+20( - 10)+12=10q+6.

Now we let ¢ be even. We sum the s;’s as
57 =5k D5 I000 + Do

By Lemma 4.8, 2"~8, > 9. In the case of 273, > 10, we have

n— 17
14

2’;24+20( )+10+12=10q+6.

And in the case of £77%, = 9, by Lemma 4.8 and Corollary 4.4, 275 > 4. Hence
E;& — E?_l_zn 15_|_2n 84+En_7+2n

— 17
14

> 4+20( )+9+4+9=10q+6.

Therefore 32 < 3. By Q6.1, s; = 2 and s, = 1. Symmetrically s,_, =1 and s, = 2.
Thus we have

S =(2,1,2,1)T(1,2,1,2). K

Definition 4.2 For given dominating sequence S as in Lemma 4.10, we let B be

the set of all sequences B such that S = ABC for some (possibly empty) sequences A

and C satisfying the following:
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1. |A|=0 (mod 7) and [C[=0 (mod 7).
9. |B} = 10.
3. B=(2,1,2,1)T(1,2,1,2) for some T.

4. 1Al =00r A= A'(2,1,2,1, 1,2,1) for some A'.

4

Cl=00orC = (1,2,1,1,2,1,2)C" for some C’.

Sy

. ©B < $(|B|) = 10m + 6 where |B| = Tm -+ 3.

By Lemma 4.10, the sequence g itself is in B so B is not empty. Now mn what

follows we let
B = (Sj,Sj+1, cae ,Sl)

be a sequence in B chosen so that | B| is minimal. We will show that this assumption
implies there is a sequence in B shorter than B. This contradiction will establish
Lemma 4.9 for the remaining case n =3 (mod 7}, n > 10. We break up the rest of

this proof into three lemmas.

TLemma 4.11 For any B = (sj, $j+1,- - - ,81) € B, we have
R1: S5 > 9 and T 5 > 9.
R2: Tt > 12 and Xf_; 2 12.

R3: D9 > 19 and Tj_g, 2 19
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Proof By symmetry we need only to prove the first part of each property.

By Q6.2, Eﬁig > 4 and by assumption Ej:""g = 5 so Zj:"'s > 9. R1 follows.
If £4% > 10 then B9 > 10 + si46 + siy7 = 12. If B4+ < 9 then
(s55--+58528) = (2,1,2,1)(1,2) or (2,1,2,1)(2,1).

In the second case, sj4.5 = 1 forces 2;512 > 3 by Q6.2. Hence E}’:H >9+3=12. In

the first case, if s;4.5 = 1, then

(Sj_|_1, LS TR Sj.{.g) = (1, 2, 1, l, 2, 1)

This forces s;:7 = 2 by Lemma 4.6. We still have Ej:” > 943 = 12. R2 is completed.

It BiE* > 10, then
SR = pI 4 p > 9410 =19
If E}iié? = 9, then by Lemma 4.8 and Corollary 4.4, Eﬁiz > 4, hence
DR = p e I B > 6 +44+9 =19,

This proves R3. B

Lemma 4.12 There does not ezist a B € B with |B| = 10.
Proof If |B| = 10 and B < 16 then either

B =(2,1,2,1)(1,2)(1,2,1,2) or.(2,1,2,1)(2,1)(1,2,1,2).
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Note that these two possibilities for B are left-right symmetric so it suffices to show

that B = (2,1,2,1,2,1,1,2,1,2) is not possible. Suppose first that .5 = ABC as in
Definition 2. If A = ¢ then § = BC which is impossible by Corollary 4.1 part 1. If
A # ¢, then A = A'(2,1,2,1,1,2,1) and the last 6 entries of A are 1, 2,1, 1, 2, 1.
By Lemma 4.6 the two stones in the first column of B must lie either in row 2 and

row 4 or in row 3 and row 5. But this is not possible by Corollary 4.1 part 3. H

Lemma 4.13 If B € B then either

B=1(2,1,2,1,1,2,1)B for some B'€ B
or

B=B"(1,2,1,1,2,1,2)} for some B" € B.
Proof As above we let {B] = Tm 4+ 3. By Lemma 4.12, m > 2. Now
B = (2, }., 2, 1)(33‘_}_4} e ,81_4)(1,2, 1, 2).

We claim first that E}HG < 11; suppose not. Then E?’G > 11. We show this is

impossible: If m is odd then we have

B = D+ DR T,

Tm+3—10

> 1149
> 1+0( -

)+5=10m+6,

which contradicts B € B. If mis even, by Lemma 4.8 and Corollary 4.4, s;_3+$;_1 = 3

forces 25:‘3 > 10. Hence

o= B4 a4 nid+

Tm -3 —17

> 2
> 11+ 0( i -

)+10+5:10m+6,
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which is again a contradiction. Hence E';:J"G < 10. By Q6.2, Egii > 4 and hence

Ej:ii =4 and E§+6 = 10. By symumetry Ef:g =4 and %}_g = 10. It is also clear that

Sjrg < 2 and 554 < 2.

Now we can not have both s;44 = 2 and s1_4 = 2. Suppose that ;54 = 51-4 = 2.

Let m be odd. Then

o= D4 nii 43,

J

™Tm+3—-1

0
26+2+20( = )+2+6r10m—!—6,

a contradiction. If m is even, then (s;43, $;+4) = (1, 2) forces Ejiél > 10 by Lemma

4.8 and Corollary 4.4. Hence
Ef’i — EJ+4+EJ+11 +EJ+12+25_4

Tm+3—-17

> 841042
_8+0+0( .

) 48 = 10m + 6,
a contradiction. This shows sj.4 =1 or 514 = 1.
Suppose 8;44 = 1. Then s;15 = 2 and s;46 = 1. Therefore
B=(21,21,1,2,1)B/

where B' = (Sj47,. .., 81~ 4)(1 :2,1,2).

To prove B’ € B, we need only to show ©B < (|B|) and B’ has the form

(2,1,2,1)77(1,2,1,2). Clearly

YB=10+ZLH
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and |B'| = |B|—7="T(m —1) + 3 2> 10. Therefore

SB = N8B — 10 < 10m + 6 — 10 = 10(m — 1) + 6 = %(|B|).

We claim that Ej::[}{o < 6 and E:’,:i? < 3. Suppose Zgiéﬂ > 7. Suppose (m — 1) is

odd. By R1, B!_; > 9. Hence

i _ J+10 -6 !
Yisr = Xiir +Eqn X

> 7420 (7m“7+3_10)+9

14
= 10(m —1)+6 = 4(|B')),

a contradiction. Suppose (m — 1) is even. By R3 T}_,, > 19. Hence

S = S+ SN 4+ 2
718
> 7490 (7m 1: 3 17) +19

= 10(m —1)+6 = p(B),

a contradiction. Hence Zj:iio < 6.

Suppose Eﬁig > 4. Suppose (m — 1) is odd. By R2 Z{_; > 12 Hence

N
Thyr = Tir+I5e+ I
Tm — 74310
> 4420 (ETIEET 12 = (B,

a contradiction. Suppose (m — 1} is even. We sum the entries of B’ as

i j+8 i-15 - !
Yoy =Xjir+ Yie + X5t siirt+se+ Zi_g-
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In the case of 15, > 10, then by R2, £f_, > 12. Hence

™ —T+3 17
14

25724+zo( )+4n+12:¢03m.

In the case of 5178, =0, then by Lemma 4.8 and Corollary 4.4, s;_7 + si_g > 4 and
by R1, £{_; > 9. Hence

Tm—T+3-17
14

Rhyr 2 4+20 ) +9+4+9=p(B).

We now have shown E}’:ﬂo < 6 and T8 < 3.

i S

Now (Sj41,---,85+6) = (1,2,1,1,2,1) forces sj7 > 2 by Lemma 4.6. Therefore
(8j47,8548) = (2,1). There are only two choices for (s;49, Sj410), either (1,2) or (2,1).

If (549, 8j210) = (1,2) then
B =(2)(1,2)(1,1,2,1,2,1,1,2)(s5411, - - - , $1)-

This is impossible by Lemma 4.8, since

(54355 8540) = (1,1,2,1,2,1,1)
must force 5541 + 542 > 4. Thus

(S5+7, S48, Si+er Si10) = (2,1,2, 1)
The proof of B’ € B is completed.

By symmetry if s;_4 = 1, we can prove that
B = B"(1,2,1,1,2,1,2)

and B" e B. 1
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Now combining Lemmas 4.10 through 4.13, we can complete the proof of Lemma
4.9 for the case of n = Tqg + 3 > 10. If such a dominating sequence S in Lemma 4.10
exists, then there must be a sequence B € B with shortest length. By Lemma 4.12,
|B] > 10. But by Lemma 4.13, from B, we can always get B’ or B” in B with the
length shorter than B. This contradiction implies the number of stones in S cannot

be less than 10q + 6. Thus the proof of Lemma 4.9 is completed. B

Theorem 4.2

n+l+[2E] ifn=1mod7orn=3
76}"1 = (4'11)
n+ 1+ 22| otherwise

Proof By Q1 it suffices to prove that for any dominating sequence {s1,52,...,5m)

for Py x P, that
T 2 {m). (4.12)

By Q2, it holds for m < 6. So we will assume that it holdsfor 1 <m <n-1,n 2T
and prove it still holds for m = n. Now if s; > 1 for all i, (4.12) holds by Lemma 4.9.

So we can assume s; = 0 for some j. Let j be the least positive integer 1 such that

s; = 0.
If 7 = 1, then by Q5.1 and Q4.1
Ll =54+ 2% 264 -3
By induction g 53 = ¥(n — 3) so

5 > 6+9P(n-3) .
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> Gan—3414 2033
_ +1+L3n+15J
> 014252 > 4(m).

For j = 2, then as above by induction and 5.2

I = 51+ 853+ 2 264+d(n—4)

> 6_|_n_4+1_|_|.3(_n:$ﬁ_.3._1
> n+ 1422 > g(n).

By symmetry, the theorem is true if j = n — 10 or j = n. So we can assume

3 < j < n - 2. Now we consider the following two cases: s;41 = 4 and s;41 < 3.

Case I Sie1 = 4.
First assume j = n — 2. Now sj43 = sn—1 = 4. Since s, = 0 is not possible, we

have s,_1 + 5, = 5. Applying the induction hypothesis we get

E? = 2?——2 + $n_1+ Sn

> Yem—3+ 0
zn_3+buﬂiﬁﬁiﬂ+s
> +1+L3”+8J

> 1p(n).

So we can assume 3 < j < n — 3. Now by the induction hypothesis

37 ~34a
Y6,5— 1:J+LHZ—TT_—J7
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and

. n—37—-6+0
A)’G,n—j—ZZn—J—l‘I"L J7 _I!

where @ and b = 3 or 5 depending on whether j —1landn—j—2are 3, =1 (mod 7),
or not.

Since both j — 1 and n — 7 — 2 are between 2 and n — 1 by Q4.1 we have
2§ > Ye,i-1 and Ty > Yopmjo2-
Hence

Z:717' > Yei-1 T4+ Yeni-2

373—3+a In—37—6+0b
n+3+1| = |+1 z {

nta-b-9

> n+24| 7 1,

by (4.9). Hence

b—2
3”+aj 1. (4.13)

a4l |
Now if a = 5 or & = 5 then by (4.13) we have

3
n;—GJ
3n;—5J > b(n).

Xr 2 n+l4|

> n+14+|

So we only need to be concerned about the cases where ¢ = 3 and b = 3. These are

the following three cases:
i j=1l=n—j—2=3.

ii. Oneofj—1andn—j—2is3 and the other is congruent to 1 modulo 7.
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. j—l=n—j—-2=1 (modT).

Incasein=29. Incaseiin =0 (mod 7). Andin caseiiin =5 (mod 7). In each

case one can verify that

LSn;—4J _ L3n.;_5_!1

and so it {ollows from (4.13) that

3nt+4
sy
= 1+ 1 = g,

> n+14|

This completes the proof of Case I

Case 1L s;41 < 3.

In this case we show that we can always find another dominating set with the
same number of stones but with s; > 1 for 1 <7 < 7. It is clear that once this is
established we are done.

Now since s; = 0 we have s;_y + sj3; 2> 6. Hence in this case we must have

851 2 3. So we need to consider the possibilities
si_1 € {3,4,5,6}, 5; =0, 8541 € {0,1,2,3}.

Tn all cases we show that by readjusting the stones in columns j — 1, j, and 7 + 1,
we can obtain a new dominating set with at least one stone in each of these three
columns.

When s;_; > 5, we can assume, by symmetry, (1,5 —1), (2,7 - 1) and (3,7 — 1)

are all in S. Therefore we can move one stone from (1,7 — 1) to (1,j — 2) and one
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stone from (2,7 — 1) to (2,7). One easily checks that the new cofiguration is still a

dominating set. This leaves only the cases s;_; = 3 and s;_, = 4.
We list in Figure 4.10, up to symmetry, all possible distributions of the stones in

column j — 1 for sj_1 = 3 and s;_1 = 4.

SRS

(1) (2) (3) (4) (8) (6) (7) (8) (9) (LO)ALY12)(13)(14)(15)(16)(17)(18)(19)

Figure 4.10: The distributions of stones on column j — 1.

Consider the pairs of 6 x 5 blocks in Figure 4.11. In each block the 5 columns
are numbered § — 2, — 1, 7, 7 -+ 1 and § + 2 from the left. In the left hand side of
each pair, s; = 0, the stones in column j — 1 are distributed as one of the cases listed
in Figure 4.10 and the stones in columns j — 2 and j — 1 are those additional stones
that must be present to cover all vertices in columns j — 1 and 7. By moving some
stones in the left hand side, we obtain a new dominating set on the right hand side as
desired. For (1) and (2), we simply move the top two stones in column j — 1, one to
left the other to right, to get a new dominating set. (11), (12) and (13) are the same
as (1). (14) and (15) are the same as (2). For (3) and (4), we move four stones to get
a new dominating set. (5) is dual to (3) in the sense that in case {(5) the pattern of
three stones in column 7 — 1 forces stones in rows 2, 5 and 6 of column j +1 and this

is isomorphic to the situation in case (3). Similarly (8) is dual to (4). The adjustment
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of stones of (18) is shown in Figure 4.11(18). (17) and (19) are similar to (18).

We now consider the remaining cases {6), (7), (9), (10) and (16). For these cases
we need to use the fact that by the definition of 7 we have at least one stone in column
4 — 2. The existence of such a stone allows us to move one stone from column j — 1
to column j in the same row or sometimes an adjacent row. However since we do
not know in which of the six rows the stone in column j — 2 lies we must consider
all six possibilities. To facilitate this verification we use the following facts: Suppose

(i,7 — 2) € S. Then we have:

1. If (1,7 — 1) € S and vertex (z + 1,7 — 1) is covered by some stone other than
(4,5 — 1), (when ¢ > 6 or ¢ < 0, we regard the vertex is covered), then we can

move (i,7 — 1) to (¢ — 1, 7).

2. If (4,5 — 1) € S and vertex (i — 1,7 — 1) is covered by some stone other than

(i,5 — 1), then we can move (7,7 —1) to (2 +1,7)-

3. If (i4+1,7—1) € S and vertex (i +2,7 — 1) is covered by some stone other than

(t 41,7 — 1), then we can move (14 1,7 — 1) to (1 +1,7).

4. If(i—1,7 —1) € § and vertex (¢ —2,j — 1) is covered by some stone other than

(6 —1,5 — 1), then we can move (1 — 1,5 — 1) to (s — 1, 7).

Now by the facts mentioned above, any placement of a stone in column j — 2 can
“push” one stone from column 7 — 1 to column s;. Figure 4.11(6), gives an example
of the placement of a stone (5,7 — 2) which pushes the stone (5,5 — 1) to (6,7). In

Figure 4.11(7), stone (5, —2) pushes stone (6,7 — 1) to (6,7). And for (9), (10) and
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CHAPTER 5

ALGORITHMS FOR DETERMINING 7g»

A dynamic program for finding v, was created by Hare {6]. Based on Hare’s idea,
in the first section, we give an algorithm similar to Hare’s and give a proof that the
algorithm works. Recently, [10] Fisher showed that for fixed &, we only need to find
Yrn for T < n < N for some appropriate integer N and the rest of Y, for n > N,

will follow recursively. We present Fisher’s method in section 5.2.

5.1 Hare’s method

For a given subset of the vertex set of the grid Py x P, we define for u € Fy X P,

and SC P, x P,

d(u,S) = min d(u,v).

vE
It is clearly that if S is a dominating set then every stone u (vertex in S) satisfies
d(u,5) = 0 and every non-stone vertex u satisfies d(u, S) = 1.

Let A; denote the collection of all subsets A; of

3
{1,...,k}X{1,...,j}=UOi
i=1

such that
j=1
d(u,AJ—) <1 for a_ll U € U Oi,

i=1
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i.e., A; is a set of vertices of Py x P, that lies in the first j columns and covers all
vertices in the first § — 1 columns.

Remark

A; is ot a fixed set. We use the subscripts j to remind us that A; lies in

the first 7 colummns of Py x P;

If A; € A, clearly

i
d(u, A;) <2 forue | Cn

i=1

For such a subset A;, the terminal vector associated with A; is defined as the vector
z = (21,%9,...,2) where z; = d({¢,7),4;), ¢ = 1,..., k. Here we still call the
elements of A; stones. Every entry z; of the terminal vector z is either 0 or 1 or
2 depending on the position of stones in the last two columns. It is clear that for

1 <1<k, wehave

z; = 0 if only if the vertex (i,7) is a stone in A4;;
z; = 1 if only if the vertex is covered but not a stone;

x; > 2 if only if vertex is uncovered.

For convenience we set &g = ¢z1 = 1. Note that if 2; = 0 then z;_1, 241 € {0,1}.

Let T'(k) be the set consisting of all possible terminal vectors, that is,
T(k) = {(21,.. -, ) €{0,1,2}" : (s, mi41) # (0,2) or (2,0) for i =1,...,k —1}.

The vectors in T(k) can be listed as t;,tq, ..., %, where [ = |T'(k)|, the cardinality of
T(k) is given by

|T(1)| =3, IT(Q)‘ =1,
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|T()| = 217G — 1) + [TG —2)]  fori>3.

By solving this recursion we have

IT(k)] = 511+ v2)* + (1 - V2)*).

o

as pointed out by Hare [6].

For a given z € T(k), let A;(z) be the class consisting of elements of all sets
A; € A; having the terminal vector . It is possible when j =1, 2 that A;(=) might
be empty. Later we will discuss this in detail.

Now we define for given z € T'(k),

mj(z) = min {|4;] : 4; € A;(z)}. (5.1)

If A;(z) is empty we let m;j(z) = co. We will show that the entries of the I x n matrix
[r;(t:)] can be built up recursively column by column.

Note if A; € A;(z), then deleting column j from A; results in a set A;_; € A;_1(y)
for some terminal vector y; if A;_; € A;_4(y), then concatenating a k x 1 block, which
covers all uncovered vertices in column j — 1, to A;_; results in a set A; € A;(z) for
some z.

First we represent a k x 1 block by a vector z = (zq, 22, .. ., 2x) where

-

0 if (4,1) is a stone in the block
z; =19 2 if {1,1) is uncovered by the block

1 otherwise.

Let R be the set consisting of the elements of all such vectors. Now when we con-

catenate a k x 1 block with vector 2z € R to-a set A;_; with the terminal vector y



95

to get a set A; with the terminal vector z, the relationship between z, y and z is a
partial operation f: T x R — T'. Suppose f(y,z) = z, then for each ¢, ;, y; and 2z

must satisfy the following table.

y; =2 0 undefined | undefined

Table 5.1: Partial operation f(y,z) =z

Now let 2 € T(k) be fixed, in order to have f{y,z) = z, y and z are restricted as

following:

Hx;=2then z; =2 and y; = 1.
If z; = 0 then z; =0, y; € {0,1,2}.
fa; =1, 2,1 >0and ;-1 > 0 then 2, =2 and y; = 0.

If z; = 1 and at least one of z;1, and z;_; is 0 then z; =1, y; € {0,1}.

Actually z, if it exists, is uniquely determined by . And there are very few pairs

(y,2) in the set
(=) = {(y,2) : fly,2) = =, for some z}.

Sometimes the set f~*(z) might be empty since y might not be a terminal vector.
When j = 0, we say that there is no stone in column 0 and every vertex in column
0 is covered. Therefore there is one and only one terminal vector (1,1,...,1). When

7 = 1, the set of all possible terminal vectors are still a proper subset of T. For
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example, when £ = 3 and j = 1 there is no set A; terminating at (0,1,1) since the
vertex (3,1) can not be covered by any stone in column 0 or column 1. Butif j >3

then f~%(z) #£ ¢. We prove this in the following lemma.

Lemma 5.1 Any 2 € T(k) can be a terminal vector of some A; if 3 2 3.

Proof. First, by the operation table, we can concatenate the & x 1 block in
which all vetices are stones to any A; resulting a set Aj.; with the terminal vector
(0,0,...,0). That is, the vector with all entries 0 can be a terminal vector at any
colummn. For any & € T'(k) with no entry equal to 2, there always exists a z such that
F((9,...,0),2) = = by using a proper k x 1 block. So all vectors with no entry equal
to 2 can be a terminal vector at any colurm 7, for j > 2. Therefore when 7 > 3, for

any vector z € T'(k) we can take

(0,0) if 2; = 0

(wi,2) =4 (0,2) or (0,1) ifz;=1

(1,2) if z; = 2.
In the second row above, z; = 1 or 2 is dependent on given z. The vector y chosen

above has no entry equal to 2. So any z can be a terminal vector when 7 > 3. ]

Now define

0 ifz=(1,1,...,1)

mi(a) =

oo otherwise,

mi(2) = min {m;_1(y) + o] : (v, 2) € F (@)} for 7 2 1, (5.2)

where |z] is the number of (’s in the vector z.
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will lead to a set A; € A;(z). Thus

mi(z) = mjialy") +lal
= |Ajal+ =]

= |4 2 m;(z). B

Theorem 5.1 shows the way to build the [ x n matrix column by column. We

restate this recursion:

0 itz=(1,1,...,1)
mo(z) =
oo otherwise.
oo if f(z) = ¢
mi(z) =
\ min{m;_1(y) + |¢| : (y,2) € f~t{z)} ~othewise.
Once m,{t1), ..., ma(t)) are calculated the domination number -y, follows. Let

M, = n&g{mn(m) : x has no entry equal to 2}, (56.3)

we have the following theorem.

Theorem 5.2 For all k, n we have vy, = M,.

Proof The set of all z satisfying (5.3) contains the vector (0,0,...,0), hence it
is non-empty. Therefore M, is a finite number. Let z¢ be a vector with no entry 2
and satisfying m,(zo) = M,. Since m,(zo) is a finite number, there must be a set A,
terminating at 2o and having m,(z¢) stones. But such a set 4, is a dominating set

of P, x P,. So we have v, < M,.
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On the other hand, let S be a minimal dominating set of P, x P,. Then S is of

type A, having some terminal vector zo with no entry equal to 2. Therefore
Yo = 151 2 ma(to) > M, B
Now we write an algorithm for finding +; .. The proof of the algorithm has been
done in this section. For fixed k, the computing time of this algorithm is linear in n.

Algorithm

1. List the elements of T" as ¢4,..., 1.
2. For each ¢; list the elements in f~1(%;) as List(¢;).

3. Forz=1to!l do
ift; =(1,1,...,1) then mo(t;) =0

else mo(t;) = o0

4. Forj=1ton do
fore=1toldo
find the minimum of m;_1(y), (y,2) € List(t;).

This is m;(t;).
5. Find the minimum of m,(t;) for all t;- with no entry equal to 2.
5.2 Fisher’s method

Theorem 5.3 For given k, suppose there exist two integers ¢ and N such that
N > g and

mp(t;) — my_qo(t;) = C, for all 1 <i <, (5.4)
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where C 15 o finite positive constant. Then whenever n > N, we have
mn{t;) —Mmn_g(t:) =C, foralll <: <1 (5.5)

Hence

Ten = Yeneg + C, forn > N, (5.6)

Proof. By the definition in Formula (5.2) and by taking the minimum of both

sides of (5.4) we have, for all ¢;,

m;\T+1(ti) - mj“-’-{-l—q(ti) =C.

So by Theorem 1, for all ¢

mna(ts) — my_gia(t) = C.

And by Theorem 5.2 we have

VEN+1 = YeNt+1-¢ + C.

Now (5.5) and (5.6) follow by induction. E

Theorem 5.3 comes from Fisher’s idea {10]. Fisher worked on a VAX 8821 machine
and he has found the period g, starting point N and the constant C' in {5.6), for fixed
k, 1 < %k <16 {10]. But in general for k¥ > 17 what should be N, ¢ and C are still

unknown.
We have tried to find N, ¢ and C for small k on a IBM-PC 286 computer. It takes
only 18 seconds to get results for & = 5 and 1 minute for ¥ = 6. The domination

numbers 75, and s, obtained in this way agree with that found in Chapter 4.
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Table 5.2 shows the results for k = 5. In Table 5.2, N = 17 is the first place such

that

mar(t;) — maa(t;) =6, forall 1 <¢ <99,

Therefore

Vs = Ysm-s +6 forn>1T.

After finding s, for 1 < n < 16, the above recursion can start at 13. Thus the

domination numbers of Ps x P, are:
Y51 =2, Ysp =3, Vs3 =14, Y54 =6, V55 =17, 756 =5,

vs7 =9, 155 = 11, 150 = 12, 510 = 13, 511 = 14, 7¥s512 = 16,

Ysm = Ysmes -+ 6 forn > 13.



T 1]2(8l4|5{617|8|9]10[11{12{13|14|15]16|17
0(0,0,0,0,0) | 5|5 |7|8[9]11|12]13|14|16{17|18]19|21|22|23 |24
1(1,0,0,0,0) | 4 | 5 {6|7|9|10|11|12|14|15]16|17|18{20|21 |22 |23
3(0,1,0,0,0) { 4 | 5 {6]819]10]11|12|13}15|16]17(19]20]21|22|23
4(1,1,0,0,0) |co| 4 |6|7]8| 9 |11|12}13 |14 (15|17 |18 (19|20 |21 |23
5(2,1,0,0,0) | 3| 4 |6)7|8}10]11[12]|13|14|16{17|18]|19]|20]2223
9(0,0,1,0,0) | 4 | 5 |7{7(8|10|11]12]|18|15}16|17|18|20(21|22|23
10(1,0,1,0,0)1 3 | 4 {6|7[8] 9 {10|11]13{14|15|16{17[19{20 (21|22
12(0,1,1,0,0)| 3 | 4 |6|7]8]| 9 {11|12]13|14|16{17]|18|19 202223
13(1,1,1,0,0) oo | 4 |5(7(8] 9 |10{12|13|14|15|17|18|19 |20 |21 |23
14(2,1,1,0,0) loo{ 3 {567 9 [10|11}{12{13|15|16|17}18]19|21 {22
16(1,2,1,0,0) oo | 4 |5(6]7] 8 |10|11{12|14|15|16]17]18 |20 |21 |22
17(2,2,1,0,0)| 2 |oo 516|719 [1011]13|14]15]16|17{19|20 |21 |22
27(0,0,0,1,0) | 4 | 5 |6]8]9|10|11]12|13}15/16|17|19|20 21|22 23
28(1,0,0,1,001 3 | 5 {5|7{8| 9 |10|12{13|14|15|16|18{19{20 |21 {22
30(0,1,0,1,0)| 3 | 4 |5{7(8| 9 {10}12|13|14}15{17|18(19{20]21 |23
31(1,1,0,1,0) oo | 4 [5]|6|7] 8 |10[11{12{13|14|16|17[18}19]20}22
32(2,1,0,1,0)| 2 | 4 |5]6{7} 9 [10|11|12|13|15}16 |17{18 1921 |22
36(0,0,1,1,0}| 3 | 4 |6]7|8| 9 |11|12]13]14|16|17|18|19|20|22|23
37(1,0,1,1,001 2 | 4 |5|6{7| 9 |10]11|12|13]|15|16|17{18|19 |21 |22
39(0,1,1,1,0) [eo| 3 |5|6|7| 9 |10]|11|12|14|15|16|17{19|20 |21 |22

Table 5.2: 1. Output of program for finding 75 -
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T

10

11

12

13

14

15

16

40(1,1,1,1,0)

12

14

15

16

18

19

21

41(2,1,1,1,0)

719110

11

13

15

16

17

18

19

21

43(1,2,1,1,0)

11

13

14

15

17

18

19

20

44(2,2,1,1,0)

10

i3

14

15

16

18

19

20

48(0,1,2,1,0)

718110

11

13

15

16

18

19

49(1,1,2,1,0)

718 |10

11

13

14

16

18

19

20

50(2,1,2,1,0)

10

14

17

18

20

52(1,2,2,1,0)

718 ;10

11

13

14

16

18

19

20

)
)

53(2,2,2,1,0)

10

12

13

14

16

17

18

19

]
(D]

81(0,0,0,0,1)

911011

12

14

15

16

17

18

21

82(1,0,0,0,1)

8{9 (10

12

13

14

15

17

18

19

20

84(0,1,0,0,1)

819110

12

13

14

15

16

18

19

20

85(1,1,0,0,1)

8{9 (10

11

13

14

15

16

17

19

20

21

86(2,1,0,0,1)

319 (10

11

14

15

16

17

18

20

21

90(0,0,1,0,1)

819110

11

14

15

16

17

19

20

21

91(1,0,1,0,1)

719110

11

14

15

16

17

18

20

93(0,1,1,0,1)

719110

11

12

13

15

16

17

18

19

21

94(1,1,1,0,1)

11

12

13

15

16

17

18

19

21

95(2,1,1,0,1)

10

11

13

14

15

16

17

19

20

97(1,2,1,0,1)

10

12

13

14

15

16

18

19

Table 5.2:

QW]

. Output of program for finding s ».
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T

10

11

12

13

14

15

16

98(2,2,1,0,1)

10

12

13

14

15

17

18

19

20

108(0,0,0,1,1)

12

13

14

15

17

18

19

20

21

109(1,0,0,1,1)

11

13

14

15

16

17

19

20

21 |:

111(0,1,0,1,1)

11

13

14

16

17

18

19

20

112(1,1,0,1,1)

11

13

14

16

17

18

19

20

113(2,1,0,1,1)

11

13

14

15

17

18

19

20

117(0,0,1,1,1)

12

14

15

17

18

19

20

21

118(1,0,1,1,1)

11

13

15

16

17

18

19

21

120(0,1,1,1,1)

12

13

14

15

16

18

19

20

121(1,1,1,1,1)

12

13

14

16

17

18

19

21

22

122(2,1,1,1,1)

11

12

14

15

16

18

20

21

124(1,2,1,1,1)

11

12

13

15

16

17

19

20

21

22

125(2,2,1,1,1)

11

13

14

15

17

18

19

21

129(0,1,2,1,1)

11

12

13

14

16

18

19

20

22

130(1,1,2,1,1)

11

12

13

15

16

17

18

21

22

131(2,1,2,1,1)

10

11

13

14

15

16

17

19

20

211,

133(1,2,2,1,1)

11

12

13

14

16

17

18

19

22

134(2,2,2,1,1)

10

13

14

15

17

18

19

20

21

144(0,0,1,2,1)

co| 4 |516(7|8[10

11

14

15

16

17

18

20

21

22

145(1,0,1,2,1)

oo 3 (4(6|7|8]9

10

13

14

15

16

18

19

20

21

Table 5.2: 3. Output of program for finding s ,,.
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T

10

11

13

14

15

16

147(0,1,1,2,1)

12

13

14

15

17

18

19

20

148(1,1,1,2,1)

12

13

15

16

17

19

20

21

149(2,1,1,2,1)

12

13

14

15

16

18

19

20

151(1,2,1,2,1)

13

14

15

18

19

20

152(2,2,1,2,1)

13

14

17

18

19

156(0,1,2,2,1)

14

16

18

19

157(1,1,2,2,1)

14

16

18

19

158(2,1,2,2,1)

11

13

15

16

17

18

160(1,2,2,2,1)

11

14

15

16

17

19

161(2,2,2,2,1)

12

13

14

15

16

18

19

189(0,0,0,1,2)

3 |416|7|8|10)11}12

13

14

16

17

18

19

20

190(1,0,0,1,2)

2141516189 (10]11

12

14

15

16

18

20

192(0,1,0,1,2)

214 156|719 110111

12

13

15

16

18

19

193(1,1,0,1,2)

co| 3 |9|5{7{8 |9 |11

13

14

15

18

19

20

194(2,1,0,1,2)

113|415|718]9 |10

12

13

14

15

18

19

20

21

198(0,0,1,1,2)

co| 3156|719 (10|11

12

13

15

16

17

18

19

21

22

199(1,0,1,1,2)

co| 3 |4I5|7|8 19110

11

13

14

15

16

17

19

20

21

201(0,1,1,1,2)

co|315(6|7(9 [10]11

12

13

15

16

17

18

19

21

202(1,1,1,1,2)

ool 4561719 (1011

12

14

15

16

18

20

21

[SV]
[N

203(2,1,1,1,2)

co| 3156|1689 |10

12

13

14

15

17

18

19

20

o
A%

Table 5.2: 4. Output of program for finding s -
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T

10

11

12

13

14

15

16

17

205(1,2,1,1,2)

12

13

14

15

16

18

19

20

21

206(2,2,1,1,2)

11

13

14

15

16

17

19

210(0,1,2,1,2)

11

12

14

15

16

17

18

20

21

211(1,1,2,1,2)

11

14

15

16

17

19

20

21

212(2,1,2,1,2)

11

14

15

16

17

18

20

21

214(1,2,2,1,2)

11

13

15

16

17

18

19

215(2,2,2,1,2)

11

13

15

18

19

225(0,0,1,2,2)

13

15

16

19

20

21

926(1,0,1,2,2)

12

13

14

15

18

19

20

228(0,1,1,2,2)

12

13

14

15

18

19

20

229(1,1,1,2,2)

13

14

15

16

19

230(2,1,1,2,2)

11

13

14

15

16

19

20

232(1,2,1,2,2)

11

12

13

14

16

18

19

233(2,2,1,2,2)

11

13

14

16

18

19

237(0,1,2,2,2)

12

13

14

16

17

19

20

238(1,1,2,2,2)

12

13

14

15

1y

19

20

21

239(2,1,2,2,2)

11

12

13

15

16

18

19

21

241(1,2,2,2,2)

13

14

15

16

18

19

20

21

12

13

14

16

17

18

19

21

Table 5.2: 1. Output of program for finding s .
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CHAPTER 6

CONCLUSIONS

6.1 Conjecture

The outstanding problem left unsolved is the conjecture: For k and n sufficient

large

L. 2)5(n +2)

| —4 (6.1)

The results in chapter 2 and Fisher’s results [10] show that we must haven > k >

16. In fact Fisher’s work shows that (6.1) holds for £ = 16 and n > 14.

6.2 Further directions

For finding the domination number of P x F,, we are going to work on the

problems:

1. Prove some lower bounds
It is possible to find some lower bounds strictly less than the standard upper

bound. In section 2.3 we have mentioned two low bounds

kn+k4+n

>
Yin 2 | 5

IE (6.2)
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and

kn+ k4 2n
T Lk L) (6.9

2. Attempts to prove the conjecture
The only way to prove the conjecture is to prove the standard upper bound
is itself a lower bound for n and k sufficiently large. One way to approach
the proof is discussing the behavior of the dominating sequence like P1-P9 and
(Q1-Q7 in Chapter 4. The complete list of the propositions of the dominating
sequence for general £ must be very long and very complicated. To avoid this,

we have tried several different approaches, but so far none of them works.

3. Prove 4, for small k&
Even if the conjecture is true, additional work for finding ~x» has to be done
for small k. Some of this was done in Chapter 3 and Chapter 4. Fisher found
Ve for & < 16 using the output of his program. However, more work of proving

Yin for small k structurely seems necessary to proving the conjecture.

The product space X = []*, F,; can be regarded as an n-dimensional grid graph.
So the {(complete) grid graph is a 2-dimensional grid graph. The problem treated in

this dissertation is of course a special case of the following more difficult problems:

n

1. Determine the domination numbers of the higher dimensional grid graphs [T, P,

forn > 3.

2. Determine the p-covering number, p > 2 of the product space X for n > 2.
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And of course there is no need to restrict oneself to grid graphs. These questions

may be asked for any graph or, in deed, for any finite metric space.



110

REFERENCES

S, T. Hedetniemi and R. C. Laskar. Topics On Domination, Discrete Math, vol

86, number 1-3, Dec. 14, 1990.

. Marilynn Livingston, Quentin F. Stout, Perfect Dominating Sets, Congressus

Numerantium, 79, 1990, pp. 187-203.

M. S. Jacobson and L. F. Kinch. On the Domination Number of Products of

Graphs:I, Ars Combinatoria, vol 18, 1983, 33-44.

. B. J. Cockayne, E. O. Hare, S. T. Hedetniem:, T. V. Wimer, Bounds for the
Domination Number of Grid Graph, Congressus Numerantium, 47, 1985, 217-

228.

. BE. O. Hare, Algorithms for grid and grid-like graphs, Ph. D. Thesis, Dept.

Computer Sci., Clemson University, 1989.

. E. O. Hare, S. T. Hedetniemi, W. R. Hare, Algorithms for Computing the
Domination Number of £ xn Complete Grid Graphs, Congressus Numerantium,

55. 1986, 81-92.



7.

10.

111
E. J. Cockayne, E. O. Hare, 5. T. Hedetniemi, T. V. Wimer, Bounds for the

Domination Number of Grid Graph, Congressus Numerantium, 47, 1985, 217-

228.

. W. Wesley Peterson, E. J. Weldom, Jr. Error-Correcting Codes, second edition,

ISMN 0 262 16 039 0, page 41.

H. C. Singh and R. P. Pargas, A Parallel Implementation for the Domination

Number of Grid Graph, Congressus Numerantium 59, 1987, 297-311.

David Fisher, The Domination Number of Complete Grid Graphs, preliminary

Version.



