COVERING BY COMPLEMENTS OF SUBSPACES, II

W. EDWIN CLARK AND BORIS SHEKHTMAN

(Communicated by Jeffry N. Kahn)

Abstract. Let \(V \) be an \(n \)-dimensional vector space over an algebraically closed field \(K \). Define \(\gamma(k, n, K) \) to be the least positive integer \(t \) for which there exists a family \(E_1, E_2, \ldots, E_t \) of \(k \)-dimensional subspaces of \(V \) such that every \((n-k) \)-dimensional subspace \(F \) of \(V \) has at least one complement among the \(E_i \)'s. Using algebraic geometry we prove that \(\gamma(k, n, K) = k(n-k) + 1 \).

1. Introduction

Take \(V = V(n, K) \) to be an \(n \)-dimensional vector space over the algebraically closed field \(K \). As usual a subspace \(F \) of \(V \) is a complement of the subspace \(E \) of \(V \) if \(V = E \oplus F \), i.e., if \(E + F = V \) and \(E \cap F = \{0\} \). We let \(c(E) \) denote the set of all complements of \(E \) in \(V \) and we write \(G(k, n) \) for the set of all \(k \)-subspaces (= \(k \)-dimensional subspaces) of \(V \). If \(E \in G(k, n) \) then \(c(E) \subseteq G(n-k, n) \). Define \(\gamma(k, n, F) \) to be the least positive integer \(t \) such that there exist \(k \)-subspaces \(E_1, E_2, \ldots, E_t \) of \(V \) satisfying

\[
c(E_1) \cup c(E_2) \cup \cdots \cup c(E_t) = G(n-k, n).
\]

If (1) holds we say that all \((n-k) \)-subspaces of \(V \) are covered by the \(E_i \)'s.

In [1] we studied this problem for an arbitrary field \(K \). Among other things we showed that in general \(\gamma(k, n, K) \) depends on the field \(K \). In particular, we showed that \(\gamma(2, 4, K) \) is 5 if \(K \) is quadratically closed and is 4 otherwise. We conjectured that \(\gamma(k, n, K) = k(n-k) + 1 \) if \(K \) is algebraically closed. Here we prove this conjecture using results from algebraic geometry.

2. The lower bound \(k(n-k) + 1 \leq \gamma(k, n, K) \)

Let \(\Lambda^k(V) \) denote the \(k \)-vectors in the exterior algebra \(\Lambda(V) \) of \(V \). We let \(D(k, n) \) denote the set of all non-zero decomposable \(k \)-vectors \(\alpha = v_1 \wedge v_2 \wedge \cdots \wedge v_k \) where \(v_1, v_2, \ldots, v_k \) are linearly independent vectors in \(V \). Let \(\langle \alpha \rangle \) denote the 1-dimensional subspace of \(\Lambda^k(V) \) generated by \(\alpha \) and write

\[
\overline{D(k,n)} = \{ \langle \alpha \rangle | \alpha \in D(k, n) \}.
\]

If \(v_1, v_2, \ldots, v_k \) is a basis for \(E \in G(k, n) \), then the mapping \(E \mapsto \langle v_1 \wedge \cdots \wedge v_k \rangle \) is a bijection from \(G(k, n) \) to \(\overline{D(k,n)} \). It is well-known that this gives \(G(k, n) \) the
structure of an irreducible projective variety (the Grassmannian) of dimension
\(k(n-k) \) in \(\mathbb{P}^N = \mathbb{P}(k^k(V)) \) where \(N = \binom{n}{k} - 1 \). We identify \(G(k, n) \) with \(D(k, n) \).

Now for any positive integer \(t \) let \(G(k, n)^t \) be the product variety of \(G(k, n) \) with itself \(t \) times. Let \(E = (E_1, \ldots, E_t) \in G(k, n)^t \). For each \(i \) let \(E_i = \langle \epsilon_i \rangle \) for some decomposable \(\epsilon_i \in \Lambda^k(V) \). Define the mappings:

\[\varphi_i : \Lambda^{n-k}(V) \to \Lambda^n(V) \quad \text{by} \quad \varphi_i(\xi) = \epsilon_i \wedge \xi \]

for \(i = 1, \ldots, t \) and let

\[\mathcal{K}(E) = \ker(\varphi_1) \cap \ker(\varphi_2) \cap \cdots \cap \ker(\varphi_t). \]

Note that \(\mathcal{K}(E) \) is a subspace of \(\Lambda^{n-k}(V) \).

Lemma 1. For \(E \in G(k, n)^t \) the following two conditions are equivalent:

(a) \(c(E_1) \cup c(E_2) \cup \cdots \cup c(E_t) = G(n-k, n) \),

(b) \(D(n-k, n) \cap \mathcal{K}(E) = \emptyset \).

Proof. This is an immediate consequence of the fact that if \(F = \langle \alpha \rangle \in G(n-k, n) \) for some \(\alpha \in D(n-k, n) \), then \(E_1 \cap F = \{0\} \) if and only if \(\epsilon_i \wedge \alpha \neq 0 \).

Lemma 2. If \(\gamma(k, n, K) = t \) and \(E = (E_1, \ldots, E_t) \in G(k, n)^t \) satisfies

\[c(E_1) \cup c(E_2) \cup \cdots \cup c(E_t) = G(n-k, n), \]

then

\[\dim(\mathcal{K}(E)) = \binom{n}{k} - t. \]

Proof. Since \(\varphi_i \) is a linear mapping from the \(\binom{n}{k} \)-dimensional vector space \(\Lambda^{n-k}(V) \) to the 1-dimensional vector space \(\Lambda^n(V) \), it suffices to show that the mappings

\[\varphi_i \in \text{hom}(\Lambda^{n-k}(V), \Lambda^n(V)), \quad i \in \{1, \ldots, t\}, \]

are linearly independent. To see this we first note that the elements \(\epsilon_i \) are linearly independent in \(\Lambda^{n-k}(V) \). Suppose not; then we can assume that \(\epsilon_i = \sum_{j=1}^{t} a_j \epsilon_j \). It follows that \(\bigcap_{i=1}^{t} \ker(\varphi_i) = \bigcap_{i=1}^{t} \ker(\varphi_i) \). This implies by Lemma 1 that

\[c(E_1) \cup c(E_2) \cup \cdots \cup c(E_{t-1}) = G(n-k, n) \]

and hence \(\gamma(k, n, K) \leq t - 1 \), a contradiction. Now assume that the mappings \(\varphi_1, \ldots, \varphi_t \) are linearly dependent. Say, \(\sum_{i=1}^{t} a_i \varphi_i = 0 \). This means that for all \(\xi \in \Lambda^{n-k}(V) \) we have

\[0 = \sum_{i=1}^{t} a_i (\epsilon_i \wedge \xi) = (\sum_{i=1}^{t} a_i \epsilon_i) \wedge \xi. \]

So it suffices to observe that if \(\delta \in \Lambda^k(V) \) and \(\delta \wedge \xi = 0 \) for all \(\xi \in \Lambda^{n-k}(V) \) then \(\delta = 0 \).

Lemma 3. If \(K \) is any algebraically closed field, then

\[k(n-k) + 1 \leq \gamma(k, n, K). \]

Proof. Suppose \(\gamma(k, n, K) = t \leq k(n-k) \). Then there exists \(E = (E_1, \ldots, E_t) \in G(k, n)^t \) such that \(c(E_1) \cup \cdots \cup c(E_t) = G(n-k, n) \). So by Lemmas 1 and 2 there is a linear subspace \(\mathcal{K}(E) \) of \(\Lambda^{n-k}(V) \) such that \(D(k, n) \cap \mathcal{K}(E) = \emptyset \) and \(\mathcal{K}(E) \) has affine dimension \(\binom{n}{k} - t \) which is at least \(\binom{n}{k} - k(n-k) \). Let \(\mathcal{K}' \) denote the
corresponding projective subspace of \(\mathbb{P}(\Lambda^{n-k}(V)) \). Then \(\mathcal{K}' \cap G(n-k,n) = \emptyset \). But using projective dimensions we have [3, Proposition 11.4]

\[
dim(\mathcal{K}') + \dim(G(n-k,n)) \geq \binom{n}{k} - k(n-k) - 1 + k(n-k) \\
\geq \binom{n}{k} - 1 = \dim(\mathbb{P}(\Lambda^{n-k}(V)))
\]

and it follows that \(\mathcal{K}' \cap G(n-k,n) \neq \emptyset \) which is a contradiction. \(\square \)

3. The upper bound \(\gamma(k,n,K) \leq \nu(k(n-k)) + 1 \)

Lemma 4. If \(K \) is algebraically closed, then

\[
\gamma(k,n,K) \leq \nu(k(n-k)) + 1.
\]

Proof. Let \(\nu = k(n-k) \) denote the dimension of \(G(k,n) \) (and \(G(n-k,n) \)) as a projective variety. Let

\[
A = G(k,n)^{\nu+1}.
\]

Then \(A \) is a projective variety of dimension \(\nu(\nu+1) \). For every \(F \in G(n-k,n) \) define

\[
B(F) = \{ E \in G(k,n) | E \cap F \neq 0 \}.
\]

Now \(B(F) \) is an irreducible projective variety with

\[
\dim(B(F)) = \nu - 1.
\]

For \(F \in G(n-k,n) \) define

\[
C(F) = B(F)^{\nu+1}.
\]

Then

\[
\dim(C(F)) = (\nu+1)(\nu-1) = \nu^2 - 1.
\]

Now set

\[
C = \bigcup_{F \in G(n-k,n)} C(F).
\]

Note that if \(C \) is properly contained in \(A \), then there exists \(E = (E_1, \ldots, E_{\nu+1}) \in A - C \). Then for all \(F \in G(n-k,n) \) we have \(E \notin C(F) \) so there must exist an index \(i \in \{1, \ldots, \nu+1\} \) such that \(E_i \cap F = 0 \). Hence \(c(E_1) \cup \cdots \cup c(E_{\nu+1}) = G(n-k,n) \) and so \(\gamma(k,n,K) \leq \nu + 1 \), as desired. So it remains only to show that \(C \) is properly contained in \(A \). In fact we claim that \(C \) is a variety of dimension at most \(\dim(A) - 1 = \nu^2 + \nu - 1 \).

To complete the proof we fix \(F_0 \in G(n-k,n) \) and consider the projective variety

\[
D := C(F_0) \times \text{PGL}_n(K).
\]

We note that

\[
\dim(D) = \dim(C(F_0)) + \dim(\text{PGL}(n,K)) = \nu^2 - 1 + n^2 - 1.
\]

An element \(M \) of \(\text{PGL}(n,K) \) induces a linear automorphism of \(\mathbb{P}(\Lambda^k(V)) \) which induces in turn an automorphism of \(G(k,n) \). Abusing notation we write \(U \mapsto MU \)
to indicate the latter automorphism. Now we define \(\varphi : D \to C \) as follows: For \((E,M) \in D\) set

\[
\varphi(E, M) = (ME_1, ME_2, \ldots, ME_{\nu+1}).
\]

Clearly \(\varphi \) is a regular surjection. Hence by [3, Theorem 11.12]

\[
dim(D) = \dim(C) + \mu
\]

where

\[
\mu = \min \{ \dim(\varphi^{-1}(E')) \}, \quad E' \in C.
\]

This shows that

\[
dim(C) = \nu^2 - 1 + n^2 - 1 - \mu.
\]

So to prove that \(\dim(C) \leq \nu^2 + \nu - 1 \) it suffices to prove that \(n^2 - \nu - 1 \leq \mu \). To see this consider the subset \(G(F) \) of \(PGL_n(K) \) whose elements map the fixed \((n-k)\)-subspace \(F_0 \) to the \((n-k)\)-space \(F \). It is easy to see that \(\dim(G(F)) = n^2 - \nu - 1 \).

Now if \(E' = (E'_1, \ldots, E'_{\nu+1}) \in C(F) \subseteq C \) then for each \(M \in G(F) \) we have

\[
(M^{-1}E', M) = (M^{-1}E'_1, \ldots, M^{-1}E'_{\nu+1}, M) \in \varphi^{-1}(E').
\]

The mapping \(M \mapsto (M^{-1}E', M) \) is a regular injection from \(G(F) \) into the fiber \(\varphi^{-1}(E') \). It follows that each fiber has dimension at least that of \(G(F) \) and this completes the proof.

\[\blacksquare \]

Remarks. 1. The above proof shows that almost all \((E_1, \ldots, E_{\nu+1}) \in G(k,n)^{\nu+1}\) satisfy

\[
c(E_1) \cup c(E_2) \cup \cdots \cup c(E_{\nu+1}) = G(n-k,n)
\]

since the complement \(C \) of the set of such \((\nu+1)\)-tuples forms a variety of dimension smaller than \(\dim(G(k,n)^{\nu+1}) \).

2. As shown in [1] \(\gamma(2,4,K) = 4 \) when \(K \) is not quadratically closed. So the lower bound \(\gamma(k,n,K) \geq k(n-k)+1 \) proved here for algebraically closed fields will not hold in general. On the other hand, we suspect that the upper bound \(\gamma(k,n,K) \leq k(n-k)+1 \) does hold for arbitrary fields. In fact we have verified this for finite fields of sufficiently large order using counting arguments [2]. However, as the referee pointed out it is slightly worrying that the conjecture fails in the “thin” case, that is, if we replace \(n \)-space by \(n \)-set, \(k \)-subspace by \(k \)-subset and vector space complement by set complement. However, the upper bound of \(\binom{\nu+1}{k} \) given in [1] holds in both cases.

References

Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700

E-mail address: eclark@math.usf.edu

E-mail address: boris@math.usf.edu