14

A PROOF OF NP (P

Viktor V. Ivanov

Abstract. A proof (on about 7 pages) is based on better estimates of lower bounds on time complexity that hold for all solution algorithms. Almost no special knowledge other than logical and combinatorial efforts is needed to understand the proof. The main steps and ideas of the whole proof can be seen in the introduction.
Keywords: NP-complete problem, Time complexity, Word transform.

2000 Mathematics Subject Classification: Primary 05D99, 68Q25.

1. Introduction

There are hundreds of important so-called NP-complete and NP-hard problems from various areas of mathematics and its applications (see, for example, [1]-[7]). We dwell on a typical NP-complete problem of INDEPENDENT SET (M. Garey, D. Johnson, [2], p. 194): INSTANCE: graph G = (V, E), positive integer K. QUESTION: Does G contain an independent set of size K or more, i.e., a subset V((V such that (V(((K and such that no two vertices in V(are joined by an edge in E? We denote this problem as PS.

All NP-complete problems are in the class NP, i.e., they are solvable on non-deterministic Turing machines in a polynomial time. However, it is unknown whether they are in the class P of the problems solvable on classical computers, e.g. deterministic Turing machines in a polynomial time. Below is a proof that NP (P.

The necessary subsidiary notions can be found in details in [2, 4, and 5]. To help the reader to understand the proof, a short review of its main steps and ideas is given here.

The problem PS, under the representation of the graph G in the form of the list of binary words, the total size n2 in order, is restated, as the problem PV, verifying if a certain set transforms of given sets is empty or not (Lemmas 1 and 1+).

Lemmas 2, 3, and 4 are auxiliary for the proof of Lemma 5. Lemmas 2 and 3 are rather simple- combinatorial. Lemmas 4 and 5 are in the case, when input of PS has the size n2 in order and K = t is independent of n. Lemma 4 is almost trivial, since it means that the time for computing nt distinct objects for any n on any classical computer is not less than nt.

Lemma 5 is the most important and difficult to prove. Its proof shows existence of exponential number ‘hard’ instances for which the time of solutions of the problem PV is near the longest and not less than nt(1 in order, since for those instances any solution algorithm has to compute not less than order nt(1 intermediate distinct objects. The main ideas here are introducing exponential number instances for which a certain property of the respective sub-problems can be valid or not unless we check it, and showing that any solution algorithm has to solve all those sub-problems.

A proof of the main theorem on NP (P follows easily from Lemmas 1+ and 5. As an implication of the main theorem, we have also a negative result on capability of quantum computers with respect to NP-hard problems.

2. Preliminaries
Let the representation of the graph G = (V, E) be the ordered list of binary words

(1)

Ij = (a1j … aj-1j), j = 2, … , n;
 aij = 0 (1, 1 (i < j (n;

where aij = 1, iff there is the edge from the node i to the node j, i < j. This representation is convenient for the query of both nodes 1, … , n and edges aij. The respective input for the problem PS has the size order n(n (1)/2 + log2 K, 1 (K (n.

We introduce also the binary words

At = (ak,1k,2 ak,1k,3 … ak,1k,t ak,2k,3 ak,2k,4 ... ak,2k,t ... ak,t-2k,t-1 ak,t-2k,t ak,t-1k,t),

(2)

]At[= ak,1k,2 + ak,1k,3 + … + ak,1k,t + ak,2k,3 + ak,2k,4 + ... + ak,2k,t + ... + ak,t-1k,t,

where (k,1, … , k,t) are arbitrary ordered combinations from (1, ... , n) by t. Under fixed t, there are (nt) = n!/[(n(t)!t!] different words At.

Let the problem P1 be PS with the representation (3), K = t > 1, and P2 with the same representation be the problem if there exists or not a word At with]At[= 0 for any n and t. Since]At[= 0, iff (k,1, … , k,t) is independent set, the problems P1 and P2 are restatements of each other.
Denoting by Ln all 2n binary words, let for any word I (Ln, I’ be the ordered set consisting of zero numbers in I (]I[= n ((I’(= number of 1-digits in I) and I be complement of I to 0 = (0…0). And let for any words I1 and I2 from Ln the intersection I1 (I2 (the union I1 (I2) be a word from Ln, combining all common 0-digits (all 0-digits) of I1 and I2. This definition of intersection and union for binary words corresponds to the ordinary definition of intersection and union for the respective sets I’1 and I’2. If, for example, I1 = (010), I2 = (100), then I1 (I2 = (110) and I1 (I2 = (000), since I’1 = (1,3), I’2 = (2,3), and hence I’1 (I’2 = (3) and I’1 (I’2 = (1,2,3).

Lemma 1. The following relations are valid:
(3)

]At[(0, (k,1, … , k,t: 1 (k,1 < … < k,t (n, t > 1,

iff

Rn,t(1 = ((Ik,2 (Ik,3 (… (Ik,t-1 (Ik,t) ((k,2, … , k,t: k,t ((t, … , n),
(4)

k,t(1(I’k,t, ... , k,2 (I’k,3 (… (I’k,t) = 1 = (1, … ,1),

where I’j are ordered sets of zero-numbers in the binary words Ij = (a1j … aj-1j).

Besides, if Rn,t(1 = 1, then Rn,s = 1, t (1 < s (n, and if Rn,t(1 (1, then there exists an independent set
(5)

Vt = (k,1, … , k,t), (Vt(= t.

Proof. It is based on a simple fact that the intersections Ik,r (… (Ik,t (1, r = 2, …, t, iff there exist k,r(1 (I’k,r (… (I’k,t such that ak,r(1k,r + … + ak,r (1k,t = 0, r = 2, …, t, and hence their sum is also equal to 0. Therefore, if Rn,t(1 (1, then there exist k,2, ... , k,t:

(6)

k,t ((t, ... , n); k,t(1 (I’k,t; ... ; k,2 (I’k,3 (… (I’k,t,

such that the word Ik,2 (… (Ik,t (1, and hence there exists k,1 (I’k,2 (… (I’k,t, for which we have]At[= 0, and backward: if]At[= 0, then all ak,rk,s = 0, r = 1, … , t(1; s = r+1, … , t, from where it follows that Ik,2 (… (Ik,t (1 under the restriction (4), and hence Rn,t (1. If Rn,t(1 = 1, then Rn,s = 1, t(1 < s (n, since R’n,s (R’n t(1, t(1 < s, but R’n,t(1 = Ø. If Rn,t(1 (1, then (5) is valid. (

Given the same input as for the problems P1, let PV be the problem of verification of

(7)

Rn,t(1 =? 1, 1 < t (n,
for any n and t. It is clear that the problems P1, P2, and PV are restatements of each other.

Let P = P(I, R) be a problem with a finite input domain I and output domain R, and let A be an algorithm for the solution of P on classical computer C. Note that for decision problems R = 0 (1.

The time complexities of the solution of P on C are given by

(8)

Tp (P, A) = sup t (x, y, A) ((x: (x(= p, x (I), T (P) = Tp (P) = inf Tp (P, A),

where t (x, y, A) = t (x, A) = t (y, A) is the time for A on input x (I, with output y (R, and inf is taken over all solution algorithms A. We use also T (y) instead of T (P), when y is the explicit presentation of the problem P.

A problem P (P if there exist an algorithm A and a constant c such that Tp (P, A) < pc for all p.

As an implication of the definitions above as well as Lemmas 1, we have

Lemma 1+. T (P1) = T (P2) = T (PV) = T (Rn,t(1 =? 1).

Proof. Having a solution of P1, we have also a solution of P2 and PV, and backwards. (
3. Auxiliary lemmas
Lemma 2. While Xk, k = 1, 2, … , t, generate independently all possible 2l words from Ll,
(9)

It = (Xk (k = 1, … , t), Ut = (Xk (k = 1, … , t), 1 < t < l + 1,

generate all (lr) values with]It[,]Ut[= r respectively (2t (1)r, (2t (1)l(r times, , r = 1, … , l.

Proof. In the case of t = 2, we have

(10)

3l = (2 + 1)l = ((ls)2s (s = 0, …, l),

since for each of (ls) words X1 with s 1-digits, X2 can generate all possible 2s words with fixed l (s 1-digits corresponding to 0-digits of X1. For the other t, the proof can be performed by the mathematical induction. Indeed, using the obvious equality Is+1 = Is (Xs+1, 1 < s < t, we have
(11)

(2s+1 (1)l = ((lk)(2s+1 (2)k (k = 0, … , l) = ((lk)2k(2s (1)k (k = 0, … , l),

where the right side means that for each k 1-digits of Is (each is running (2s (1)k times by premise), Xs+1 can generate all possible 2k words with fixed l (k 1-digits corresponding to 0-digits of Is.

The result (2t (1)l(r follows from above due to Ut = (Xk (k = 1, … , t). (
Lemma 3. Let Xk, k = 1, …, m, be words from Lm with the property

(12)

 X’k = (. , k, .), k = 1, …, m,
where (. , k, .) is arbitrary subset from (1, … , m), containing element k. Then it is possible that

(13)

U’k,1, …, k,t = (X’k (k = k,1, … , k,t) = (. , k,t, . , k,t(1, . , … , . , k,1, .)
is arbitrary set, containing k,t, k,t(1, … , k,1, t is independent of m.

Besides, the subsets (. , k, .) can be selected in such a way that for even m
(14)

(U’k,1, …, k,t(= m/2,
and all U’k,1, …, k,t in (13) and (14) can be different.

Proof. It follows from Lemma 4, since the union of arbitrary sets can be also arbitrary. Besides, (14) is valid, since all (mm/2) combinations from (1, … , m) contain all (mt) combinations, t < m/2. (

Lemma 4. We have
(15) T [(k,1, … , k,t), k,t (K; k,t-1(K\(k,t);… ; k,1 (K\(k,2, … , k,t)] > ((mt), K = (1, 2, … , m),
where T means the time of computing all (k,1, … , k,t) for any t and m, t is independent of m.
Proof. It is trivial, since the left side of (15) is the time for computing ((mt) distinct objects. (
4. Main lemma
Let us return to the problem PV if Rn,t(1 = 1 or not for any n and t, and rewrite Rn,t in the form

(16)
Rn,t = ((Ik,1 (… (Ik,t) (k,t = t + 1, … , n; k,t-1(I’k,t;
... ; k,1 (I’k,2 (… (I’k,t),

where Ik,s are arbitrary words from Lk,s (1, the elements of the sets I’k,s are zero-numbers in Ik,s, and the sign ‘r (S’ for any S means (here and later on) ‘for all r in set S’.

Lemma 5. The time T (Rn,t =? 1) > ((nt(1), where a positive integer t is independent of n.

Proof. It consists of the following main parts:

1. Introducing a weaker problem Vm,t =? 1, n = (t+1)m, when the matrix of input data {aij} has a form of step-matrix with t + 1 steps, so words on each step can be independent of the other words.

2. Considering a special structure of the weaker problem, consisting of t levels, the initial problem Vm,t =? 1 is on the first upper level.

3. Proving the existence of exponential number instances on which the respective sub-problems for each level may have contradictory solutions.

4. Proving that for any solution algorithm to solve all the sub-problems for each level, we must solve all the sub-problems of the next level.

5. Proving the desired estimate.

Thus,

1. Denoting by q(S and S(q the subsets of any ordered set S, respectively, on the right of q and on the left of q, including q, we put

(17)

n = (t+1)m, t < m; (r(1)m(I’k(rm = Ø, k = (r (1)m+1, … , rm; r = 1, … , t+1;

Under the condition (17), we find that

R’n,t = R’n,t(m = U’m,t = ((I’k,1 (… (I’k,t)(m (k,t = tm + 1, ... , n; k,t-1 ((t (1)m(I’k,t(tm; … ;

(18)

k,1 (m(I’k,2 (… (I’k,t(2m).

To check validity of (18), note that due to (17), k,t(1 (I’k,t implies k,t(1 (tm; k,t(2 (I’k,t(1 (I’k,t implies k,t(2 ((t (1)m; … ; and k,1 (I’k,2 (… (I’k,t implies k,1 (2m. If k,1 (m, then I’k,1 = Ø. Thus, m < k,1 (2m, which implies m(I’k,1 = Ø and m((I’k,1 (… (I’k,t) = Ø, and hence m(R’n,t = Ø. If k,2 (2m, then k,1 (m, I’k,1 = Ø, and hence 2m < k,2 (3m, and so on. If k,t (tm, then k,1 (m, and hence k,t = tm + 1, ... , n. We rewrite (18) in the form

Um,t = ((X,1k,1 (… (X,1k,t) (k,t = tm + 1, ... , n; k,t-1 (X,t’k,t; … ; k,1 (X,2’k,2 (… (X,2’k,t),

(19)

X,r’k,s = (r (1)m(I’k,s(rm, s = r, …, t; r = 1, … , t,

where all X,rk,s (Lm are independent, since they have non-crossing subscripts k,s for each r. Denoting them X,r,sk,s, k,s = 1, … , m; s = r, … , t; r = 2, … , t, and X,rk,r, r = 1, … , t, we have

(20)
Um,t = ((X,1k,1 (… (X,tk,t) (k,t = 1, … , m; … ; k,1 (X,2,2’k,2 (… (X,2,t’k,t).

Assuming that the words X,rk,r, r = 2, … , t, are arbitrary from Lm, letting K = (1, … , m), and

(21) X,r,s’k,s = K\(k,s), k,s = 1, … , m; s = r, … , t; r = 2, … , t; X,1’k,1 = (. , k,1, .), k,1 = 1, … , m,

where (. , k,1, .) have the same sense as in Lemma 3, we find the particular value of Um,t as

(22)
Vm,t = ((X,1k,1 (… (X,tk,t) (k,t (K; k,t-1 (K\(k,t); … ; k,1 (K\(k,2, … , k,t)).

We accept the following notation for the input domain IV of Vm,t:

(23)

IV = (Q1, Q2, … , Qt), Q1 = {X,1k,1}, Q2 = {X,2k,2}, … , Qt = {X,tk,t},

and we use (22) in the form

Vm,t = ((Sk,t (X,tk,t) (k,t (K),
Sk,t = ((Sk,t(1, k,t (X,t(1k,t(1) (k,t(1 (K\(k,t)), … ,

Sk,3, … , k,t = ((Sk,2, … , k,t (X,2k,2) (k,2 (K\(k,3, … , k,t)), S’k,2, … , k,t = (X,1’k,1 (k,1 (.

(24)

K\(k,2, … , k,t)) = K\(X,1’k,2 (… (X,1’k,t) = K\(. , k,2, . , … , . , k,t, .) ,
assuming that due to Lemma 5 all sets S’k,2, … , k,t are different and ((. , k,2, . , … , . , k,t, .)(= m/2.

On the strength of Lemma 1, we have

(25)

T (Rn,t =? 1) (T (Um,t =? 1) (T (Vm,t =? 1).
2. Let us consider in more detail the structure of the relations (24).

It is clear that the size (K\(k,r, … , k,t)(> m (t = ((m), and (S’k,2, … , k,t (= m/2. Besides,

 S’k,r, … , k,t ((X’k,r(1 (k,r(1 (K\(k,r, … , k,t)), S’k,r, … , k,t ((Sk,r(1, … , k,t (k,r(1 (K\(k,r, … , k,t))

(26)
(… ((X,1’k,1 (k,1 (K\(k,r , … , k,t)) = K\(. , k,r, . , … , . , k,t, .), r = 3, … , t.

It follows from (26) that S’k,r, … , k,t can be all different, (S’k,r, … , k,t ((m/2+r(2, and (S’k,r, … , k,t(can be from m/2+r(2 to 0, while (X,p’k,p(are changing from m to 0, 2 (p (r(1, r = 3, … , t.

Note that in the expression Vm,t = ((Sk,t (X,tk,t) (k,t (K), Sk,t does not depend on {X,tk,t}, k,t (K. Similarly, in the expression Sk,t = ((Sk,t(1, k,t (X,t(1k,t(1) (k,t(1 (K\(k,t)), Sk,t(1, k,t does not depend on {X,tk,t, X,t(1k,t(1}, k,t, k,t(1 = 1, ... , m, and so on.

3. Let us show that there are exponential number instances from Qt, for which Sk,t (X,tk,t = 1 or not is possible for all k,t (K.

The desired instances are all -X,tk,t, and +X,tk,t such that

(27)

Sk,t (-X,tk,t = 1; Sk,t (+X,tk,t (1, k,t (K.

Since due to (26), r = t, we have (S’k,t (< m/2+t, the set {-X,tk,t} can be the size more than 2m/2(t, and the set {+X,tk,t}, including all X,tk,t (Sk,t, can be the size not less than 2m(1, if Sk,t (1.

Among those instances, there is at least one such that to find it, an exponential time is required. Otherwise, we can find exponential number instances for a polynomial time, which is impossible. Not counting this instance, we can conclude existence of another similar one, and so on.

Reasoning this way, we can conclude the existence of exponential number instances from Qt such that for each of them to find it, an exponential time is required.

Similarly, there are exponential number instances from Qt(1, for which Sk,t(1, k,t (X,t(1k,t(1 (X,tk,t = 1 or not is possible for all k,t (K; k,t(1 (K\(k,t).

The desired instances are all -X,t(1(k,t)k,t(1 and +X,t(1(k,t)k,t(1 such that

(27’)
Sk,t(1, k,t (-X,t(1(k,t)k,t(1 = 1; Sk,t(1, k,t (+X,t(1(k,t)k,t(1 (1, k,t (K; k,t(1 (K\(k,t).

Since due to (26), we have (S’k,t(1, k,t(< m/2+t, the sets {-X,t(1(k,t)k,t(1} can be the size more than 2m/2(t, and the sets {+X,t(1(k,t)k,t(1} can be the size not less than 2m(1.

Among those instances, there is at least one such that to find it, an exponential time is required. Otherwise, we can find exponential number instances for a polynomial time, which is not possible. Not counting this instance, we can conclude existence of another similar one, and so on, until we come to the existence of exponential number instances from Qt(1 such that for each of them to find it, an exponential time is required.

Continuing this reasoning, we can conclude the existence of an exponential number of instances -X,2(k,3, … , k,t)k,2 and +X,2(k,3, … , k,t)k,2 from Q2 such that

Sk,2, … , k,t (-X,2(k,3, … , k,t)k,2 = 1; Sk,2, … , k,t (+X,2(k,3, … , k,t)k,2 (1,

(27’’)

k,t (K.; k,t(1 (K\(k,t); … ; k,2 (K\(k,3, … , k,t),

and for each of them to find it, an exponential time is required.

But to check for each of instances from Q2, if Sk,2, … , k,t (X,2(k,3, … , k,t)k,2 = 1 or not, the time less than exponent of m is required.

4. Let A be any solution algorithm for the problem Vm,t =? 1. Then A has to solve this problem for any particular inputs from the domain IV. So, for the inputs (27), A has to solve all the problems Vm,t = Sk,t (X,tk,t =? 1, Sk,t (1, k,t (K, and all the problems Vm,t = Sk,t =? 1, in the cases X,tk,t = Sk,t, k,t (K. If one of them is missed, the problem Vm,t =? 1 cannot be solved for all inputs.

It means that for the inputs (27), the notations t (Sk,t (X,tk,t =? 1, A) and t (Sk,t =? 1, A) are valid for all k,t (K and the same algorithm A as in the case t (Vm,t =? 1, A).
Similarly, let A be any solution algorithm for the problems Sk,t =? 1, k,t (K. Then A has to solve these problems for any particular inputs from the domain IV\Qt. So, for the inputs with the property (27’), A has to solve all the problems Sk,t(1, k,t (X,t(1k,t(1 =? 1 as well as all the problems Sk,t(1, k,t =? 1, (k,t(1, k,t): k,t (K, k,t(1 (K\(k,t), and we can use the notations t (Sk,t(1, k,t (X,t(1k,t(1 =? 1, A) and t (Sk,t(1, k,t =? 1, A).

Continuing this downward reasoning, we conclude that for any solution algorithm A, we can use the notations t (Sk,r, … , k,t (X,rk,r =? 1, A), r = 2, … , t, for the respective inputs of (27’’)-types.

To estimates the times, we undertake the following upward reasoning. Since

t (Sk,3, … , k,t =? 1, A) = t [((Sk,2, … , k,t (X,2k,2) (k,2 (K\(k,3, … , k,t)) =? 1, A],

(28)

k,t (K; k,t(1 (K\(k,t); … ; k,3 (K\(k,4, … , k,t),

we can conclude that, based on (27’’), there exist exponential number instances for which the algorithm A has to use all k,2 (K\(k,3, … , k,t), in order to solve all the problems Sk,2, … , k,t (X,2k,2 =? 1. Indeed, we know that Sk,2, … , k,t (1, and all cases of Sk,2, … , k,t (X,2k,2 =, (1 are possible, in particular, the case of Sk,2, … , k,t (X,2k,2 = 1 for all k,2 (K\(k,3, … , k,t), except perhaps the last one (independently of their ordering). Hence, due to Lemma 4,

t (Sk,3, … , k,t =? 1, A) ((t (Sk,2, … , k,t (X,2k,2 =? 1, A) (k,2 (K\(k,3, … , k,t)) (

(29)
T [k,2, k,2 (K\(k,3, … , k,t)] > ((m), k,t (K; k,t(1 (K\(k,t); … ; k,3 (K\(k,4, … , k,t).

Besides, we can assume that all Sk,3, … , k,t (1.

Similarly, since

t (Sk,4, … , k,t =? 1, A) = t [((Sk,3, … , k,t (X,3k,3) (k,3 (K\(k,4, … , k,t)) =? 1, A],

(28’)

k,t (K; k,t(1 (K\(k,t); … ; k,4 (K\(k,5, … , k,t),

we can conclude that there exist exponential number instances for which the algorithm A has to use all k,3 (K\(k,4, … , k,t), in order to solve all the problems Sk,3, … , k,t (X,3k,3 =? 1, k,t (K; k,t(1 (K\(k,t);… ; k,3 (K\(k,4, … , k,t). Indeed, since Sk,3, … , k,t (1, all cases of Sk,3, … , k,t (X,3k,3 =, (1 are possible, in particular, the cases of Sk,3, … , k,t (X,3k,3 = 1 for all k,3 (K\(k,4, … , k,t), except perhaps the last ones (independently of their ordering). Hence, due to (29) and Lemma 4,

t (Sk,4, … , k,t =? 1, A) ((t (Sk,3, … , k,t (X,3k,3 =? 1, A) (k,3 (K\(k,4, … , k,t)) (

(t (Sk,3, … , k,t =?1, A) (k,3 (K\(k,4, … , k,t)) (T [(k,2, k,3), k,2 (K\(k,3, … , k,t);

(29’)
k,3 (K\(k,4, … , k,t)] > ((m2), k,t (K; k,t(1 (K\(k,t); … ; k,4 (K\(k,5, … , k,t).

Besides, we can assume that all Sk,4, … , k,t (1.

Continuing this reasoning, we can conclude that, based on (27’),

t (Sk,t =? 1, A) ((t (Sk,3, … , k,t =? 1, A) (k,t(1 (K\(k,t); … ; k,3 (K\(k,4, … , k,t)) (
(29’’) T [(k,2, … , k,t(1), k,2 (K\(k,3, … , k,t); … ; k,t(1 (K\(k,t)] > ((mt(2), k,t (K,

and, based on (27),

T (Vm,t =? 1, A) (sup [t (Vm,t =? 1, A)] (IV) (sup [(t (Sk,t =? 1, A) (k,t (K)] (IV) (

sup [(t (Sk,3, … , k,t =? 1, A) (k,t (K; k,t(1 (K\(k,t); … ; k,2 (K\(k,3, … , k,t))] (IV) (

(30)

T [(k,2, … , k,t), k,2 (K\(k,3, … , k,t); … ; k,t(1 (K\(k,t)] > ((mt(1).
5. The end of the proof follows from (30) and (25) now. (
5. Main result

Theorem. NP (P.

Proof. Let P = NP.

Then the problem P1, i.e., the problem of independent set with the representation (3) of the graph G, is also in P. Therefore, there exists a constant C, independent of n and t, for which T (P1) = T (PV) = T (Rn,t(1 =? 1) < nC, on the strength of Lemma 1+. But verification of Rn,t(1 =? 1 can require the time more than nC in order for any DTM due to Lemma 5 in the case of t > C + 2.

This contradiction means that one of NP-complete problems and hence all of them do not belong to P. But they all belong to NP.

Thus, NP is not equal to P. (
Consequence. A solution of NP-hard problem on any quantum computer requires more than a polynomial time.
Proof. It follows from the results of K. Grover, [3] and C.H. Bennett et al., [1].

The paper [3] shows that there is a quantum computer, which is capable to compute nt objects for any n for the time nt/2. And the paper [1] proves that the order of this time nt/2 cannot be improved. (
6. Discussion

In one of his critical remarks to the author, Dr. D. S. Johnson noted,

“A common failing in P vs. NP proofs is the step in which the author says (without proof), ‘any algorithm for solving this problem must do it in the following way’.”

Let us reconsider briefly the above estimates whether they are valid for all solution algorithms. If the time T (P, A) > T*, where T* is independent of algorithms A, then this estimate is valid for any A, and hence the time T (P) is also not less than T*.

Therefore, the time T (Vm,t =? 1) has order nt(1, since to know if Vm,t = 1 or not, we must know not less than order nt(1 distinct intermediate results, independent of all solution algorithms A.

Some doubts could arise on using a particular case (3) of possible graph representations.

Let a word J instead of I be given, (J’(= (I’(. Besides, there are computable functions: J (Vm,t =? 1, and I (J, T (I, J) < na, where a is any fixed positive number, independent of n. Then

(31)

T (J, Vm,t =? 1) (T (I, Vm,t =? 1) (T (I, J) > ((nt(1) (na > ((nt(1), t > a + 1

A proof of (31) follows rather easily from definitions (8). Thus, using any other representation of the graph, requiring polynomial time, cannot reduce our estimates.

7. On the gap between low and upper bounds

We have T (Rn,1 =? 1) = ((n2), and T (Rn,1) = ((n3).

The first relation is obvious. The second can be shown by the mathematical induction based on the fact that (Is (s = 2, … , n) can be considered as the union of the mutually independent sets Ir (Ir+1, r = 2, 4, … .

We have T (Rn,2 =? 1), T (Rn,2) = ((n4).

It follows from a particular case I’k,2 = (k,2, k,2 + n/2), n is even, when the words Jk,2 = Ik,2 (Ik,2 + n/2, k,2 = 2, …, n/2, are independent, and T (Jk,2 =? 1), T (Jk,2) = ((n3), since a distance between Ik,2 and Ik,2+n/2 has the order n2.

There is a foundation that T (Rn,t =? 1), T (Rn,t) = ((nt+2), where t is independent of n, t > 1.

This follows likely from the possibility that the estimate in Lemma 5 could be improved from ((nt(1) to ((nt+2) with regard to T (Rn,1 =? 1) = ((n3).

Thus, simple algorithms of computation Rn,t via successive unions of intersections according to the relations (16) could be proven to be optimal by the time in order n.

8. Open problems

It seems that in order of increasing importance, we have at least the following open problems:

7.1. What is the time for verification of Rn,t =? 1, when t is dependent of n?

That time will be probably also (n/t)t+2 in order for all t until n/2; n is even.

7.2. Could the estimate 2((m) hard instances in Lemma 5, for which the time for verification of Vm,t =? 1 is not less than mt(1 in order, be essentially strengthened?

Note that although the estimate in Lemma 5 is valid for exponential number instances, the result wanted is almost all instances, like in the case of the problem recognition of palindromes. For that result, the average time also cannot be polynomial. Note more that for many applications of NP-hard problems, it is very important to know the sets of non-hard instances or their sizes.

7.3. Is it possible that a non-algorithmic-type computer for effective solution of NP-hard problems could be constructed? If yes, then how?

Remarks

The author started the investigation of the problem NP vs. P long time ago (in connection with his investigation of optimal algorithms [V. Ivanov, 6, 7]). He tried to prove NP = P, using n-dimensional integrals [6]. After failing in this direction, he started to prove NP (P. He has his results submitted to J. of Algorithms [V. Ivanov, 8], and left the proof to the reader here.

References

[1] C. H. Bennett, E. Bernstein, G. Brassard, U.V. Vazirani, Strengths and Weaknesses of Quantum Computing, SIAM J. on Computing, 26 (1997), 1510-1523

[2] M. R. Garey, D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, W.H. Freeman and Co. (1979)

[3] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack, Physical Review Letters, 79, N 2 (1997), 325-328

[4] Handbook of Theoretical Computer Science, Edited by J. van Leeuwen, Elsevier Science Publishers B. V. (1990)

[5] Handbook of Discrete and Combinatorial Mathematics, Editor-in-Chief Ken Rosen, CRS Press (2000)

[6] V. V. Ivanov, Methods of Computation on Computers. Guidance, Kiev, Naukova dumka, (1986) (in Russian)

[7] V. V. Ivanov, Model Development and Optimization, KAP (1999)

[8] V. V. Ivanov, A Proof of Cook’s Conjecture, submitted to J. of Algorithms, the last version in March 2005

Dr. Viktor V. Ivanov

Address: 12713 English Hills CT Apt D

Tampa, FL 33617-1321 USA

Phone: (813) 985-9014

E-mail: ivanvvn6@cs.com

10

