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THOMAS BIESKE

Abstract. In this note, we extend the concepts of viscosity solutions and absolute
minimizers to the setting of Carnot groups. In particular, the existence-uniqueness
of infinite harmonic functions in the viscosity sense and the relationship between ab-
solute minimizers and infinite harmonic functions are discussed. As a consequence,
the uniqueness of absolute minimizers follows.

1. Carnot Groups

We begin by considering RN for some integer N > 2 with a nilpotent stratification
that decomposes RN into

V1 ⊕ V2 ⊕ · · · ⊕ Vw

for appropriate vector subspaces Vi that satisfy the Lie bracket relation [V1, Vi] = Vi+1

for i = 1, 2, . . . , w−1. That is, V1 generates the stratification. There is an orthonormal
basis under some fixed Riemannian metric 〈·, ·〉 denoted by

X11, X12, . . . , X1n1 , X21, X22, . . . , X2n2 , . . . , , Xw1, Xw2, . . . , Xwnw

so that

Vi = span{Xi1, Xi2, . . . , Xini
}.

Let g be the Lie Algebra generated by these vector fields. A vector in g can be
associated with an element in the Carnot group G by identifying

∑w
i=1

∑ni

j=1 xijXij

with (x11, x12, . . . , xwnw). This identification is used to define a group product on G
via the Campbell-Baker-Hausdorff formula

p · q = p+ q +
1

2
[p, q] +R(p, q)

where R(p, q) involves Lie brackets of order 2 and higher. Note that by skew-
symmetry of the Lie bracket, a Carnot group is, in general, non-abelian. In particular,
right and left multiplication are not equivalent.

In control theory, one is interested in equations of the form

x′(t) =

n1∑
i=1

ui(t)X1i(x)

for L1 functions ui defined on some interval. (See, for example, [Be].) Since the vec-
tors in V1 do not necessarily span g, there is a loss of information in certain directions,
creating a sub-Riemannian structure. (The role of Carnot groups to sub-Riemannian
geometry is analogous to that of Euclidean spaces and Riemannian geometry. [Be] )
In particular, only the vectors in V1 are used to define the horizontal gradient of a
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function. That is, given a function u : G 7→ R, the horizontal gradient of u is given
by

∇0u = (X11u,X12u, . . . , X1n1u).

Here one can see that if the dimension of g is significantly larger than the dimension
of V1, there may be a great amount of missing information. Also, note that vector
fields in Vi are actually ith order derivatives, which means the full gradient, which is
defined using all the vectors in the basis for g, contains derivatives up to wth order.
In particular, ∇0u is the projection of the full gradient onto V1. We will also consider
two second order derivatives, namely, the semi-horizontal gradient, defined by

∇1u = (X11u,X12u, . . . , X1n1u,X21u, . . . , X2n2u)

and the symmetrized horizontal second derivative matrix, denoted by (D2u)?, with
entries

((D2u)?)ij =
1

2
(X1iX1ju+X1jX1iu)

for i, j = 1, 2, . . . , n1. Using these second order derivatives leads to a natural defini-
tion.

Definition 1. A function u is C2
sub if ∇1u is continuous and X1iX1ju is continuous

for all i, j.

The set of C2
sub functions is strictly larger than the set of Euclidean C2 functions.

For example, a quick calculation (or Theorem 4.10 in [Be]) shows that the function

f(x11, x12, . . . , xwnw) = (x21)
3
2

is C2
sub at the origin, but it is clearly not C2 in the Euclidean sense at the origin.

Carnot groups are endowed with a natural metric based on horizontal curves, which
are defined by γ : R 7→ G with tangent vector γ′(t) in V1. Using these curves, the
Carnot-Carathéodory distance is defined for the points p and q as follows:

dC(p, q) = inf
Γ

∫ 1

0

〈γ′(t), γ′(t)〉
1
2dt

where the set Γ is the set of all horizontal curves γ such that γ(0) = p and γ(1) = q.
By Chow’s theorem (See, for example, [Be].) any two points can be connected by a
horizontal curve, which makes dC(p, q) a left-invariant metric on G.

In addition to the (non-smooth) Carnot-Carathéodory metric, there is a smooth
gauge bi-Lipschitz equivalent to the metric. Given a point p with coordinates xij as
above, the gauge is given by

‖p‖2(w!) =
w∑

i=1

(

ni∑
j=1

|xij|2)
w!
i .

The gradation of g produces a natural family of dilations given by δs, for s > 0, so
that

δs(Vi) = siVi

and this induces a family of dilations on G given by

δs(p) = (sx11, sx21, . . . , s
2x21, s

2x22, . . . , s
wxwnw).
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Both the metric and the gauge behave appropriately with respect to these dilations,
namely,

dC(δsp, δsq) = s dC(p, q)

‖δsp‖ = s‖p‖.

Two well-known examples of Carnot groups are Euclidean space and the Heisenberg
group. The Euclidean space RN is a Carnot group with w = 1 and with the vectors
X1,j = ej (the canonical vectors). In addition, the Carnot-Carathéodory metric and
smooth gauge are both equivalent to the standard Euclidean metric and the dilations
are the usual isotropic dilations. Having only one non-trivial Lie bracket, the Heisen-
berg group is a non-abelian Carnot group most closely resembling Euclidean space.
We shall consider the first Heisenberg group H1, but the following can be extended
in the natural way to higher dimensional Heisenberg groups. The Heisenberg algebra
h1 can be identified with R3 with coordinates (x, y, z) spanned by a basis consisting
of vector fields X1, X2, and X3 given at a point (x0, y0, z0) by

X1 =
∂

∂x
− y0

2

∂

∂z
,

X2 =
∂

∂y
+
x0

2

∂

∂z
,

and X3 =
∂

∂z
.

Using these vector fields, the only non-trivial Lie bracket relationship is [X1, X2] = X3

and most notably, all Lie brackets of length at least 2 are trivial. This shows that
H1 is a Carnot group with w = 2 and

V1 = span{X1, X2}
V2 = span{X3}.

We can easily compute that the gauge is given by

‖p‖ = ((x2 + y2)2 + z2)
1
4

and the dilations are

δsp = (sx, sy, s2z).

For a further discussion on Carnot groups, the interested reader is directed to
[BMT], [BT], [Be], [B], [DK], [F], [FS], [GN], [G], [H], [HH], [K], [Ka], [Ko], [LMS],
[MS], [Mi], [Mo], [MoS], and [St].

2. Viscosity Solutions in Carnot Groups

Using the horizontal derivatives defined in the previous section, one can define
partial differential equations on Carnot groups. In particular, it is natural to consider
fully nonlinear degenerate elliptic equations of the form

F (p, u(p),∇1u(p), (D
2u(p))?) = 0

where F (p, w, η,X) is increasing in w and decreasing in the symmetric matrix X.
Our main example of such an F is the negative infinite Laplacian, defined by

−∆0,∞u = −〈(D2u(p))?∇0u(p),∇0u(p)〉.
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(The negative sign is needed to have the function F decrease as the symmetric matrix
X increases.) Also, recall that the subelliptic P -Laplacian is defined for 1 < P <∞
by

∆0,Pu =
2∑

i=1

X1i(‖∇0u‖P−2X1iu)

so that formally,
∆0,∞ = lim

P→∞
∆0,P .

For results concerning the P -Laplacian on the Heisenberg group, see [B], [CDG] and
[BMT].

Another nonlinear example is the sub-Riemannian Monge-Ampère equation given
by

det((D2u(p))?) = f(p)

for some function f . Notice that this differs from the Euclidean version only by the
use of the symmetrized horizontal derivative matrix. For a catalog of examples in
the Euclidean case, see [CIL].

Working with this class of equations, it is natural to extend the concept of solution
from smooth functions to functions that are merely continuous. This is done via
viscosity solutions. We begin with some definitions.

Definition 2. A continuous function u : G 7→ R is a viscosity subsolution at p0 to

F (p0, u(p0),∇1u(p0), (D
2u(p0))

?) = 0

if for every C2
sub function φ : G 7→ R so that u − φ has a local maximum at p0 we

have
F (p0, φ(p0),∇1φ(p0), (D

2φ(p))?) ≤ 0.

A continuous function u : G 7→ R is a viscosity supersolution at p0 to

F (p0, u(p0),∇1u(p0), (D
2u(p0))

?) = 0

if for every C2
sub function ψ : G 7→ R so that u − ψ has a local minimum at p0 we

have
F (p0, ψ(p0),∇1ψ(p0), (D

2ψ(p))?) ≥ 0.

A continuous function u : G 7→ R is a viscosity solution at p0 to

F (p0, u(p0),∇1u(p0), (D
2u(p0))

?) = 0

if it is both a viscosity subsolution and a viscosity supersolution.

Note that the test functions ψ and φ may not exist, in which case the definition is
trivially satisfied. Existence of these functions (or lack thereof) is related to regularity
of the function u.

We are mainly concerned with viscosity infinite harmonic functions, that is, using
the notation of the above definition, functions u that satisfy

−〈(D2φ(p))?∇0φ(p0),∇0φ(p0)〉 ≤ 0

−〈(D2ψ(p))?∇0ψ(p0),∇0ψ(p0)〉 ≥ 0.

In order to study sub-Riemannian viscosity solutions, one needs subelliptic versions
of the machinery in [CIL], which is also an excellent reference for Euclidean viscosity
solutions. In addition, the reader may examine [BDM], [Cr1], [Je], and [JLM]. For
sub-Riemannian viscosity solutions, the reader is directed to [B], [BM], [LMS], [M],
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[MS], and [W]. The following theorem concerning infinite harmonic functions in
Carnot groups is proved in [BM] and [W], independently. It is an extension of the
Euclidean case found in [BDM] and [Je].

Theorem 1. Let Ω ⊂ G be a domain and v : ∂Ω 7→ R be a continuous function.
Then the Dirichlet problem {

∆0,∞u = 0 in Ω
u = v on ∂Ω

has a unique viscosity solution u.

3. Absolute Minimizers

In his paper, McShane [MC] showed that a Lipschitz function defined only on
the boundary of a domain can be extended to the interior of the domain so that
the extension function is Lipschitz with the same Lipschitz constant as the original
function. That is, McShane proved that given the function f ∈ Lip∂Ω, there is a
function u ∈ LipΩ so that {

u = f on ∂Ω
LipΩ(u) = Lip∂Ω(f).

However, these extensions are not unique; there may even be an uncountable num-
ber of them. Motivated by questions of uniqueness, G. Aronsson [A] studied the
concept of minimal Lipschitz extensions, called absolute minimizers. In a Carnot
group G, we define an absolute minimizer by the following.

Definition 3. A function u ∈ Lip(Ω) is an absolute minimizer if for every V ⊂ Ω
and h ∈ Lip(V ), such that u = h on ∂V , then

||∇0u||L∞(V ) ≤ ||∇0h||L∞(V ).

For a thorough discussion of absolute minimizers, the reader is directed to the
article by Juutinen [Ju2], which appears in this volume. In addition, the reader may
consult [A], [BJW], [BC], [Cr2], [CEG], [Ju1], and [MC].

It has been shown independently in [BC] and [W] that absolute minimizers in
Carnot groups are viscosity infinite harmonic functions as given by the following
theorem.

Theorem 2. Let Ω ⊂ G be a domain and let u : Ω 7→ R be a function so that
u ∈ Lip(Ω). Then if u is an absolute minimizer, then u is viscosity infinite harmonic
in Ω.

Combining this result with the previous section, we have the following corollary.
([BM] and [W], independently.)

Corollary 3. Let Ω ⊂ G be a domain and let v : ∂Ω 7→ R be Lipschitz on ∂Ω. Then
there is a unique absolute minimizer equal to v on ∂Ω.
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