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Abstract. We present an extension of Jensen’s uniqueness theorem for
viscosity solutions of second order partial differential equations to the
case of equations generated by vector fields.

1. Introduction

In a celebrated theorem R. Jensen [J] established the uniqueness of vis-
cosity solutions of fully non-linear second order partial differential equations
in Rn. These equations are of the form

F (x, u(x),∇u(x), D2u(x)) = 0,

where x is in some domain Ω ⊂ Rn, the function u : Ω 7→ R is real valued, the
gradient ∇u is the vector (∂x1u, ∂x2u, . . . , ∂xnu), and the second derivatives
D2u is the n × n symmetric matrix with entries ∂2

xixj
u. Jensen’s theorem

was later crafted in the language of jets and extended in [CIL]. In this
latter reference, Jensen’s theorem follows from the Maximum Principle for
Semi-continuous Functions.

In this article we present and extension of the Crandall-Ishii-Lions max-
imum principle for semi-continuous functions and investigate the analogue
of Jensen’s theorem when the vector fields {∂1, ∂x2 , . . . , ∂xn} are replaced by
an arbitrary collection of vector fields or frame

X = {X1, X2, . . . , Xm}.
The natural gradient is the vector

DXu = (X1(u), X2(u), . . . , Xm(u))

and the natural second derivative is the m ×m not necessarily symmetric
matrix with entries Xi(Xj(u)). Two important examples are:

(i) when m = n and the frame X is the orthonormal frame determined by
a Riemannian metric, and

(ii) when m < n and the frame X satisfies the Hörmander condition

(1.1) dim (Lie Algebra span{X1, X2, . . . , Xm}(x)) = n.

Our main result, see Theorem 1 below, extends the maximum principle
for semi-continuous functions to the case (i). In case (ii) an extension of
Jensen’s theorem has been recently found by Wang [W] when the frame X is
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the horizontal subspace of the graded Lie algebra of a Carnot group. To the
best of our knowledge the general case of Hörmander vector fields without
group structure remains open.

2. Taylor Formula for Vector Fields

Consider a frame X = {X1, X2, . . . , Xn} in Rn consisting of n linearly
independent smooth vector fields. Write

Xi(x) =
n∑

j=1

aij(x)
∂

∂xj

for smooth functions aij(x). Denote by A(x) the matrix whose (i, j)-entry
is aij(x). We always assume that det(A(x)) 6= 0 in Rn.

We first write down an appropriate Taylor theorem adapted to the frame
X. For this, we will use exponential coordinates as done in [NSW]. Fix a
point p ∈ Rn and let t = (t1, t2, . . . , tn) denote a vector close to zero. We
define the exponential based at p of t, denoted by Θp(t), as follows: Let γ
be the unique solution to the system of ordinary differential equations

γ′(s) =
n∑

i=1

tiXi(γ(s))

satisfying the initial condition γ(0) = p. We set Θp(t) = γ(1) and note this
is defined in a a neighborhood of zero.

Recall that the natural gradient of a function u relative to the frame X
is DXu = (X1(u), X2(u), . . . , Xn(u)) and that the second derivative matrix
D2

Xu is the n × n matrix with entries Xi(Xj(u)). We shall be interested
in the quadratic form determined by this matrix, which is the same as the
quadratic form determined by the symmetrized second derivative

(D2
Xu)

∗ =
1
2

(
D2

Xu+ (D2
Xu)

t
)
.

Applying the one-dimensional Taylor’s formula to u(γ(s)) we get

Lemma 1. ([NSW]) Let u be a smooth function in a neighborhood of p. We
have:

u (Θp(t)) = u(p) + 〈DXu(p), t〉+
1
2
〈
(
D2

Xu(p)
)∗
t, t〉+ o(|t|2)

as t→ 0.

For this lemma to hold we do not need to have n-linearly independent
vector fields. The vector fields do not have to be independent and their
number does not have to match the dimension. See [NSW].

Applying lemma (1) to the coordinates functions we obtain:
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Lemma 2. Write Θp(t) =
(
Θ1

p(t),Θ
2
p(t), . . . ,Θ

n
p (t)

)
. Note that we can think

of Xi(x) as the i-th row of A(x). Similarly DΘk
p(0) is the k-column of A(p)

so that
DΘp(0) = A(p).

For the second derivative we get

〈D2Θk
p(0)h, h〉 = 〈At(p)h,D(At(p)h)k〉

for all vectors h ∈ Rn.

In particular, the mapping t 7→ Θp(t) is a diffeomorphism taking a neigh-
borhood of 0 into a neighborhood of p.

A natural question is how DXu and (D2
Xu)

∗ change if we change frames.
The following lemma details how to change from the canonical frame
{ ∂

∂x1
, ∂

∂x2
, . . . ∂

∂xn
} to the frame X and follows easily from the definitions of

DXu, (D2
Xu)

∗ and the chain rule. We denote the gradient relative to the
canonical frame by ∇.

Lemma 3. For smooth functions u we have

DXu = A · ∇u,
and for all t ∈ Rn

〈
(
D2

Xu
)∗· t, t〉 = 〈A ·D2u · At· t, t〉+

n∑
k=1

〈At· t,∇
(
At· t

)
k
〉 ∂u
∂xk

.

The Taylor series gives the first version of the comparison principle for
smooth functions.

Lemma 4. Let u and v be smooth functions such that u− v has an interior
local maximum at p. Then we have

(2.1) DXu(p) = DXv(p)

and

(2.2)
(
D2

Xu(p)
)∗ ≤ (

D2
Xv(p)

)∗
.

Let us consider some examples:

Example 1. The canonical frame

This is just { ∂
∂x1

, ∂
∂x2

, . . . ∂
∂xn

}. The first and second derivatives are just the
usual ones and the exponential mapping is just addition

Θp(t) = p+ t.

Example 2. The Heisenberg group

We consider the Riemannian frame which is given by the left invariant vector
fields {X1, X2, X3} in R3. For p = (x, y, z) the matrix A is just

A(p) =

 1 0 −y/2
0 1 x/2
0 0 1

 .
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A simple calculation shows that

〈At· t,D
(
At· t

)
k
〉 = 0

not only for k = 1 and k = 2, but also for k = 3. That is, although A is not
constant, we have that Lemma 3 simplifies to

(2.3) 〈
(
D2

Xu
)∗· t, t〉 = 〈A ·D2u · At· t, t〉.

The exponential mapping is just the group multiplication

Θp(t) = p ·Θ0(t) = (x+ t1, y + t2, z + t3 + (1/2)(xt2 − yt1)).

From Lemma (3) we see that the additional simplification of (2.3) occurs
whenever D2Θk

p(0) = 0. In particular this is true for all step 2 groups as it
can be seen from the Campbell-Hausdorff formula.

Example 3. The Engel group

This is a step 3 group for which the analogue of (2.3) does not work. Denote
by p = (x, y, z, w) a point in R4. The Riemannian frame is given by the
vector fields: 

X1 = ∂
∂x −

y
2

∂
∂z +

(−xy
12 − z

2

)
∂

∂w

X2 = ∂
∂y + x

2
∂
∂z + x2

12
∂

∂w

X3 = ∂
∂z + x

2
∂

∂w
X4 = ∂

∂w

So that the matrix A is

A =


1 0 −y

2
−xy
12 − z

2

0 1 x
2

x2

12
0 0 1 x

2
0 0 0 1


Let t = (t1, t2, t3, t4). Direct calculations shows that

〈At· t,D
(
At· t

)
1
〉 = 0

〈At· t,D
(
At· t

)
2
〉 = 0

〈At· t,D
(
At· t

)
3
〉 = 0

but for k = 4 we get

〈At· t,D
(
At· t

)
k
〉 = −x

6
t1t2 +

y

6
t21.

Therefore, for a smooth function u we have

DXu = A ·Du,

and for all t ∈ Rn

〈
(
D2

Xu
)∗· t, t〉 = 〈A ·D2u · At· t, t〉+

(
−x

6
t1t2 +

y

6
t21

) ∂u

∂w
.
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3. Jets

To define second order superjets of an upper-semicontinuous function u,
let us consider smooth functions ϕ touching u from above at a point p.

K2,+(u, p) =
{
ϕ ∈ C2 in a neighborhood of p, ϕ(p) = u(p),

ϕ(q) ≥ u(q), q 6= p in a neighborhood of p
}

Each function ϕ ∈ K2,+(u, p) determines a pair (η,X) by

(3.1)
η =

(
X1ϕ(p), X2ϕ(p), . . . , Xnϕ(p)

)
Aij = 1

2

(
Xi(Xj(ϕ))(p) +Xj(Xi(ϕ))(p)

)
.

This representation clearly depends on the frame X. Using the Taylor the-
orem for ϕ and the fact that ϕ touches u from above at p we get

(3.2) u (Θp(t)) ≤ u(p) + 〈η, t〉+
1
2
〈Xt, t〉+ o(|t|2).

We may also consider J2,+
X (u, p) defined as the collections of pairs (η,X)

such that (3.2) holds. Using the identification given by (3.1) it is clear that

K2,+(u, p) ⊂ J2,+
X (u, p).

In fact, we have equality. This is the analogue of the Crandall-Ishii Lemma
of [C].

Lemma 5.
K2,+(u, p) = J2,+

X (u, p).

Proof. Given a pair (η,X) ∈ J2,+
X (u, p) we must find a C2 function ϕ so that

(3.1) holds. Given any pair (ξ, Y ) the version of the lemma for the canonical
frame in [C] gives a C2 function ϕ touching u from above at p such that
Dϕ(p) = ξ and D2ϕ(p) = Y. Using lemma 3 we get

DXϕ(p) = A(p) · ξ

and

〈
(
D2

Xϕ
)∗· t, t〉 = 〈A · Y · At· t, t〉+

n∑
k=1

〈At· t,D
(
At· t

)
k
〉ξk.

Thus, it suffices to solve for (ξ, Y ) the equations

η = A(p) · ξ

and

〈X · t, t〉 = 〈A · Y · At· t, t〉+
n∑

k=1

〈At· t,D
(
At· t

)
k
〉ξk.

�
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Theorem 1. The maximum principle for semicontinuous functions
Let u be upper semi-continuous in a bounded domain Ω ⊂ Rn. Let v be lower
semi-continuous in Ω. Suppose that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y),

where both sides are not +∞ or −∞ simultaneously. If u− v has a positive
interior local maximum

sup
Ω

(u− v) > 0

then we have:
For τ > 0 we can find points pτ , qτ ∈ Rn such that

i)
lim

τ→∞
τψ(pτ , qτ ) = 0,

where
ψ(p, q) = |p− q|α,

for a fixed α ≥ 2.
ii) There exists a point p̂ ∈ Ω such that pτ → p̂ (and so does qτ by (i))

and
sup
Ω

(u− v) = u(p̂)− v(p̂) > 0,

iii) there exist symmetric matrices Xτ ,Yτ and vectors η+
τ , η−τ so that

iv)
(η+

τ ,Xτ ) ∈ J
2,+
X (u, pτ ),

v)
(η−τ ,Yτ ) ∈ J

2,−
X (v, qτ ),

vi)
η+

τ − η−τ = o(1)
and

vi)
Xτ 5 Yτ + o(1)

as τ →∞.

Proof. The idea of the proof is to use the Euclidean theorem to get the jets
and then twist them into position. As in the Euclidean case we get points pτ

and qτ so that (i) and (ii) hold. We apply now the Euclidean maximum
principle for semicontinuous functions of Crandall-Ishii-Lions [CIL]. There
exist n× n symmetric matrices Xτ , Yτ so that

(τDp(ψ(pτ , qτ )), Xτ ) ∈ J
2,+
eucl. (u, pτ )

and
(−τDq(ψ(pτ , qτ )), Yτ ) ∈ J

2,−
eucl. (v, qτ )

with the property

(3.3) 〈Xτγ, γ〉 − 〈Yτχ, χ〉 5 〈Cγ ⊕ χ, γ ⊕ χ〉
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where the vectors γ, χ ∈ Rn, and

C = τ(A2 +A)

and
A = D2

p,q(ψ(pτ , qτ ))
are 2n× 2n matrices.

Let us now twist the jets according to lemma 3. Call ξ+τ = τDp(ψ(pτ , qτ ))
and ξ−τ = −τDq(ψ(pτ , qτ )). By our choice of ψ we get ξ+τ = ξ−τ . Set

η+
τ = A(pτ ) · ξ+τ

and
η−τ = A(qτ ) · ξ−τ .

We see that

|η+
τ − η−τ | = |A(pτ )− A(qτ )||ξ+τ |

≤ Cτ |pτ − qτ ||Dp(ψ(pτ , qτ ))|
≤ Cτψ(pτ , qτ )
= o(1),

where we have used the fact that |p− q||Dpψ(p, q)| ≤ Cψ(p, q), property (i)
and the smoothness, in the form of a Lipschitz condition, of A(p).

The second order parts of the jets are given by

〈Xτ · t, t〉 = 〈A(pτ )XτAt(pτ )· t, t〉+
∑

k=1,n

〈At(pτ )· t,D(At(p)· t)k[pτ ]〉(ξ+τ )k

and

〈Yτ · t, t〉 = 〈A(qτ )YτAt(qτ )· t, t〉+
∑

k=1,n

〈At(qτ )· t,D(At(p)· t)k[qτ ]〉(ξ−τ )k.

In order to estimate their difference we write

〈Xτ · t, t〉 − 〈Yτ · t, t〉 = 〈XτAt(pτ )· t,At(pτ )· t〉 − 〈YτAt(qτ )· t,At(qτ )· t〉

+
n∑

k=1

〈At(pτ )· t,D(At(p)· t)k[pτ ]〉(ξ+τ )k

−
n∑

k=1

〈At(qτ )· t,D(At(p)· t)k[qτ ]〉(ξ−τ )k.

Using inequality 3.3, we get

〈Xτ · t, t〉 − 〈Yτ · t, t〉 ≤ 〈C (A(pτ )· t⊕ A(qτ )· t) ,A(pτ )· t⊕ A(qτ )· t〉

+ τ

[
n∑

k=1

〈At(pτ )· t,D(At(p)· t)k[pτ ]〉
∂ψ

∂pk
(pτ , qτ )

]

− τ

[
n∑

k=1

〈At(qτ )· t,D(At(p)· t)k[qτ ]〉
∂ψ

∂pk
(pτ , qτ )

]
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To estimate the first term in the right hand side we note that symmetries
of ψ give a block structure to D2

p,qψ so that we have

〈C(γ ⊕ δ), γ ⊕ δ) ≤ Cτ |γ − δ|2.
Replacing γ by A(pτ )· t and δ by A(qτ )· t, using the smoothness of A, and
property (i) we get that this first term is o(1). The second and third term
together are also o(1) since their difference is estimated by a constant times
τ |pτ − qτ ||Dpψ(pτ , qτ )|.

�

3.1. Fully Non-Linear Elliptic Equations. Consider a continuous func-
tion

F :Rn × R× Rn × S(Rn) −→ R
(x, z, η,X ) −→ F (x, z, η,X ).

We will always assume that F is proper; that is, F is increasing in u and F
is decreasing in X .

Definition 1. A lower semicontinuous function v is a viscosity superso-
lution of the equation

F (x, u(x), DXu(x), (D2
Xu(x))

∗) = 0

if whenever (η,Y) ∈ J2,−
X (v, x0) we have

F (x0, v(x0), η,Y) ≥ 0.

Equivalently, if ϕ ∈ C2 touches v from below at x0, then we must have

F (x0, v(x0), DXϕ(x0), (D2
Xϕ(x0))∗) ≥ 0.

Definition 2. An upper semicontinuous function u is a viscosity subso-
lution of the equation

F (x, u(x), DXu(x), (D2
Xu(x))

∗) = 0

if whenever (η,X ) ∈ J2,+
X (u, x0) we have

F (x0, u(x0), η,X ) ≤ 0.

Equivalently, if ϕ ∈ C2 touches u from above at x0, then we must have

F (x0, u(x0), DXϕ(x0), (D2
Xϕ(x0))∗) 5 0.

Note that if u is a viscosity subsolution and (η,X ) ∈ J̄2,+
X (u, x0) then, by

the continuity of F , we still have

F (x0, u(x0), η,X ) ≤ 0.

A similar remark applies to viscosity supersolutions and the closure of second
order subjets.

A viscosity solution is defined as being both a viscosity subsolution and
a viscosity supersolution. Observe that since F is proper, it follows easily
that if u is a smooth classical solution then u is a viscosity solution.
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Examples:

• The Hörmander-Kohn operator relative to the frame X:

−∆Xu = −

 n∑
j=1

XjXju

 = 0

• The ∞-Laplace equation ([Bi]) relative to the frame X:

−∆X,∞u = −

 n∑
i,j=1

(Xiu)(Xju)XiXju

 = −〈(D2
Xu)

∗DXu,DXu〉

• The p-Laplace equation, 2 ≤ p <∞, relative to the frame X:

−∆X,pu = −
[
|DXu|p−2∆Xu+ (p− 2)|DXu|p−4∆X,∞u

]
= −div (|DXu|p−2DXu) = 0

Strictly speaking we need p ≥ 2 for the continuity of the corresponding F .
In the Euclidean case it is possible to extend the definition to the full range
p > 1. This is a non-trivial matter not yet studied in the case of vector fields
(to the best of our knowledge.) See [JLM] for the Euclidean case.
• The Monge-Ampère equation relative to the frame X:

−det(D2
Xu)

∗ = f

Here the corresponding F (X ) = −detX is only proper in the cone of positive
semidefinite matrices.

Once we have the maximum principle (theorem 1) we get comparison
theorems for viscosity solutions of many classes of fully nonlinear equations
of the general form

F (x, u(x), DXu(x), (D2
Xu(x))

∗) = 0

where F is continuous and proper as it is done in [CIL]. Here is an example:

Corollary 1. Suppose F (x, z, η,X ) satisfies

σ(r − s) ≤ F (x, r, η,X )− F (x, s, η,X ),
|F (x, r, η,X )− F (y, r, η,X )| ≤ ω1(|x− y|),
|F (x, r, η,X )− F (x, r, η,Y)| ≤ ω2(|X − Y|) an
|F (x, r, η,X )− F (x, r, ξ,X )| ≤ ω3(|η − ξ|),

where the constant σ > 0 and the functions ωi : [0,∞) 7→ [0,∞) satisfy
ωi(0+) = 0 for i = 1, 2, 3. Let u be an upper-continuous viscosity solution
and v a lower semi-continuous viscosity supersolution to

F (x, u(x), DXu(x), (D2
Xu(x))

∗) = 0

in a domain Ω so that for all p ∈ ∂Ω we have

lim sup
q∈Ω,q→p

u(q) ≤ lim inf
q∈Ω,q→p

v(q)
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and both sides are not ∞ or −∞ simultaneously. Then

u(p) ≤ v(p)

for all p ∈ Ω.
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