On Error Formulas for Multivariate Interpolation.

Boris Shekhtman
Department of Mathematics
University of South Florida
Tampa, Fl. 33620
boris@math.usf.edu
January 9, 2006

Abstract

In this paper we prove that the existence of an error formula of a form suggested in [2] leads to some very specific restrictions on an ideal basis that can be used in such formulas. As an application, we provide a negative answer to one version of the question posed by Carl de Boor (cf. [2]) regarding the existence of certain minimal error formulas for multivariate interpolation.

1 Introduction

The various forms of “error formulas” for multivariate interpolation is a popular subject of discussion in the literature (cf. [2]–[5] and [8]–[14]). In particular, a possible algebraic nature of such formulas was suggested in [2], [10], [11] and [12].

In this paper we prove that the existence of error formula of the form suggested in [2] leads to some very specific restrictions on an ideal basis that can be used in such formulas. As an application, we supply a (very) negative answer to one version of the question posed by Carl de Boor (cf. [2]) regarding the existence of certain minimal error formulas for multivariate interpolation. We will need some notations:

The symbol \(\mathbb{F} \) stands for the real or complex field, \(\mathbb{F}^d[x] = \mathbb{F}[x_1, x_2, ..., x_d] \) stands for polynomials of \(d \)-variables (\(\mathbb{F}[x], \mathbb{F}[x, y], \mathbb{F}[x, y, z] \) denote the polynomials of one, two and three variables respectively). An element \(f \in \mathbb{F}^d[x] \) is written as a finite sum \(\sum \hat{f}(k_1, ..., k_d) x_1^{k_1} x_2^{k_2} ... x_d^{k_d} \) or in the multiindex notations \(\sum \hat{f}(\mathbf{k}) \mathbf{x}^\mathbf{k} \) with \(\hat{f}(\mathbf{k}) \in \mathbb{F} \). For a polynomial \(f \in \mathbb{F}^d[x] \), we use

\[
f(D) := \sum \hat{f}(k_1, ..., k_d) \frac{1}{k_1! k_2! ... k_n!} \frac{\partial^{k_1 + k_2 + ... + k_n}}{\partial x_1^{k_1} \partial x_2^{k_2} ... \partial x_d^{k_d}}
\]

to denote the differential operator on \(\mathbb{F}^d[x] \). The space of polynomials of degree less than \(n \) is denoted by \(\mathbb{F}^d_{<n}[x] \), The set of polynomials of degree \(n \) is \(\mathbb{F}^d_n[x] \),
while the space of homogeneous polynomials of degree \(n \) is denoted as \(\mathbb{F}^d_{[n]}[x] \).

Finally the set of monomials of degree \(n \) is \(M^d_{[n]}[x] \) and \(M^d[x] \) is the set of all monomials in \(\mathbb{F}^d[x] \).

Every polynomial \(f \in \mathbb{F}^d[x] \) can be written (uniquely) as a finite sum \(f = \sum f^{[k]} \) with \(f^{[k]} \in \mathbb{F}^d_{[k]}[x] \) being homogeneous component of \(f \). The non-zero homogeneous component that correspond to the largest \(k \) is called the leading term of the polynomial \(f \) and is denoted by \(\text{Lt}(f) \). Hence, the leading term of a polynomial \(f \in \mathbb{F}^d[x] \) is the unique homogeneous polynomial \(\text{Lt}(f) \) such that \(\deg(f - \text{Lt}(f)) < \deg f \). Similarly, the non-zero homogeneous component that correspond to the least \(k \) is the least term of \(f \) and is denoted by \(\text{lt}(f) \).

For every ideal \(J \subset \mathbb{F}[x] \) we use \(Z(J) \) to denote the associated variety

\[Z(J) = \{ z \in \mathbb{F}^d : f(z) = 0, \forall f \in J \}. \]

The ideal \(J \) is called zero-dimensional (cf. [7]) if

\[\dim(\mathbb{F}^d[x]/J) < \infty, \]

which implies (and for \(\mathbb{F} = \mathbb{C} \)) the condition that the set \(Z(J) \) is finite.

Likewise, with every set \(Z \subset \mathbb{F}^d \) we associate an ideal

\[J(Z) := \{ f \in \mathbb{F}^d[x] : f(z) = 0, \forall z \in Z \}. \]

It is easy to see (cf. [6]) that \(J \subset J(Z(J)) \). An ideal \(J \) is called a radical ideal if \(J(Z(J)) = J \). Equivalently (cf. [6]) an ideal \(J \) is a radical ideal if an only if \(f^m \in J \) for some integer \(m \) implies \(f \in J \).

For a subset \(B \subset \mathbb{F}^d[x] \) we use \(\langle B \rangle \) to denote the ideal generated by \(B \). The set \(B \) is called the basis of the ideal \(\langle B \rangle \). By the Hilbert basis theorem, for any ideal \(J \subset \mathbb{F}^d[x] \) there exist finite basis \(B \) such that \(J = \langle B \rangle \). There are several notions of minimal bases. For clarity we will call a basis \(B \) reduced if \(\langle B \rangle \neq \langle B_0 \rangle \) for any proper subset \(B_0 \subset B \). A basis \(B \) is called a minimal basis for an ideal \(J = \langle B \rangle \subset \mathbb{F}^d[x] \) if \(\#B < \#B \) implies that \(B_0 \) is not a basis for \(J \). For an ideal \(J \subset \mathbb{F}^d[x] \) we set

\[m(J) := \#B, \text{ with } B \text{ being a minimal basis for } J. \]

A basis \(B \) for an ideal \(J \in \mathbb{F}^d[x] \) is called an \(H \)-basis if for every \(f \in J \) there exist \(\{ g_{b,f} \in \mathbb{F}^d[x], b \in B \} \) such that

\[f = \sum_{b \in B} g_{b,f}b \quad \text{and} \quad \deg g_{b,f} + \deg b \leq \deg f \quad \text{for all } b \in B. \]

Definition 1.1 (Birkhoff, [1]). Let \(E \) be a subspace of \(\mathbb{F}^d[x] \). A projector \(P \) from \(\mathbb{F}^d[x] \) onto \(E \) is called ideal if \(\ker P \) is an ideal in \(\mathbb{F}[x] \).

The following characterization of ideal projectors is due to de Boor (cf. [2]):
Theorem 1.2 A linear mapping $P : \mathbb{F}^d[x] \rightarrow \mathbb{F}^d[x]$ is an ideal projector if and only if the equality

$$P(fg) = P(fPg)$$

holds for all $f, g \in \mathbb{F}^d[x]$.

The standard example of an ideal projector is a Lagrange projector, i.e., a projector P for which Pf is the unique element in its range that agrees with f at a certain finite set Z in \mathbb{F}^d. For its kernel consists of exactly those polynomials that vanish on Z, i.e., it is the zero-dimensional radical ideal whose variety is Z.

In [2] and [4] Carl de Boor asked for the existence of the error formula of the following form:

$$f(x) - Pf(x) = \sum_{b \in B} b(x)\mu_{b,x}(H_b(D)f),$$

where P is an ideal projector onto $\mathbb{F}_d^d\leq_n[x]$, B is a (minimal) basis for the ideal $\ker P$, H_b is a homogeneous polynomial satisfying

$$H_b(D)c = \delta_{b,c} \text{ for } b, c \in B$$

and $\mu_{b,x}$ is a functional on $\mathbb{F}^d[x]$ that depends on b and x, but not on the function f.

For $d = 1$ such formulas exist (cf. [2] and [17]) and the minimal basis B consists of one (unique monic) polynomial of degree n.

In this paper we will show that (1.1) and (1.2) implies that the sets

$$\{H_b : b \in B\} \text{ and } \{Lt(b) : b \in B\}$$

form (dual) linear bases for the linear space $\mathbb{F}_d^d\leq_n[x]$ of homogeneous polynomials of degree n. In particular, this implies that the cardinality of B,

$$\#B = N(n) := \binom{n + d - 1}{d - 1},$$

which is the number of monomials of degree n in $\mathbb{F}^d[x]$. Since (as we will show in section 3) for all Lagrange projectors P onto $\mathbb{F}_d^d\leq_n[x]$, there exists a basis B such that $\langle B \rangle = \ker P$ and $\#B = d$, and since

$$\binom{n + d - 1}{d - 1} > d$$

for $d > 1$, hence for these projectors (1.1) and (1.2) can not be valid with minimal B.

In the last section we discuss a stronger possibility, that a minimal bases for the kernel of an ideal projector P onto $\mathbb{F}_d^d\leq_n[x]$ admits an error formula of type (1.1), (1.2) if and only if P is the Taylor projector.

We will need an analog of the theorem 1.1 for the projector $P' := I - P$.
Theorem 1.3 A linear mapping P on $\mathbb{F}[x]$ is an ideal projector if and only if

$$P'(fg) = fP'g + P'(fPg), \forall f, g \in \mathbb{F}[x].$$

(1.5)

Proof. We have

$$P'(fg) = fg - P(fg)$$

and

$$fP'g + P'(fPg) = f(g - Pg) + fPg - P(fPg) = fg - P(fPg).$$

Hence (1.5) is equivalent to (1.0). ■

2 The Bases for Error Formulas

We will start with a simple observation:

Lemma 2.1 Let P be an ideal projector onto $\mathbb{F}_{<n}^d[x]$ and let (1.1) holds with $(b) = \ker P$ and H_b is a homogeneous polynomial satisfying (1.2). Then

1) $b(x)H_b, x(1) = b(x)$ for all $b \in B$.

2) The set B is \mathbb{F}-linearly independent.

3) $\deg H_b \geq n$ for all $b \in B$.

Proof. Since $b \in \ker P$, hence

$$b(x) = (b - Pb)(x) = b(x)H_b, x(1)$$

by (1.1) and (1.2), which proves 1).

To prove 2), assume that

$$\sum_{b \in B} \alpha_b b = 0$$

for some $\alpha_b \in \mathbb{F}$.

Fix a $b^* \in B$. Then (by linearity of H_b, x, 1) and (1.2) we have

$$0 = H_b^*(\sum_{b \in B} \alpha_b b) = \alpha_{b^*}b^* \implies \alpha_{b^*} = 0.$$

Now, suppose that

$$m := \min\{\deg H_b : b \in B\} < n \}.$$

and $H^* \in \{H_b : b \in B\}$ be such that $\deg H^* = m$. Then

$$0 \neq H^*(D)H^* \in \mathbb{F}$$

and $\alpha_b := H_b(D)H^* \in \mathbb{F}$ for all $b \in B$.

Since $H^* \in \mathbb{F}_{<n}^d[x]$,

$$0 = H^*(x) - PH^*(x) = \sum_{b \in B} b(x)\mu_{b, x}(H_b(D)H^*) = \sum_{b \in B} \alpha_b b(x)$$

which contradicts 2) thus proves 3). ■

We now proceed with the main theorem of this section.
Theorem 2.2 Let P be an ideal projector onto $\mathbb{P}^d_{\leq n}[x]$ and let (1.1) holds with $(B) = \ker P$ and homogeneous polynomials H_b satisfying (1.2). Then the sets

$$\{H_b : b \in B\} \text{ and } \{Lt(b) : b \in B\}$$

form (dual) linear bases for the linear space $\mathbb{P}^d_{\leq n}[x]$ of homogeneous polynomials of degree n. In particular $\#B = N(n)$.

Proof. Let $M^d_n[x]$ be the set of monomials of degree n. For every $w \in M^d_n[x]$, let

$$u_w := w - Pw \in \ker P. \quad (2.1)$$

Since $\text{ran}P = \mathbb{P}^d_{< n}[x]$, hence polynomials $\{u_w, w \in W_n\}$ are linearly independent polynomials of degree n and

$$\dim \text{span}\{u_w, w \in M^d_n[x]\} = N(n). \quad (2.2)$$

Now, let B satisfies the assumptions of the theorem. From $\mathbb{P}^d_{< n}[x] \cap (B) = \{0\}$ we conclude that $\deg b \geq n$ and, from the lemma above, $\deg H_b \geq n$ for every $b \in B$. Hence

$$H_b(u_w) =: c_{b,w} \in \mathbb{F}. \quad (2.3)$$

Let

$$\mathcal{H}_n := \{H_b : b \in B, \deg H_b = n\} \text{ and } B_n := \{b \in B : H_b \in \mathcal{H}_n\} \quad (2.4)$$

Since $H \in \mathbb{P}^d_{\leq n}[x]$, $m > n$ implies $H(D)w = 0$ for all $w \in \mathbb{P}^d_{\leq n}[x]$, hence (1.1) implies

$$Pu_w = u_w = \sum_{b \in B_n} b(x)\mu_{b,x}(H_b(D)u_w) = \sum_{b \in B_n} c_{b,w}(x).$$

and from (2.2) and (2.3) we conclude

$$\text{span}\{u_w : w \in M^d_n[x]\} \subset \text{span}\{b : b \in B_n\}$$

and thus by (2.2)

$$N(n) \leq \dim \text{span}\{b : b \in B_n\} = \#B_n, \quad (2.5)$$

where the last equality is by the Lemma 2.1.

Once again from the Lemma 2.1, it follows that $\#B_n \leq \dim \mathbb{P}^d_{\leq n}[x] = N(n)$, hence $\{H_b : b \in B_n\}$ is a basis for $\mathbb{P}^d_{\leq n}[x]$. Now, suppose that $\tilde{b} \in B_n$ is such that $\deg \tilde{b} > n$, then for some

$$f = \sum_{b \in B_n} c_b H_b \in \mathbb{P}^d_{\leq n}[x], c_b \in \mathbb{F}, \quad (2.6)$$

we have

$$\deg \text{lt}(f(D)\tilde{b}) > 0. \quad (2.7)$$
On the other hand, by (1.2)
\[\text{lt} \left(\sum_{b \in B_n} c_b H_b(D) \tilde{b} \right) = c_k \in \mathbb{F} \]
which contradicts (2.7). In other words for every \(b \in B_n \) we have \(\deg b = n \), which proves that the sets
\[\{ H_b : b \in B_n \} \text{ and } \{ Lt(b) : b \in B_n \} \]
form linear bases for the linear space \(\mathbb{F}^d_n[x] \).

It remains to show that \(B \setminus B_n = \emptyset \). Indeed if not, then some \(\tilde{b} \in B \setminus B_n \) has \(\deg \tilde{b} > n \) and once again we have (2.7) for some \(f \) satisfying (2.6). On the other hand, from (1.2) we have
\[\sum_{b \in B_n} c_b H_b(D) \tilde{b} = 0 \]
which gives the desired contradiction.

Let \((w_1, w_2, ..., w_{N(n)})\) be a fixed ordering of monomials in \(M^d_n[x] \). For an arbitrary mapping \(\phi : M^d_n[x] \to \mathbb{F}^d[x] \) we use \(\phi(w) \) to denote the vector \((\phi(w_1), \phi(w_2), ..., \phi(w_{N(n)})) \in (\mathbb{F}^d[x])^{N(n)} \).

Corollary 2.3 Let \(P \) be an ideal projector onto \(\mathbb{F}^d_{<n}[x] \) that admits the error formula (2.1),(2.2) for some bases \(B \). Then there exists an \(N(n) \times N(n) \) invertible scalar matrix \(F_P \) such that the elements of \(B \) form a vector \(F_T P (w - Pw) \) and the polynomials in \(\{ H_b : b \in B_n \} \) can be written as a vector \(F_T P w(D) \).

Corollary 2.4 Let \(P \) be an ideal projector onto \(\mathbb{F}^d_{<n}[x] \) that admits the error formula (2.1),(2.2) for some basis \(B \). Then \(B \) is an \(H \)-basis for \(\ker P \).

Proof. It is known (cf. [10]) that a basis \(B \) is an \(H \)-basis if and only if \(\langle Lt(b), b \in B \rangle = \langle Lt(f), f \in \langle B \rangle \rangle \). By Theorem 2.2, if \(B \) admits an error formula, then
\[\langle Lt(b), b \in B \rangle = \langle M^d_n[x] \rangle . \]
Suppose that for some non-zero \(f \in \langle B \rangle \), we have \(Lt(f) \notin \langle M^d_n[x] \rangle \). Then \(\deg f < n \) and hence \(f \in \langle B \rangle \cap \mathbb{F}^d_{<n}[x] = \ker P \cap \text{ran} P \) which is a contradiction.

3 Computation of \(m(J) \)

To fulfill the promise made in the introduction, it remains to observe that for Lagrange projectors onto \(\mathbb{F}^d_{<n}[x] \) there exists a basis \(B \) such that \(\langle B \rangle = \ker P \) and \#\(B = d \). The idea of the proof is very simple. Assume that \(Z(\ker P) = \{ x^{(j)}, j = 1, ..., \dim \mathbb{F}^d_{<n}[x] \} \) and that the first coordinates \(x_1^{(j)} \) of the \(x^{(j)} \) are all distinct. Let
\[p_1(x) = \prod_{j=1}^{\dim \mathbb{F}^d_{<n}[x]} (x_1 - x_1^{(j)}) \]
and for $k = 2, \ldots, d$, let $p_k(x) \in \text{span}\{1, x_1, \ldots, x_{\text{dim } F^d[x]}\}$ be polynomials that interpolate x_k at the points $\{x^{(j)}, j = 1, \ldots, \text{dim } F^d[x]\}$. Then the polynomials $\{p_1(x), x_k - p_k(x), k = 2, \ldots, d\}$ form a basis for the ideal $\ker P$ of cardinality d. The general case is reduced to the above argument by change of variables. Actually, it yields a bit more:

Theorem 3.1 Let $J \subset F^d[x] = F^d[x_1, x_2, \ldots, x_d]$ be a zero-dimensional radical ideal. Then $m(J) = d$.

Proof. Let \mathcal{H}_d be a hyperplane

$$\mathcal{H}_d := \{(z_1, \ldots, z_d) \in F^d : z_d = 0\}.$$

With every two distinct points $u, v \in Z(J) \subset F^d$ we associate a unique hyperplane $\mathcal{H}_{u,v} \subset F^d$ orthogonal to the non-zero vector $(u - v) \in F^d$. Since the set $Z(J)$ is finite, there are only finitely many such hyperplanes and thus there exists a vector $y = (y_1, \ldots, y_{d-1}, 1) \in F^d$ such that the inner product

$$<u - v, y> \neq 0 \text{ for all distinct } u, v \in Z(J) \text{ and } y_i \neq 0, \forall i = 1, \ldots, d. \quad (3.1)$$

We introduce a (linear) polynomial $g \in F^d[x_1, x_2, \ldots, x_d]$ defined by

$$g(x) = <x, y> \quad (3.2)$$

and consider the linear subspace $L \subset F^d[x]$ defined by

$$L := \text{span}\{g^k, k = 0, \ldots, \#Z(J) - 1\}. \quad (3.3)$$

Thus

$$\text{dim } L = \#Z(J) = \text{dim}(F^d[x]/J). \quad (3.4)$$

We claim that

$$L \oplus J = F^d[x]. \quad (3.6)$$

In view of (3.4), it suffices to prove that $L \cap J = \{0\}$. Indeed if $f \in J \cap L$ then the polynomial

$$f = \sum_{j=0}^{\#Z(J)-1} a_j g^j(u) = \sum_{j=0}^{\#Z(J)-1} a_j z^j$$

equals to zero for $\#Z(J)$ distinct values of

$$z = <u, y>, u \in Z(J).$$

Hence $f = 0$.

Let Q be an ideal projector from $F^d[x]$ onto L determined by the decomposition (3.6). Thus $\ker Q = J$ and Q is a Lagrange projector. We claim that the set B of d polynomials

$$B = \{g^{\#Z(J)} - Q(g^{\#Z(J)}) \text{ and } x_j - Q(x_j), j = 1, \ldots, d - 1\} \quad (3.7)$$

7
is a basis for the ideal \(J \), i.e. \(J = \langle B \rangle \).

Clearly, \(\langle B \rangle \subset J \). Since \(Q' = I - Q \) is a projector onto \(J \), it suffices to prove that
\[
Q' f \in \langle B \rangle \quad \text{for every } f \in F^d[x].
\] (3.8)

We will do so in several steps. Let \(A_j \) be a subalgebra of \(F^d[x] \) generated by \\(\{g, x_1, ..., x_j\} \).

Step 1: \(Q' f \in \langle B \rangle \) for every \(f \in A_0 \).

Since \(A_0 \) is a subalgebra generated by one polynomial \(g \), we have to prove that \(Q' g^m \in \langle B \rangle \) for all integers \(m \). It is obviously so for \(m \leq \#Z(J) \). We now proceed by induction. Assume that \(m > \#Z(J) \) and
\[
Q' g^k \in \langle B \rangle \quad \text{for all } k \leq m.
\]

Then by (1.5),
\[
Q' g^{m+1} = g \cdot Q' g^m + Q'(g \cdot Qg^m),
\]
where the first term is in \(\langle B \rangle \) by inductive assumption (\(Q' g^m \in \langle B \rangle \)) and the second terms belongs to \(\langle B \rangle \), since \(g \cdot Qg^m \) contains only scalar multiples of \(g \cdot g^k \) for \(k < \#Z(J) \).

Step 2: \(Q' f \in \langle B \rangle \) for every \(f \in A_j \) with \(j = 0, 1, ..., d - 1 \).

Assume that the result is proven for a fixed \(j \leq d - 2 \). We will use induction on \(k \) to prove that \(Q'(x_j^{k+1} \cdot A_j) \subset \langle B \rangle \) for all integers \(k \). Let \(f \in A_j \). Using (1.5) once more, we have
\[
Q'(x_j^{k+1} \cdot f) = x_j^k \cdot f \cdot Q'(x_j) + Q'(x_j^k \cdot f \cdot Q(x_j)).
\]

Again, the first term is in \(\langle B \rangle \), since, by (3.7), \(Q'(x_j) \) is. The second term belongs to \(\langle B \rangle \) since \(f \cdot Q(x_j) \in A_j(L) \) and by inductive assumption \(Q'(x_j^k \cdot f \cdot Q(x_j)) \in B \). Thus we proved that for the algebra \(A_{d-1} \) generated by \(g \) and \(x_2, ..., x_d \), we have
\[
Q'(A_{d-1}) \subset \langle B \rangle.
\]

Step 3: \(Q' f \in \langle B \rangle \) for every \(f \in A_d \).

It is left to prove that \(Q'(x_d^{k} \cdot A_{d-1}) \subset \langle B \rangle \). Observe that by the choice of the vector \(y \) and by (3.2),
\[
x_d = g - \sum_{k=1}^{d-1} y_k x_k
\]
and \(x_d^k \cdot A_{d-1} = (g - \sum_{k=1}^{d-1} y_k x_k)^k \cdot A_{d-1} \subset A_{d-1} \).

Since \(A_d = F[x] \), the last step proves (3.8) and the inequality \(m(J) \leq d \) with it.

To prove the reverse inequality, suppose that \(J = \langle b_1, ..., b_d \rangle \). Then by a well-known theorem from algebraic geometry (cf. [6], Proposition 5., p.460) we have \(\dim Z(J) = d - (d - 1) = 1 \) which contradicts the assumption that \(Z(J) \) is finite. ■
4 Final Remarks

In the previous section we computed \(m(J) \) for radical ideals \(J \). This result is not valid for arbitrary ideals. In fact there is an ideal \(J \) complemented to \(\mathbb{F}_d[x_1, x_2, \ldots, x_d] \) for which

\[
m(J) = N(n) := \binom{n + d - 1}{d - 1}
\]
as the error formula requires.

Theorem 4.1 Let \(B := M_n^d[x] \). Then the ideal \(J := \langle B \rangle \) is complemented to \(\mathbb{F}_d[x] \) and

\[
m(\langle B \rangle) = N(n) = \binom{n + d - 1}{d - 1}.
\]

Proof. Observe that \(q \in \langle B \rangle \) if and only if \(q = \sum_{k \geq n} q^{[k]} \) and \(p \in \mathbb{F}_d[x] \) if and only if \(p = \sum_{k < n} p^{[k]} \). Since every \(f \in \mathbb{F}_d[x] \) can be written uniquely as

\[
f = \left(\sum_{k < n} f^{[k]} \right) + \left(\sum_{k \geq n} f^{[k]} \right),
\]
it follows that \(\langle B \rangle \) is complemented to \(\mathbb{F}_d[x] \).

By way of contradiction, assume that \(\langle B \rangle = \langle b_1, \ldots, b_{N(n) - 1} \rangle \). Then for every \(x^\lambda \in M_n^d[x] \) with \(|\lambda| = n \),

\[
x^\lambda = \sum_{k=1}^{N(n)-1} a_k \cdot b_k
\]
for some polynomials \(a_k \in \mathbb{F}_d[x] \). Since \(n \) is “the least degree” for each \(b_k \in \langle B \rangle \), it follows that

\[
x^\lambda = \sum_{k=1}^{N(n)-1} a_k^{[0]} \cdot b_k^{[n]}
\]
But \(a_k^{[0]} \in \mathbb{F} \) and thus

\[
\text{span}\{x^\lambda : |\lambda| = n\} \subset \text{span}\{b_1, \ldots, b_{N(n) - 1}\}.
\]

Since \(\{x^\lambda : |\lambda| = n\} \) is a linearly independent set of polynomials, the space on the left has dimension \(N(n) \) and the space on the right has dimension at most \(N(n) - 1 \), contradicting the embedding (4.1).

Observe that the ideal projector \(P \) onto \(\mathbb{F}_{d,n}^d[x] \) with \(\ker P = \langle B \rangle \) considered in the previous theorem, is the Taylor projector.

Conjecture 4.2 For \(d > 1 \), the Taylor projector is the unique ideal projector \(P \) onto \(\mathbb{F}_{d,n}^d[x] \) that admits the error formula (1.1), (1.2) with minimal \(B \).

In partial support of this conjecture, let us mention that the conjecture is true in the bivariate case:
Theorem 4.3 Let P be a bivariate ideal projector onto $\mathbb{F}_n[x,y]$ that admits the error formula (2.1),(2.2) for minimal bases B. Then P is a bivariate Taylor projector.

The cumbersome derivation involves explicit formulas (cf. [16]) for bivariate ideal projectors and will be published elsewhere.

We want to use this opportunity to mention one more general conjecture supported by results in [17].

Conjecture 4.4 Let P be a bivariate ideal projector onto $\mathbb{F}_n[x,y]$. Let B be a basis for $\ker P$ that admits the error formula (2.1),(2.2). Then the basis B is a reduced basis.

I am grateful to Carl de Boor and Xiang-Dong Hou for many productive discussions.

References

