On Simultaneous Block-Diagonalization of Cyclic Commuting Matrices

Tom McKinley and Boris Shekhtman
Department of Mathematics
University of South Florida
Tampa, Fl. 33620
boris@math.usf.edu (Boris Shekhtman)
http://www.math.usf.edu/~boris/
December 11, 2007

Abstract
We study simultaneous block-diagonalization of cyclic d-tuples of commuting matrices. Some application to ideal projectors are also presented. In particular we extend Hans Stetter’s theorem characterizing Lagrange projectors.

1 Introduction

Let V be a finite-dimensional space over complex field \mathbb{C} and let $L := (L_1, ..., L_d)$ be a d-tuple of pairwise commuting operators on V. Every polynomial $p(x_1, ..., x_d) = \sum c_{k_1, ..., k_d} x_1^{k_1} ... x_d^{k_d} \in \mathbb{C}[x_1, ..., x_d]$ defines an operator

$$p(L) := \sum c_{k_1, ..., k_d} L_1^{k_1} ... L_d^{k_d}$$

on V. A d-tuple L is called cyclic if there exists a vector $v_0 \in V$ such that

$$\{p(L)v_0, p \in \mathbb{C}[x_1, ..., x_d]\} = V. \quad (1.2)$$

A vector v_0 satisfying (1.2) is called a cyclic vector for L.

A vector $v \in V$ is called a common eigenvector for L if for all $j = 1,...,d$ there exist $\lambda_j \in \mathbb{C}$ such that $L_j v = \lambda_j v$. The d-tuple $\lambda = (\lambda_1, ..., \lambda_d) \in \mathbb{C}^d$ is called an eigentuple of L. The set of all eigentuples of L is denoted by $\sigma(L)$.

In case $d = 1$, an operator L is cyclic if and only if L is 1-regular, i.e., every eigenspace of L is at most one-dimensional. For $d > 1$ this is false in both directions as the following example (already used in [4] for different purposes) demonstrates:
Example 1.1 First consider \(L = (L_1, L_2) \) on \(\mathbb{C}^3 \) given by

\[
L_1 = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad
L_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}.
\] (1.3)

This is a cyclic \(d \)-tuple, \(\sigma(L) = \{(0, 0)\} \) and vectors \((0, 1, 0)\) and \((0, 0, 1)\) are common eigenvectors for \(L \). On the other hand \(L^t = (L^t_1, L^t_2) \) is given by

\[
L^t_1 = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad
L^t_2 = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\] (1.4)

is not cyclic, yet the only common eigenspace is one-dimensional, spanned by the vector \(v = (1, 0, 0) \).

Observe that \(L \) is 1-regular means that the Jordan form of \(L \) does not contain two Jordan blocks with the same eigenvalue. In other words, the number of Jordan blocks in the Jordan form of \(L \) is precisely the same as the number of distinct eigenvalues of \(L \): \(\#(\sigma(L)) \).

The main result of this paper (Theorem 2.6) shows that a cyclic \(d \)-tuple \(L \) of \(d \) commuting operators is simultaneously block-diagonalizable into \(\#(\sigma(L)) \) blocks and \(\#(\sigma(L)) \) is the largest number of blocks in any simultaneous block-diagonalization of \(L \). The converse is still false. Indeed, the pair \(L = (L_1, L_2) \) in the preceding example can be decomposed into exactly as many blocks as the pair \(L^t = (L^t_1, L^t_2) \).

Definition 1.2 Let \(L := (L_1, ..., L_d) \) be a \(d \)-tuple of operators on \(V \). A direct sum decomposition

\[
V = V_1 \oplus V_2 \oplus ... \oplus V_t
\] (1.5)
is \(L \)-invariant if each subspace \(V_k \), \(k = 1, ..., t \) is an invariant subspace for each of the operators \(L_j \), \(j = 1, ..., d \).

Letting \(L_{j,k} := L_j \mid_{V_k} \) denote the restriction of \(L_j \) onto \(V_k \) we write

\[
L_k = L \mid_{V_k} := (L_{1,k}, ..., L_{d,k}).
\] (1.6)

The simultaneous block-diagonalization of \(L \) into \(t \) blocks amounts to nothing more then the \(L \)-invariant decomposition (1.5) of \(V \): Indeed, for an appropriately chosen bases, the matrix \(\tilde{L}_j \) of \(L_j \) can be written in a block-diagonal form

\[
\tilde{L}_j = \begin{bmatrix}
\tilde{L}_{j,1} & 0 & \cdots & 0 \\
0 & \tilde{L}_{j,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \tilde{L}_{j,t}
\end{bmatrix},
\]

where each \(\tilde{L}_{j,k} \) is a square matrix of size \(\text{dim} V_k \) representing operator \(L_{j,k} \) on \(V_k \). We write \(L = \text{diag}(L_k) \).
Thus our main theorem shows that for a cyclic d-tuple L of commuting operators on V, the maximal number t in an L-invariant decomposition (1.5) of V is exactly the same as $\#\sigma(L)$.

In Section 3 we apply this theorem to study decompositions of ideal projectors and associated multiplication operators. In particular, we extend Stetter’s characterization of Lagrange projectors (cf. [10], [2]) to general ideal projectors.

We use the rest of this section to recall a few well-known facts from commutative algebra (cf. [5], [6]):

For every ideal $J \subset \mathbb{C}[x_1, \ldots, x_d]$ we use $Z(J)$ to define the associated variety

$$Z(J) := \{ z \in \mathbb{C}^d : p(z) = 0, \text{ for all } p \in J \}$$

in \mathbb{C}^d. The ideal J is called zero-dimensional if $\dim \mathbb{C}[x_1, \ldots, x_d]/J < \infty$. An ideal J is zero-dimensional if and only if the set $Z(J)$ is finite. In fact $\#Z(J) \leq \dim \mathbb{C}[x_1, \ldots, x_d]/J$. An ideal J is radical if $f^m \in J$ for some integer m implies $f \in J$. A zero-dimensional ideal J is radical if and only if $\#Z(J) = \dim \mathbb{C}[x_1, \ldots, x_d]/J$. An ideal $J \subset \mathbb{C}[x_1, \ldots, x_d]$ is called primary if $fg \in J$ implies $f \in J$ or $g^m \in J$ for some integer m. A zero-dimensional ideal is primary if and only if the variety $Z(J)$ consists of a single point in \mathbb{C}^d. The Lasker-Noether theorem, applied to zero-dimensional ideals, states that every zero-dimensional ideal has a unique minimal primary decomposition, that is

$$J = \bigcap_{k=1}^{\#Z(J)} J_k$$

where each J_k is a primary zero-dimensional ideal and $Z(J_k) \cap Z(J_n) = \emptyset$ for $n \neq k$.

2 Cyclic d-tuples.

Let V be a finite-dimensional space over the complex field \mathbb{C} and let $L := (L_1, \ldots, L_d)$ be a d-tuple of pairwise commuting operators on V. A d-tuple L defines an ideal

$$J_L := \{ p \in \mathbb{C}[x_1, \ldots, x_d] : p(L) = 0 \} \subset \mathbb{C}[x_1, \ldots, x_d].$$

(2.1)

Proposition 2.1. The ideal J_L is zero-dimensional, hence $Z(J_L)$ is finite.

Proof. Let $\mathcal{L}(V)$ be the space of all linear operators on V. Since V is finite dimensional, so is $\mathcal{L}(V)$. Let $\phi_L : \mathbb{C}[x_1, \ldots, x_d] \rightarrow \mathcal{L}(V)$ be a mapping defined by

$$\phi_L(p) := p(L) \in \mathcal{L}(V).$$

Since $\ker \phi_L = J_L$, the factorization

$$\begin{array}{ccc}
\mathbb{C}[x_1, \ldots, x_d] & \xrightarrow[\alpha]{} & \mathcal{L}(V) \\
\downarrow \phi_L & & \downarrow \beta \\
\mathbb{C}[x_1, \ldots, x_d]/J_L
\end{array}$$

is an isomorphism.
induces an injection β into a finite-dimensional space. Thus $\dim \mathbb{C}[x_1, \ldots, x_d]/J_L < \infty$ and hence $\#Z(J_L) < \infty$. ■

The following proposition collects a few simple and well-known properties of commuting d-tuples of operators. The proofs are given purely for convenience.

Proposition 2.2 Let L be a d-tuple of pairwise commuting operators on V. Then

(i) L has a common eigenvector, i.e., $\sigma(L) \neq \emptyset$.

(ii) If $v \in V$ is a common eigenvector for L that corresponds to an eigentuple λ then $p(L)v = p(\lambda)v$

(iii) If $\lambda \in \sigma(L)$ and $p \in J_L$ then $p(\lambda) = 0$, i.e., $\sigma(L) \subset Z(J_L)$.

(iv) If L is cyclic and v_0 is a cyclic vector for L then

$$J_L = \{ p \in \mathbb{C}[x_1, \ldots, x_d] : p(L)v_0 = 0 \}.$$ \hfill (2.3)

Proof. (i) By induction. For $d = 1$ the statement is obvious. Let $(\lambda_1, \ldots, \lambda_{d-1}) \in \mathbb{C}^{d-1}$ be an eigentuple for (L_1, \ldots, L_{d-1}). Then the subspace $H := \cap_{j=1}^{d-1} \ker(L_j - \lambda_j I) \subset V$ is non-zero and invariant with respect to L_d. Indeed if $h \in H$ then $(L_j - \lambda_j I)L_d h = L_d(L_j - \lambda_j I)h = 0$, hence $L_d h \in H$ and any eigenvector of L_d in H is a common eigenvector for (L_1, \ldots, L_d).

(ii) Follows from applying $p(L)$ in the form (1.1) to v.

(iii) Let $v \in V$ is a common eigenvector for L that corresponds to an eigentuple $\lambda \in \sigma(L)$. For any $p \in J_L$ we have $0 = p(L)v = p(\lambda)v$ and, since $v \neq 0$, $p(\lambda) = 0$.

(iv) Assume that $p(L)v_0 = 0$ and $v \in V$. Then, by cyclicity, there exists a polynomial $q \in \mathbb{C}[x_1, \ldots, x_d]$ such that $v = q(L)v_0$. We have $p(L)v = p(L)q(L)v_0 = q(L)p(L)v_0 = 0$. Hence $p(L)v = 0$ for all $v \in V$ and $p \in J_L$. ■

Remark 2.3 In the Theorem 2.6 below we will show that $\sigma(L)$ is actually equal to $Z(J_L)$.

The next lemma is the key to our analysis of L-invariant decomposition of V:

Lemma 2.4 Let $L := (L_1, \ldots, L_d)$ be a cyclic d-tuple of pairwise commuting operators on V. Let $V = V_1 \oplus V_2$ be an L-invariant decomposition of V. Then $L_k := L | V_k$ ($k = 1, 2$) is cyclic on V_k and $\sigma(L_1) \cap \sigma(L_2) = \emptyset$. In other words common eigenvectors for L in V_1 and V_2 correspond to different eigentuples.

Proof. Let v_0 be a cyclic vector for L and let $v_0 = v'_0 + v''_0$ with $v'_0 \in V_1$ and $v''_0 \in V_2$. Then clearly v'_0 is a cyclic vector for L_1 and v''_0 is a cyclic vector for L_2. Let $p \in \mathbb{C}[x_1, \ldots, x_d]$ be such that $p(L)v_0 = v'_0$. Then

$$v'_0 = p(L)v_0 = p(L)(v'_0 + v''_0) = p(L)v'_0 + p(L)v''_0,$$

hence

$$(1 - p)(L)v''_0 = p(L)v''_0.$$
Since \(V_1 \cap V_2 = \{0\} \) and \(V_1 \) and \(V_2 \) are invariant with respect to \(L \), it follows that
\[(1 - p)(L)v_0 = p(L)v_0 = 0. \text{ But } (1 - p)(L)v_0 = (1 - p)(L_1)v_0 = 0 \text{ and } p(L)v_0 = p(L_2)v_0 = 0. \] Hence, by Proposition 2.2 (iv), \((1 - p) \in J_{L_1} \) and \(p \in J_{L_2} \). Now, if \(\lambda \in \sigma(L_1) \cap \sigma(L_2) \) then, by Proposition 2.2 (iii), \(p(\lambda) = 0 \) and \((1 - p)(\lambda) = 0 \) which is clearly not possible.

Remark 2.5 The converse does not hold. Since the operators \(L^t = (L_1^t, L_2^t) \) from Example 1.1 have (vacuously) the following property: For any decomposition of \(C^3 = V_1 \oplus V_2 \) into \(L \)-invariant subspaces, \(V_1 \) and \(V_2 \) cannot each have an eigenvector that correspond to the same eigenvalue.

Theorem 2.6 Let \(L := (L_1, ..., L_d) \) be a cyclic \(d \)-tuple of pairwise commuting operators on \(V \). Let
\[V = V_1 \oplus V_2 \oplus ... \oplus V_l \tag{2.4} \]
be an \(L \)-invariant decomposition of \(V \). Then
\begin{enumerate}

 \item \(l \leq \#\sigma(L) \leq \#Z(J_L) \).

 \item There exists an \(L \)-invariant decomposition of \(V \):
 \[V = V_1 \oplus V_2 \oplus ... \oplus V_m \tag{2.5} \]
 with \(m = \#Z(J_L) \).

 \item In particular, \(\sigma(L) = Z(J_L) \) and \(m = \#\sigma(L) = \#Z(J_L) \) is a maximal number of subspaces in any \(L \)-invariant decomposition of \(V \).

 \item The decomposition (2.5) with \(m = \#Z(J_L) \) is unique and \(\sigma(L_k) \), where \(L_k := L | V_k \), is a singleton.
\end{enumerate}

Proof. The first inequality in (i) follows from Lemma 2.4 by pigeonhole principle, the second from Proposition 2.2 (iii).

To prove the second statement of the theorem, let \(Z(J_L) = \{z_1, ..., z_m\} \subset C^d \) and let
\[J_L = \cap_{k=1}^m J_k \tag{2.6} \]
be the primary decomposition of \(J_L \), i.e., each \(J_k \) is a primary ideal with \(Z(J_k) = \{z_k\} \). We use \(J^{(k)} \) to denote the ideal \((\cap_{s \neq k} J_s) \). Let \(v_0 \) be a cyclic vector for \(L \) and define
\[V_k = \{p(L)v_0, p \in J^{(s)}\}. \tag{2.7} \]
We first claim each \(V_k \) is an invariant subspace for each \(L_j \). Indeed \(L_j p(L)v_0 = (x_j p)(L)v_0 \) and if \(p \in J^{(s)} \), so is \(x_j p \) thus showing that \(L_j p(L)v_0 \in V_k \).

Now if \(k \neq l \) and \(v \in V_k \cap V_l \) we have \(v = p(L)v_0 = q(L)v_0 \) with \(p \in (\cap_{s \neq k} J_s) \) and \(q \in (\cap_{s \neq l} J_s) \). We have \((p(L) - q(L))v_0 = 0 \) implying (by proposition 2.2 (iv)) \((p(L) - q(L))v = 0 \) hence \(p - q \in J_L = \cap_{k=1}^m J_k \). In particular \(p - q \in J^{(k)} \) and so \(p \in J^{(k)} \), so \(v \in V_k \cap V_l \). Thus \(q \in J^{(k)} \cap J^{(l)} = J_L \) and, by definition of \(J_L \), \(q(L) = 0 \) implying \(v = q(L)v_0 = 0 \). This shows that \(V_k \cap V_l = \{0\} \). It remains to prove that
\[V_1 + V_2 + ... + V_m = V \tag{2.8} \]
Let $h_k \in \mathbb{C}[x_1, \ldots, x_d]$ be such that
\[h_k(z_s) = \delta_{k,s}. \] (2.9)

Since h_k is equal to zero for each point of $Z(J^{(k)})$, by Hilbert’s Nullstellensatz, there exists an integer n such that $h_k^n \in J^{(k)}$ for all k. From (2.9)
\[(1 - \sum_{k=1}^{m} h_k^n)(z_s) = 0 \text{ for all } s = 1, \ldots, m \]
and again, by the Nullstellensatz, there exists an integer l so that $(1 - \sum_{k=1}^{m} h_k^n)^l \in J_L$, thus $(1 - \sum_{k=1}^{m} h_k^n)^l(L) = 0$. Expanding $(1 - \sum_{k=1}^{m} h_k^n)^l$ we obtain
\[(1 - \sum_{k=1}^{m} h_k^n)^l = 1 - \sum_{k=1}^{m} h_k^n p_k \in J_L \]
for some polynomials $p_k \in \mathbb{C}[x_1, \ldots, x_d]$ (p_k are polynomials in h_k^n). Hence $I = \sum_{k=1}^{m} h_k^n p_k(L)$ and every $v \in V$ has a decomposition $v = \sum_{k=1}^{m} h_k^n p_k(L)v$. Since $v = f(L)v_0$ for some $f \in \mathbb{C}[x_1, \ldots, x_d]$, we obtain
\[v = \sum_{k=1}^{m} h_k^n p_k(L)f(L)v_0 = \sum_{k=1}^{m} (h_k^n p_k f)(L)v_0. \]

Since $h_k^n \in J^{(k)}$, it follows that $(h_k^n p_k f) \in J^{(k)}$ and $(h_k^n p_k f)(L)v_0 \in V_k$ thus proving (2.8) and (ii).

(iii) follows immediately from parts (i) and (ii) of the theorem.

To prove (iv), suppose that
\[V = U_1 \oplus U_2 \oplus \ldots \oplus U_m \] (2.10)
is an L-invariant decomposition with $m = \#Z(J_L)$ and let L_k be the restriction of L to U_k. The ideal J_{L_k} is primary, for otherwise the primary decomposition of this ideal would lead to an L_k-invariant (hence L-invariant) decomposition of U_k and thus decomposition of V into more then m subspaces. This would contradict part (i) of the theorem. It is now easy to check that
\[J_L = \cap_{k=1}^{m} J_{L_k} \] (2.11)
is the primary decomposition of J_L, hence coincides with decomposition (2.6).
Without loss of generality, let $J_{L_k} = J_k$ for all $k = 1, \ldots, m$. Let
\[v_0 = u_0^{(1)} + \ldots + u_0^{(m)} \] (2.12)
be the decomposition of the cyclic vector \(v_0 \) according to (2.9). For every \(v \in V \) there exists a polynomial \(p \in \mathbb{C}[x_1, \ldots, x_d] \) such that

\[
v = p(L)v_0 = p(L)u_0^{(1)} + \ldots + p(L)u_0^{(m)} = p(L_1)u_0^{(1)} + \ldots + p(L_m)u_0^{(m)}.
\] (2.13)

It follows from (2.10) that \(v \in U_k \) if and only if

\[
p(L_s)u_0^{(s)} = 0 \quad \text{for all } s \neq k.
\] (2.14)

But, clearly, \(u_0^{(k)} \) is a cyclic vector for \(L_k \), hence (2.14) is equivalent to \(p \in \cap_{p \neq k}(J_{L_k}) = J^{(k)} \). Thus \(p(L)v_0 \in U_k \) if and only if \(p \in J^{(k)} \) and \(U_k = V_k \). ■

Let us finish this section with another observation on cyclic commuting d-tuples:

For a \(d \)-tuple \(L := (L_1, \ldots, L_d) \) of pairwise commuting operators on \(V \) define \(C(L) \) to be the set of all operators that commute with every operator \(L_1, \ldots, L_d \). In case \(d = 1 \), an operator \(L \) is cyclic if and only if every operator in \(C(L) \) is a polynomial in \(L \):

\[
C(L) = \{ p(L), \ p \in \mathbb{C}[x_1] \}.
\]

Theorem 2.7 Let \(L := (L_1, \ldots, L_d) \) be a cyclic \(d \)-tuple of pairwise commuting operators on \(V \). If \(T \in C(L) \) then \(T = q(A) \) for some \(q \in \mathbb{C}[x_1, \ldots, x_d] \). The converse does not hold. The \(d \)-tuple \(L^t := (L_1^t, L_2^t) \) defined in (1.4) is not cyclic, yet

\[
C(L^t) = \{ p(L^t), \ p \in \mathbb{C}[x_1, x_2] \}.
\]

Proof. Assume that \(L \) is cyclic and let \(v_0 \) be a cyclic vector for \(L \). If \(T \in C(L) \), let \(q \in \mathbb{C}[x_1, \ldots, x_d] \) be a polynomial such that \(T v_0 = q(L)v_0 \). We claim that \(T = q(L) \). Indeed, let

\[
\{v_j = f_j(L)v_0, \ j = 1, \ldots, N\}
\]

be a basis for \(V \). Then

\[
q(L)v_j = q(L)f_j(L)v_0 = f_j(L)q(L)v_0 = f_j(L)T v_0 = T f_j(L)v_0 = T v_j
\]

for every \(j = 1, \ldots, N \), which shows that \(q(L) = T \).

As to the converse, let \(T \) commutes with \(L_1^t \) and \(L_2^t \) from example ???. Then \(T^t \) commutes with \(L_1 \) and \(L_2 \). By the first part of the theorem, there exists a polynomial \(q \in \mathbb{C}[x_1, x_2] \) such that \(T^t = q(L_1, L_2) \). Hence \(T = q(L_1^t, L_2^t) \). ■

3 Decomposition of Ideal projectors

In this section we use Theorem 2.6 to extend Stetter’s characterization of Lagrange projectors(cf. [10], [2]) to general ideal projectors acting in the space \(\mathbb{C}[x] := \mathbb{C}[x_1, \ldots, x_d] \) of polynomials in \(d \) variables.

Definition 3.1 (cf. [1]) A linear idempotent map \(P \) on \(\mathbb{C}[x] \) is called an **ideal projector** if \(\ker P \) is an ideal in \(\mathbb{C}[x] \).
Theorem 3.2 (de Boor [2]) A linear operator P on $\mathbb{C}[x]$ is an ideal projector if and only if
\begin{equation}
P(fg) = P(fPg)
\end{equation}
for all $f, g \in \mathbb{C}[x]$.

A standard example of an ideal projector onto an N-dimensional subspace $V \subset \mathbb{C}[x]$ is a Lagrange projector, i.e., a linear projector P for which Pf is the unique element in V such that $f(z_k) = Pf(z_k)$, $j = 1, \ldots, N$ for some set $\{z_1, \ldots, z_N\}$ of N distinct points in \mathbb{C}^d. In this case the ideal $\ker P$ is a radical ideal, its associated variety
\[Z(\ker P) := \{z \in \mathbb{C}^d : f(z) = 0, \ \forall f \in \ker P\} = \{z_1, \ldots, z_N\}. \]
The minimal primary decomposition for the ideal $\ker P$ is
\[\ker P = J_1 \cap J_2 \cap \ldots \cap J_N \]
where each J_j is a maximal ideal $J_j = \{f \in \mathbb{C}[x] : f(z_j) = 0\}$.

Every ideal projector P onto V generates a d-tuple $M_P = (M_1, \ldots, M_d)$ of d multiplication operators on V defined by
\[M_j(v) := P(x_jv) \]
for every $v \in V$. The d-tuple M_P is a cyclic d-tuple of pairwise commuting operators on V (cf. [2]) and
\[\{p(M_1, \ldots, M_d)v_0, \ p \in \mathbb{C}[x]\} = V \]
with $v_0 := P1 \in V$. Some insight into the relation between P and M_P is shed by a beautiful observation of Stetter [10] (cf. also [2], [4], [6]):

Theorem 3.3 The ideal projector P is a Lagrange projector if and only if M_1, \ldots, M_d are simultaneously diagonalizable, i.e., there exists a basis $\{v_1, \ldots, v_N\}$ in V consisting of common eigenvectors of M_j such that:
\[M_jv_k = z_{j,k}v_k, \ j = 1, \ldots, d, \ k = 1, \ldots, N \]
for some $z_{j,k} \in \mathbb{C}$. In this case the projector P interpolates at sites $z_k := (z_{j,k}, \ j = 1, \ldots, d) \in \mathbb{C}^d$ and the eigenvectors v_k are the fundamental polynomials of Lagrange interpolation, i.e., $v_k(z_s) = 0$ if $k \neq s$.

Normalizing v_k in the above theorem so that $v_k(z_s) = \delta_{k,s}$ we can write the projector P as
\[P = \sum_{k=1}^N P_k \]
where each P_k is a one-dimensional Lagrange projector defined by $P_kf = f(z_s)v_k$ satisfying the orthogonality relations:
\[P_kP_s = 0 \text{ if } k \neq s. \]

As an immediate application of the Theorem 2.6, we obtain the following generalization of the Stetter’s theorem to arbitrary ideal projectors:
Theorem 3.4 Let P be an ideal projector onto the N-dimensional subspace V. Let
\[\ker P = J_1 \cap J_2 \cap \ldots \cap J_m, \quad m \leq N \]
be the minimal primary decomposition of $\ker P$. Then
(i) M_P has a unique (up to order of blocks) block diagonalization $M_P = \text{diag}(M_k)$ consisting of m blocs and m is a maximal number of blocks in any block-diagonalization of M_P.
(ii) Each block M_k defines a distinct prime ideal
\[I_k = \{ p \in \mathbb{C}[x] : p(M_k) = 0 \} \]
and
\[\ker P = I_1 \cap I_2 \cap \ldots \cap I_m \]
is the minimal primary decomposition of the $\ker P$.

Remark 3.5 If P is an ideal projector, $M_P = (M_1, \ldots, M_d)$ and the operators M_j are simultaneously diagonalizable, then the number of blocks $m = N$ is clearly maximal, hence we obtain the Stetter’s theorem.

Let us illustrate this theorem on a simple example:

Example 3.6 Let P be an ideal projector from $\mathbb{C}[x,y]$ onto its subspace $V := \text{span}\{1,x,y\}$ such that $(Pf)(0,0) = f(0,0), \quad \frac{\partial}{\partial x}(Pf)(0,0)) = \frac{\partial}{\partial x}(f)(0,0)), \quad (Pf)(0,1) = f(0,1)$. It is easy to check that $Px^2 = 0, \quad Pxy = 0$ and $Py^2 = y$. Hence the two multiplication operators are
\[
M_1 = \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad M_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{bmatrix}
\]
Let $S = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{bmatrix}$, hence $S^{-1} = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{bmatrix}$. Then
\[
SM_1 S^{-1} = \begin{bmatrix}
0 & 1 \\
0 & 0 \\
0 & 0
\end{bmatrix}
\]
and
\[
SM_2 S^{-1} = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 1
\end{bmatrix}
\]
is a simultaneous block-diagonalization of M_1 and M_2 consisting of two blocks corresponding to an M_P-invariant decomposition
\[V = \text{span}\{1,x\} \oplus \text{span}\{y\}. \]
This is the maximal M_P-invariant decomposition and thus a maximal block-diagonalization.
We conclude this paper by discussing the relationship between ideal decomposition of an ideal projector P onto the space V and the M_P-invariant decomposition of V.

Definition 3.7 Let P be an operator from $\mathbb{C}[x]$ onto its subspace V. We say that

$$P = \sum_{k=1}^{t} P_k$$

(3.2)
is an ideal decomposition of P if each P_k, $(k = 1, ..., t)$ is an ideal projector and

$$P_k P_s = 0 \text{ if } k \neq s.$$

(3.3)

Theorem 3.8 If (3.2) is an ideal decomposition of P then P is an ideal projector and

$$V = \oplus_{k=1}^{t} (\text{ran } P_k)$$

(3.4)
is an M_P-invariant decomposition of V.

Conversely, if P is an ideal projector onto V and

$$V = V_1 \oplus V_2 \oplus ... \oplus V_t$$

(3.5)
is an M_P-invariant decomposition of V then it generates an ideal decomposition (3.2) of P with $\text{ran } P_k = V_k$.

Proof. We have

$$P(fg) - P(fPg) = \sum_{k=1}^{t} P_k(fg) - \sum_{k=1}^{t} P_k(f \sum_{s=1}^{t} P_s g)$$

by (3.1)

$$= \sum_{k=1}^{t} P_k(fg) - \sum_{k=1}^{t} P_k(f \sum_{s=1}^{t} P_k P_s g)$$

by (3.3)

$$= \sum_{k=1}^{t} P_k(fg) - \sum_{k=1}^{t} P_k(f) P_k g$$

by (3.1)

$$= \sum_{k=1}^{t} P_k(fg) - \sum_{k=1}^{t} P_k(fg) = 0$$

and by Theorem 3.2, P is an ideal projector. Decomposition (3.4) easily follows from (3.2) and (3.3). It remains to show that decomposition (3.4) is M_P-invariant. Let $f \in (\text{ran } P_k)$. Then

$$M_j f := P(x_j f)$$

by (3.1)

$$= P(x_j P f)$$

by (3.3)

$$= P(x_j P_k f)$$

$$= \sum_{s=1}^{t} P_s(x_j P_k f)$$

by (3.1)

$$= \sum_{s=1}^{t} P_s(x_j P_s P_k f)$$

by (3.3)

$$= P_k(x_j P_k f)$$

and $M_j f \in (\text{ran } P_k)$.

Conversely, let P be an ideal projector onto V and suppose that (3.5) is an M_P-invariant decomposition of V. Then

$$M_j (g) = P(x_j g) \in V_k$$

for every $g \in V_k$.
and thus
\[P(fg) \in V_k \text{ for every } g \in V_k. \]

Let \(Q_k \) be the projector from \(V \) onto \(V_k \) parallel to \(\oplus_{s \neq k} V_s \) and define \(P_k := Q_k P \). We have
\[I_V = \sum Q_k \text{ and } Q_k Q_s = 0 \text{ for } k \neq s \quad (3.6) \]
from which (3.2) and (3.3) follows. Clearly \(P_k \) is a projector onto \(V_k \) and we only have left to check that \(\ker P_k \) is an ideal. This follows from the following sequence of implications:

\[
\begin{align*}
& f \in \ker P_k \Rightarrow P f \in \ker Q_k \Rightarrow P f \in \oplus_{s \neq k} V_s \quad \text{by (3.1) and (3.6)} \\
& P(gf) = P(gf) f \in \oplus_{s \neq k} V_s \text{ for every } g \in \mathbb{C}[x] \Rightarrow \\
& Q_k P(gf) = 0 \Rightarrow gf \in \ker P_k.
\end{align*}
\]

This proves the theorem. \(\blacksquare \)

Combining theorems 2.6 and 3.8 we immediately obtain

Theorem 3.9 Let \(P \) be an ideal projector onto the \(N \)-dimensional subspace \(V \). Let
\[\ker P = J_1 \cap J_2 \cap \ldots \cap J_m \quad (3.7) \]
be the minimal primary decomposition of \(\ker P \). Then the projector \(P \) has a unique ideal decomposition
\[P = \sum_{k=1}^m P_k \]
and this decomposition is maximal in the sense that if
\[P = \sum_{k=1}^t \tilde{P}_k \]
is an ideal decomposition of \(P \) then \(t \leq m \).

Example 3.10 Let \(P \) be the ideal projector defined in the example 3.6. Define ideal projectors \(P_1 \) onto \(\text{span}\{1,x\} \) and \(P_2 \) onto \(\text{span}\{y\} \) by requiring \((P_1 f)(0,0) = f(0,0), \quad \frac{\partial}{\partial x}(P_1 f)(0,0)) = \frac{\partial}{\partial x}(f)(0,0)), \quad (P_2 f)(0,1) = f(0,1)\). Then \(P_1 P_2 = 0 \) and \(P = P_1 + P_2 \) is the maximal ideal decomposition of \(P \).

Remark 3.11 The existence (but not uniqueness or maximality) of ideal decomposition (3.2) also follows from the description of ideal projectors in [8], cf. also [3]. Thus the size of the blocks in the maximal block-diagonalization of \(M_P \) is the multiplicity of zeroes of the corresponding primary ideals in (3.7).
References

