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Abstract. In this paper we present a complete description of ideal projectors
from the space of bivariate polynomials F[x; y] onto its subspace F<n[x; y] of
polynomials of degree less than n. Several applications are given. In particular,
we study small perturbations of ideal projectors as well as the limits of La-
grange projectors. The latter results verify one particular case of a conjecture
of Carl de Boor.

1. Introduction

Ideal interpolation is an elegant form of multivariate approximation which en-
compasses classical tools of Numerical Analysis, such as Lagrange and Hermite
interpolation as well as the Taylor polynomials. It provides a natural link between
Multivariate Approximation Theory and Algebraic Geometry. The study of ideal
projectors in approximation theory was initiated by G. Birkho¤ [1] and continued
by several authors. A comprehensive list of references can be found in the excellent
surveys by C. de Boor [3] and by M. Gasca and T. Sauer [8].
In this paper we present a complete description of ideal projectors from the space

of bivariate polynomials F[x; y] onto its subspace F<n[x; y] of polynomials of degree
less than n. (Here F denotes either the real �eld R or the complex �eld C). The
reason for limiting ourself to the bivariate situation is rather simple: many of the
results presented here are either false or not known for more than two variables. The
reason for restricting our study to projectors onto F<n[x; y], as opposed to the ideal
projectors with arbitrary range, is three-fold. First, approximation by polynomials
from F<n[x; y] is the most common and classical form of polynomial approximation.
Second, the class of ideal projectors onto F<n[x; y] is su¢ ciently rich with patterns
and anomalies to deserve an independent study. Third, the analogs of our results
for ideal projectors with arbitrary range rely heavily on Grothendieck�s description
of Hilbert Schemes. I feel that the explicit �parameterization�of ideal projectors
presented in this paper avoids the jungle of abstractions needed in the general
situation and makes the meaning of the results easily accessible to an analyst (such
as myself) not familiar with Algebraic Geometry.
As with any multivariate study, the �rst obstacle to overcome is the notations.

Here is a small sample:
The symbol F stands for the real or complex �eld, F[x] = F[x1; x2; :::; xd] stands

for polynomials of d variables, the space of polynomials of one and two variables is
denoted as F[x];F[x; y] respectively. An element f 2 F[x] is written as a �nite sum
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f̂(k1; :::; kd)x

k1
1 x

k2
2 ::::x

kd
d or, in multiindex notation,

P
f̂(k)xk with f̂(k) 2 F.

By GN we denote the set (Grassmannian) of all N -dimensional (vector) subspaces
of F[x]. The space of polynomials of degree less than n is denoted by F<n[x], the set
of polynomials of degree n is F=n[x], while the space of homogeneous polynomials
(forms) of degree n is denoted as F[n][x]. Finally the set of monomials of degree
n is Mn[x], and M [x] is the set of all monomials in F[x]. For convenience we use
N(n) := dimF<n[x; y], hence F<n[x; y] 2 GN(n).
A polynomial f 2 F[x] can be written (uniquely) as a �nite sum f =

P
f [k]

with f [k] 2 F[k][x], i.e., a homogeneous component of f . The non-zero homoge-
neous component that correspond to the largest k is called the leading form of
the polynomial f and is denoted by Lf(f). Hence, the leading form of a nontriv-
ial polynomial f 2 F[x] is the unique homogeneous polynomial Lf(f) such that
deg(f�Lf(f)) < deg f . Similarly, the non-zero homogeneous component that cor-
respond to the least k, is the least form of f and is denoted by lf(f). For f = 0 we
set Lf(f) =lf(f) = 0.
We will need some standard notions from Algebraic Geometry (cf. [5], [6]).

Every subset H � Fd[x] generates the corresponding ideal hHi consisting of all
�nite sums X

h2H
qh � h; qh 2 F[x].

The set H is called a basis for the ideal hHi. By the Hilbert Basis Theorem (cf.
[5], p. 74), every ideal J � F[x] is �nitely generated, i.e., for every ideal J � F[x],
there exists a �nite set H � F[x] such that J = hHi.
There are two distinct notions of minimality of a basis. Following [6], a basis H

is called unshortenable if, for any proper subset H0 � H, we have hH0i 6= hHi. A
basis H is called minimal if H0 � F[x], #H0 < #H implies hH0i 6= hHi. In other
words, a minimal basis is a basis with minimal number of terms.
A basis H for an ideal J 2 F[x] is called an H-basis if for every f 2 J there

exists a (generalized) sequence (gh;f 2 F[x]; h 2 H) such that

f =
X
b2B

gh;fh and deg gh;f + deg h � deg f for all h 2 H.

For every ideal J � F[x] we use Z(J) to denote the associated variety

Z(J) = fz 2Fd : f(z) = 0;8f 2 Jg.

The ideal J is called zero-dimensional (cf. [6]) if

dim(F[x]=J) <1.

In algebraic terms, the quantity dim(F[x]=J) is called colength of J and measures
the number of points in Z(J) (with properly counted multiplicity). In particular
zero-dimensionality of an ideal J implies (and for F = C is equivalent to) the con-
dition that the set Z(J) is �nite. On the other hand, dim(F[x]=J) measures the
dimension of subspaces G � F[x] that complement J , i.e.

F[x] = G� J .

This decomposition de�nes a projector P onto G with kerP = J . Since the paper
focuses on the projectors, we will use the term codimension of J when referring to
dim(F[x]=J) =: codimJ .
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Likewise, with every set Z � Fd we associate the ideal
J(Z) := ff 2 F[x] : f(z) = 0;8z 2 Zg.

It is easy to see (cf. [6]) that J � J(Z(J)). An ideal J is called a radical ideal
if fm 2 J for some integer m implies f 2 J . For the complex �eld, the strong
Nullstellensatz (cf. [5], Theorem 6, p. 174) states that the ideal J � C[x] is radical
if an only if J(Z(J)) = J .
It is well-known and easy to see (cf., e.g., [6], p.143) that, for every zero-

dimensional J � F[x], the cardinality #Z(J) of its associated variety is �nite and
bounded by the codimension of J , i.e.,

#Z(J) � codimJ ,
with equality holding if and only if J is a radical ideal. We use JN to denote the
family (Hilbert scheme) of ideals J � F[x] such that codimJ = N .
Finally, let G be a vector subspace of F[x]. We use JG to denote the family

of all ideals, complementary to G. Clearly JG 6= ? (cf. Proposition 4.4 below).
Thus every ideal J 2 JG uniquely determines a projector PJ from F[x] onto G with
kerPJ = J .

De�nition 1.1. (Birkho¤, [1]). A linear idempotent operator P on F[x] is called
an ideal projector if kerP is an ideal in F[x].

This establishes a one-to-one correspondence between the family JG and the
family PG of all ideal projectors onto G.
The standard example of an ideal projector is a Lagrange projector, i.e., a pro-

jector P for which Pf is the unique element in its range that agrees with f at a
certain �nite set Z in Fd. For, its kernel consists of exactly those polynomials that
vanish on Z, i.e., it is the zero-dimensional radical ideal J(Z). An ideal J 2 JN is
called a Lagrange ideal if J = J(Z) for some set Z of N distinct points in Fd. As
was noted earlier, if F = C then Lagrange and radical ideals are one and the same.
Another important example of ideal projectors is the Taylor projector onto

F<n[x] at a point a 2 Fd since its kernel is given by the (maximal) idealD
(x� a)k; jkj = n

E
:

In the complex case every maximal ideal is of this form, hence there is a one-to-one
correspondence between the points a 2Cd and maximal ideals

ma := ff 2 F[x] : f(a) = 0g
in C[x]. Thus we have an algebraic description of the Taylor projector as a projector
P onto C<n[x] with kerP = mn for some maximal ideal m 2F[x].
A full description of �interpolation� properties of �nite-dimensional ideal pro-

jectors is provided in [11] and [12]. Even if one is only interested in Lagrange
interpolation, we feel that the �ideal� approach illuminates the underlying alge-
braic nature of a problem and provides a fruitful and convenient understanding of
it. It emphasizes the process of division of a polynomial by an ideal (cf. [13]), the
remainder of which is the desired interpolation.
We will use the rest of this extended introduction to explain the main result of

this paper. As noted previously, we are only concerned with ideal projectors that
map F[x; y] onto F<n[x; y]. From the �de Boor�s formula�(cf. [3])

(1.1) P (fg) = P (fPg)
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that characterizes ideal projectors P , it follows that, to describe the set of all ideal
projectors onto F<n[x; y], it is su¢ cient to describe the action of these projectors
on monomials xn�jyj . In other words, a sequence

(P (xn�jyj); j = 0; :::; n)

of n + 1 polynomials in F<n[x; y] completely determines the ideal projector P ,
i.e., the set of polynomials fxn�jyj � P (xn�jyj); j = 0; :::; ng is a basis for the
ideal kerP . Each of these polynomials depends on n�(n+1)

2 parameters (coe¢ cients

of P (xn�jyj)). Hence every ideal projector onto F<n[x; y] depends on n�(n+1)2
2

parameters. However, not every sequence of polynomials

(pj 2 F<n[x; y]; j = 0; :::; n)

determines an ideal projector by P (xn�jyj) = pj . The main theorem of this article
tells exactly which sequences of polynomials do and which do not. In turns out
that those that those that do, allow for an explicit description in terms of n �
(n + 1) parameters (coe¢ cients of the leading form of P (xn�jyj)). That is, given
Lf(P (xn�jyj)) (homogeneous polynomial of degree n�1 or 0), we can compute the
rest of the polynomials P (xn�jyj). The converse also holds: Given an arbitrary
sequence of (n+ 1) homogeneous polynomials (qj 2 F[n�1][x; y]; j = 0; :::; n), there
exists a unique ideal projector P onto F<n[x; y] such that Lf( P (xn�jyj)) = qj :
For instance, let P be any projector from the quadratic polynomials F�2[x; y]

onto F<2[x; y] =spanf1; x; yg. Let

Px2�jyj = aj + bjx+ cjy; j = 0; 1; 2.

Then P can be extended to an ideal projector from F[x; y] onto F<2[x; y] if and
only if

a0 = �c0c2 + c0b1 � c1b0 + c21,
a1 = �b1c1 + c0b2,
a2 = �b2b0 + b2c1 � b1c2 + b21.

In the next section we will state and prove the main theorem. The rest of
the sections explore various applications of the theorem. Section 3 establishes an
"ideals-ideal projectors" dictionary. That is, we describe a correspondence between
approximation properties of ideal projectors and algebraic properties of the related
ideals. In section 4 we study the perturbation of ideal projectors. Section 5 uses
the result of section 4. We prove that in bivariate setting a given N(n)-dimensional
subspace G � F[x; y] complements the generic ideal in JF<n[x;y] and that the generic
projector onto F<n[x; y] is a Lagrange projector. Both properties fail for three or
more variables.

2. The Main Theorem

We will start with a proposition that summarizes some of the simple properties
of ideal projectors.

Proposition 2.1. Let P be a linear mapping on F[x]. Then
1) P is an ideal projector if and only if

(2.1) P (fg) = P (f � Pg)

for all f; g 2 F[x].
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2) P is an ideal projector if and only if the mapping P 0 := I � P satis�es

(2.2) P 0(fg) = f � P 0(g) + P 0(f � Pg)

for all f; g 2 F[x].

The �rst part of this proposition was observed by de Boor (cf. [3]). The second
is easily deduced from the �rst (cf. [15]).
Let G be an N -dimensional subspace in F[x] with basis fg1; :::; gNg and let P be

an ideal projector onto G. The proposition implies that the sequence

(2.3) (P (1) and pj;k := P (xj � gk); k = 1; :::; N ; j = 1; :::; d)

of Nd+ 1 polynomials in G determine the projector P . Equivalently, (2.2) implies
that the set of polynomials

fhj;k := (xj � gk � pj;k) 2 kerP; k = 1; :::; N ; j = 1; :::; dg [ f1� P (1)g

is a basis for the ideal kerP .
In particular, if G = F<n[x; y] � F[x; y], hence 1 2 G, then the sequence

(2.4) (pj := P (x
n�jyj) 2 F<n[x; y]; j = 0; :::; n)

of n + 1 polynomials determines P on the whole space F[x; y] and the set fhj :=
(xn�jyj � pj) 2 kerP , j = 0; :::; ng is a basis for the ideal kerP . Formula (2.1) also
shows that the polynomials pj must satisfy additional relations. Indeed, we have

P (xn�jyj+1) = P (xP (xn�j�1yj+1)) = P (yP (xn�jyj)):

Hence

P (xpj+1) = P (ypj) for all j = 1; :::; n

or equivalently

(2.5) ypj � xpj+1 2 kerP for all j = 0; :::; n� 1.

Consider now the reverse situation. Suppose we start with an arbitrary sequence
of polynomials p0; :::; pn 2 F<n[x; y] and de�ne a projector

P : F�n[x; y]! F<n[x; y]

by letting P (xjyn�j) = pj . We can attempt to use the ideal property (2.1) to
extend this projector to the whole of F[x; y]. However, such an extension may not
be well de�ned. First of all, the polynomials pj must satisfy (2.4). That would
guarantee the well-de�ned extension of P to F�n+1[x; y]. To have the well-de�ned
extension to arbitrary F�m[x; y] we have to check that

(2.6) f1g1 = f2g2 2Mm =) f1Pg1 � f2Pg2 2 kerP:

The next proposition shows that (2.4) implies (2.5) for all m. This result is
not new. It follows from the fact that the space F<n[x; y] satis�es the �Mourrain
condition�(cf. [3]). However, in our case the proof is straightforward:

Proposition 2.2. Let P be a projector from F�n[x; y] onto F<n[x; y]. If the cor-
responding pj as de�ned in (2.4) satisfy (2.6) then P has an ideal extension to
F�m[x; y] for all m and hence P has an ideal extension to F[x; y]:
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Proof. The proof proceeds by induction on m. Let m � n + 1 and let P be a
projector from F�m[x; y] onto F<n[x; y] satisfying

(2.7) f1g1 = f2g2 2 F�m[x; y] =) f1Pg1 � f2Pg2 2 kerP .
De�ne

(2.8) Q(xjyk) =

8<: P (xjyk) if j + k � m;
P (yP (xjyk�1)) if j + k = m+ 1; k � 1;
P (xP (xm)) if j = m+ 1; k = 0.

We need to show that

(2.9) f1g1 = f2g2 = x
jym+1�j =) f1Qg1 � f2Qg2 2 kerQ:

First assume that g1and g2 =2ranP and consider two cases:
Case 1. Suppose that f1 = qh1 and f2 = qh2 with deg q � 1. Then

Q(f1Qg1 � f2Qg2) = Q(q(h1Pg1 � h2Pg2)).
Since

deg(q(h1Pg1 � h2Pg2)) � m and h1g1 = h2g2 2 F�m[x; y]
and using the inductive assumption twice we have

Q(f1Pg1 � f2Pg2) = P (q(h1Pg1 � h2Pg2)) = P (qP (h1Pg1 � h2Pg2)) = 0
since h1Pg1 � h2Pg2 2 kerP .
Case 2: Suppose that f1 and f2 have no common divisors. Then f1 = xs and

f2 = y
t, say. Therefore

g1 = x
j�sym�1�j and g2 = xjym�1�j�t:

It follows from the previous case that

(xyP (xj�s�1ym�2�j )� xsP (xj�sym+1�j)) 2 kerQ
and

(ytP (xjym+1�j�t)� xyP (xj�s�1ym�2�j )) 2 kerQ:
Adding these two equations we get the desired conclusion.
Now suppose that g1and/or g2 2ranP: Then choosing f0 = x or y we �nd

g0 =2ranP such that
f1g1 = f0g0 = f2g2:

We have

(2.10) Q(f1P (g1)) = Q(f1g1) := Q(f0P (g0)):

Similarly if g2 2ranP , then
(2.11) Q(f2P (g2)) = Q(f2g2) := Q(f0P (g0)):

Otherwise (if g2 =2ranP ), (2.11) follows from the previous steps. Combining
(2.10) and (2.11) we have the desired conclusion. �

This proposition shows that every ideal projector P onto F<n[x; y] is uniquely
determined by the sequence (2.4) of polynomials (pj ; j = 0; :::; n) satisfying (2.6)
and conversely every sequence of polynomials (pj 2 F<n[x; y]; j = 0; :::; n) that
satis�es (2.6) uniquely de�nes an ideal projector by (2.4). Hence, our goal of de-
scribing all ideal projectors onto F<n[x; y] is reduced to describing all polynomial
sequences (pj ; j = 0; :::; n) in F<n[x; y] that satisfy (2.6).
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Proposition 2.3. Let P be an ideal projector onto F<n[x; y]; set P (xn�jyj) =: pj.
Then there exists a sequence of n(n+ 1) �determining coe¢ cients�

(aj;k; j = 1; :::; n; k = 0; :::; n)

such that

(2.12) ypj � xpj+1 =
nX
k=0

aj;k(x
n�kyk � pk); j = 0; :::; n� 1.

Conversely, if the pj satisfy (2.12) for some constants aj;k then the pj = P (xn�jyj)
determine an ideal projector.

Proof. Consider P as a projector from F�n[x; y] onto F<n[x; y]. Since the functions
(xn�kyk � pk) are in kerP and are linearly independent, we have

n+ 1 = dim spanfxn�kyk � pk; k = 0; :::; ng
= dimF�n[x; y]� dimF<n[x; y]

and hence

spanfxkyn�k � pk; k = 0; :::; ng = kerP:
This together with (2.12) implies (2.4). The converse is obvious. �

In view of the importance of the equations (2.12) we call them �the consistency
equations�. We think of (2.12) as equations for pj or as a system of linear equations
for the coe¢ cients of the polynomials pj : Observe that there are (n + 1) polyno-
mials pj each having

n(n+1)
2 coe¢ cients. Hence the number of unknowns in the

consistency equations is n(n+1)2

2 . There are n equations in (2.12) for polynomials

of degree n: Equating the terms in front of each monomial gives us n(n+1)(n+2)
2

equations. Thus there are more equations than unknowns, n(n+1)
2 more, to be

precise. The next, main theorem of this section shows that there is enough re-
dundancy built into the equations to overcome this discrepancy. Moreover, it gives
an explicit description of all sequences of polynomials pj that determine an ideal
projector onto F<n[x; y].
For a given n, we will need a �xed n� (n+ 1) matrix:

� =

26664
y �x 0 0 ::: 0 0
0 y �x 0 ::: 0 0
...

...
...

... � � �
...

...
0 0 0 0 ::: y �x

37775
and an arbitrary n�(n+1) matrix A, with the following enumeration of the entries:

A =

26664
a0;0 a0;1 ::: a0;n�1 a0;n
a1;0 a1;1 ::: a1;n�1 a1;n
...

... � � �
...

...
an�1;0 an�1;1 ::: an�1;n�1 an�1;n

37775
For an arbitrary n� (n+1) matrix B we use Bk to denote its square submatrix

obtained from B by deleting the k-th column.
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Theorem 2.4. Every n� (n+ 1) matrix A de�nes a unique sequence

pk := (x
n�kyk � (�1)n+k det(� +A)k), k = 0; :::; n

of polynomials satisfying (2.12). Hence every n� (n+1) matrix A de�nes a unique
ideal projector PA from F[x; y] onto F<n[x; y] by letting PA(xn�kyk) = pk.
The coe¢ cients of the resulting polynomials pj are (homogeneous) polynomials

in the aj;k.

Proof. To write (2.12) in matrix form, let p = (p0; p1; :::; pn) 2 (F<n[x; y])n+1
be the vector of polynomials to be found. Let q = (xn; xn�1y; :::; yn). Then the
consistency equations are written as �p = A(q� p) or equivalently (�+A)p = Aq.
Observe that �q =0, which implies that the equations (2.8) are equivalent to

(2.13) (� +A)(q� p) = 0

i.e. the (n+ 1)-dimensional vector q� p is orthogonal to the n rows of the matrix
(� +A). By Linear Algebra, the vector

((�1)k det((� +A)k; k = 0; :::; n)

is one such vector. From the form of the matrix �, det(�k) = (�1)n+kxn�kyk, thus
det((�+A)k) 2 F�n[x; y] and (�1)n+kxn�kyk is the only monomial in det(�+A)k
of degree n, hence the vector of polynomials

(2.14) pk := x
n�kyk � (�1)n+k det(� +A)k) 2 F<n[x; y]

is a solution to equations (2.13).
If p0 is another solution to (2.12) then (� + A)(p� p0) = 0 which easily leads

to p = p0. Indeed, since det(� + A)k is a non-zero polynomial, the matrix � + A
has rank n for almost all x and y; thus the rows of the matrix (� +A) are linearly
independent for almost all values of x and y, hence pk � p0k = c(�1)k det((�+A)k)
where the constant c is chosen independently of k. But pk � p0k 2 F<n[x; y] while
(�1)k det((� +A)k) is of degree n. That implies that c = 0 and pk = p0k.
Formula (2.14) shows that the coe¢ cients of pj are polynomials in the aj;k. �

3. Corollaries

The equation (2.14) provides a simple way of computing (using a Computer
Algebra System) the family of all ideal projectors onto F<n[x; y]. For instance:

Example 3.1. To compute all ideal projectors onto F<2[x; y] =spanf1; x; yg all we
need to do, is to write down the matrix

� +A =

�
y �x 0
0 y �x

�
+

�
a0;0 a0;1 a0;2
a1;0 a1;1 a1;2

�
=

�
y + a0;0 �x+ a0;1 a0;2
a1;0 y + a1;1 �x+ a1;2

�
and compute all three of its subdeterminants. For every matrix A, formula (2.14)
gives ideal projectors PA:

PAx
2 = a0;2y + (a1;2 + a0;1)x+ (a0;2a1;1 � a0;1a1;2),

PAxy = a1;2y � a0;0x+ (a0;0a1;2 � a0;2a1;0),
PAy

2 = �(a1;1 + a0;0)y � a1;0x+ (a1;0a0;1 � a0;0a1;1).
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Comparing the leading forms in the equations (2.12) we obtain an easy rela-
tionship between the coe¢ cients of the leading forms of pj = PA(xn�jyj) and the
determining coe¢ cients aj;k. We have

Corollary 3.2. Let PA be the ideal projector onto F<n[x; y] determined by the
matrix A. Let

Lf(PA(xn�jyj)) = Lf(pj) =
n�1X
m=0

p̂j(m;n�m)xmyn�m.

Then

(3.1) ai;j = p̂i(n� j; j � 1)� p̂i+1(n� j � 1; j); i = 0; :::; n� 1; j = 0; :::; n,
where p̂i(m; l) = 0 if m < 0 or l < 0.
In particular, the leading forms of the polynomials PA(xn�jyj) uniquely deter-

mine these polynomials and hence the ideal projector PA. This phenomenon is
unique to two variables.

The formulas (2.14) and (2.12) provide a correspondence between the family of
ideal projectors onto F<n[x; y] and n� (n+ 1) matrices.
Corollary 3.3. Every ideal projector P onto F<n[x; y] generates an n � (n + 1)
matrix AP by (2.12) and every n � (n + 1) matrix A generates an ideal projector
PA onto F<n[x; y]. Clearly

APA = A and PAP
= P .

In particular:

Corollary 3.4. Let PA be the ideal projector onto F<n[x; y] speci�ed by A and let
f 2 F[x; y] be a �xed polynomial. Then the coe¢ cients (dPAf(j; k); j + k < n) of
the polynomial PAf are themselves polynomials of the entries of the matrix A, i.e.,

PAf =

n�1X
j+k<n

qj;k;f (A)x
jyk

where qj;k;f 2 F[A] are polynomials in n(n+ 1) variables (entries of A).
Proof. By Theorem 2.4, for every f 2 Mn, the coe¢ cients of PAf , obtained from
the determinants (2.14), are (homogeneous) polynomials in the entries of the matrix
A. Inductively, (2.1) implies that for every m and every f 2 Mm, the coe¢ cients
of PAf are polynomials in the entries of the matrix A. Thus the same is true for
all f 2 F[x; y]. �

In particular, we wish to associate each A with the (n(n+1)
2

2 )-sequence

wA := ( \PA(xn�jyj)(m; k); m+ k < n; j = 0; :::; n)

of polynomial coe¢ cients of the pj .
The set

Wn := fwA; A 2 Fn(n+1)g
of all such sequences "parameterizes" the set PF<n[x;y] of all ideal projectors onto
F<n[x; y]. In fact, a lot more can be said about the set Wn :

Corollary 3.5. The set Wn is a polynomial image of Fn(n+1)) and thus an irre-
ducible n(n+1) = 2�dimF<n[x; y]-dimensional a¢ ne algebraic variety in F

n(n+1)2

2 .
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Proof. The equations (2.12) gives Wn the structure of an a¢ ne algebraic variety

in F
n(n+1)2

2 . Since, by Theorem 2.4, the coe¢ cients of the polynomials PA(xjyn�j)
are polynomials in the entries of the matrix A 2 Fn(n+1), hence Wn is a polynomial

image of Fn(n+1) in F
n(n+1)2

2 . Thus (cf. [5], Proposition 5, p. 196), this image is an
irreducible a¢ ne algebraic variety of the same dimension as dimFn(n+1). �

Proposition 3.6. Let P be an ideal projector onto F<n[x; y]. The set

HP = fhj := P 0(xn�jyj) = (I � P )(xn�jyj); j = 0; :::; ng � F[x; y]
is an H-basis for the ideal kerP as well as a Groebner basis for kerP with respect
to any graded monomial order (cf. [11]).

Proof. It follows from (2.2) that HP is a basis for the ideal kerP . It is known (cf.
[13]) that a basis B is an H-basis if and only if hLt(b); b 2 Bi = hLt(f); f 2 hBii,
where Lt(f) stands for the leading term of f with respect to a graded monomial
order (cf. [13]). Since Lt(P 0(xn�jyj)) = xn�jyj for j = 0; :::; n, it follows that

hLt(h); h 2 HP i = hMn[x; y]i .
Suppose that for some non-zero f 2 hHP i, we have Lt(f) =2 hMn[x; y]i. Then
deg f < n and hence f 2 hHP i \ F[x; y] = kerP\ranP which is a contradiction.
The proof that HP is a Groebner basis with respect to graded monomial order

is similar. �

Since every ideal J 2 JF<n[x;y] generates an ideal projector PJ 2 PF<n[x;y], we
have

Corollary 3.7. Every ideal J 2 JF<n[x;y] is generated by polynomials
(hk := det(� +AJ)k; k = 0; :::; n);

for some n � (n + 1) matrix AJ . Conversely, for every n � (n + 1) matrix A the
polynomials hk := det((� +AJ)k generate an ideal

JA := hhk; k = 0; :::; ni 2 JF<n[x;y]:

When is the basis fhj = P 0A(xn�jyj); j = 0; :::; ng an unshortenable basis for the
ideal PA? The next corollary answers this question.

Corollary 3.8. The basis fP 0A(xjyn�j); j = 0; :::; ng is an unshortenable basis for
the ideal JA if and only if A is bidiagonal, i.e.,

(3.2) A =

26664
a0;0 a0;1 0 ::: 0 0
0 a1;1 a1;2 ::: 0 0
...

...
... � � �

...
...

0 0 0 0 an�1;n�1 an�1;n

37775 .
If an ideal projector PA is a Lagrange projectors then the family of Lagrange

projectors PA with bidiagonal A coincides with the family of Lagrange projectors
that interpolate on a triangular subgrid of a tensor-product grid, studied in [14].

Proof. By (2.12) we have

yhj � xhj+1 =
nX
k=0

aj;khk; j = 0; :::; n� 1
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or equivalently

(y � aj;j)hj � (x� aj;j+1)hj+1 =
nX

k 6=j:j+1
aj;khk; j = 1; :::; n.

If one of the coe¢ cients aj;m, m 6= j; j + 1 is non-zero then the corresponding
polynomial

hm =
1

aj;m
((y � aj;j)hj � (x� aj;j+1)hj+1 �

nX
k 6=j;j�1;m

aj;khk) 2 hhs; s 6= mi

and the basis fP 0A(xjyn�j); j = 0; :::; ng is not unshortenable.
Conversely, suppose A is bidiagonal. Then every submatrix of � +A is a trian-

gular matrix and by the theorem 2.4 we have

(3.3) �hm =
m�1Y
j=0

(y + aj;j) �
n�1Y
j=m

(�x+ aj;j+1);m = 0; :::; n,

where the empty products are set to be 1.
First assume that the scalars aj;j ; j = 0; :::; n�1 are distinct, and let an;n be yet

another scalar not in this set. Similarly, assume that the scalars aj;j+1; j = 0; :::; n�
1 are distinct and a�1;0 is not in this set. Then hm(am�1;m;�am;m) 6= 0 while
hs(am�1;m;�am;m) = 0 for all s 6= m. In particular hm =2 hhs; s 6= mi and hence
the basis is unshortenable. In the general case the same argument works, provided
we replace the point evaluation by the evaluation of the appropriate derivative, i.e.,

D(�(m);�(m))hm(am�1;m;�am;m) 6= 0 while D(�(m);�(m))hs(am�1;m;�am;m) = 0
for all s 6= m, where �(m) is the number of scalars aj�1;j such that j > m and
aj�1;j = am�1;m, and �(m) is the number of scalars aj;j such that j < m and
aj;j = am;m. �

Corollary 3.9. The basis fP 0(xjyn�j); j = 0; :::; ng is a minimal basis for the
ideal kerP if and only if P is a Taylor projector at some point (a; b) 2 F2, i.e.,
if and only if A is a bidiagonal matrix and the coe¢ cients in (3.2): ak;k = b and
ak;k+1 = a for all k = 0; :::; n� 1.

Proof. If fP 0(xjyn�j); j = 0; :::; ng is a minimal basis then it is unshortenable and
hence P = PA is generated by a bidiagonal matrix A of the form (3.2). Assume, by
way of contradiction, that aj;j+1 6= ak;k+1 for some j 6= k, j; k = 0; :::; n� 1. Then
it follows from (3.3) that

(�aj;j ; aj;j+1); (�aj;j ; ak;k+1) 2 Z(kerP ):
Similarly, assuming that aj;j 6= ak;k we conclude that the variety Z(kerP ) contains
two points with either the same x-coordinates or with the same y-coordinates. Now,
we can always make the change of variables

X = c1x+ c2y; Y = c3x+ c4y

so that, in the new variables X and Y , the variety Z(kerP ) does not contain points
with identical coordinates. Repeating the argument we arrive at a contradiction.

�

The next corollary is just a reformulation of the Corollary 3.4:



12 BORIS SHEKHTMAN

Corollary 3.10. The set JF<n[x;y] is parameterized by an irreducible a¢ ne alge-

braic variety in F
n(n+1)2

2 of dimension 2� dimF<n[x; y].

4. Perturbations of Ideal Projectors

Given an ideal projector P , we want to know whether there exists a small per-
turbation of this projector with some additional properties. Speci�cally, we are
interested in two types of properties:
First, given an ideal projector P onto an N -dimensional subspace E 2 GN and

given another subspace G 2 GN , we investigate the existence of ideal projectors
Pm onto E such that

(4.1) Pmf ! Pf for all f 2 F[x]

and kerPm 2 JG. Equivalently we want to know if an ideal J 2 JG can be approx-
imated by ideals Jm 2 JG \ JE .
Second, given an ideal projector P onto an N -dimensional subspace E � F[x],

we investigate the existence of Lagrange projectors Pm onto E satisfying (4.1).
Equivalently, we want to know if an ideal J 2 JE can be approximated by Lagrange
ideals Jm 2 JG.
The main result of this section (Theorem 4.8) shows that in the complex case,

the two properties are equivalent.
We start with a discussion of the notion of convergence in JN and its rela-

tionship to convergence of ideal projectors. For the sake of speci�city, for every
f =

P
k f̂(k)x

k 2 F[x] we de�ne the norm

kfk :=
X
k

���f̂(k)��� ,
which turns F[x] into a normed linear space with continuous multiplication. Let
(F[x])0 be the algebraic dual of F[x]. Every J 2 JN induces an N -dimensional
subspace J? � (F[x])0de�ned as

J? := f� 2 (F[x])
0
: �(f) = 0;8f 2 Jg

that uniquely identi�es the ideal J via (J?)> = J . We will adopt the following
de�nition of convergence:

De�nition 4.1. Let (Jm; m 2 N) be a sequence of ideals in JN and let J 2 JN .
We say that Jm ! J if for every � 2 J? there exists �m 2 J?m such that

(4.2) �m(f) �! �(f)

for every f 2 F[x].

Next, we wish to relate convergence of ideals to the convergence of ideal projec-
tors. A linear projector is entirely determined by the interplay between its range
and the range of its dual. One would similarly expect the distance between two
linear projectors with the same range to be entirely determined by the distance be-
tween the ranges of their duals. This is indeed the case for our particular de�nition
of the "distance".
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Theorem 4.2. Let (Jm; m 2 N) be a sequence of ideals in JN and let J 2 JN be
such that Jm ! J . If E 2 GN complements J then the space E complements Jm
for su¢ ciently large m and

(4.3) Pmf ! Pf for all f 2 F[x],
where Pm; P 2 PE are such that kerPm = Jm, kerP = J .
Conversely, let Pm and P be ideal projectors onto a space E such that (4.3)

holds. Then kerPm ! kerP .

Proof. Assume that E 2 GN complements J . For a functional � 2 (F[x])0 we use
~� to denote restriction of � onto E. Suppose that

(4.4) em 2 E \ Jm
and kemk = 1. Since E is �nite dimensional, hence, passing to a subsequence,
we can assume that em ! e 6= 0, e 2 E. Let � 2 J? and �m 2 J?m satisfy
(4.2). Then �m ! � uniformly on the bounded subsets of E and in particular
�m(em) ! �(e). From (4.4) it follows that �m(em) = 0 hence �(e) = 0 for all
� 2 J? and 0 6= e 2 E \ J which contradicts the assumption that E complements
J .
Next, de�ne ideal projectors Pm; P 2 PE with kerPm = Jm, kerP = J . Let

fe1; :::; eNg be a �xed basis in E. Then P can be written in the form

P =
NX
j=1

�j 
 ej

(or equivalently, Pf =
PN

j=1 �j(f)ej) for some basis f�1; :::; �Ng of J?, dual to
fe1; :::; eNg, i.e., satisfying �j(ek) = �j;k. De�ne a �nite-dimensional subspace
F � F[x] that contains E by

F := spanf1; ek; xj � ek; k = 1; :::; N ; j = 1; :::; dg.

Choose �(m)j 2 J?m satisfying (4.2). Since the set f�1; :::; �Ng is linearly independent
over F and �(m)j ! �j uniformly on the bounded subsets of F , hence, for su¢ ciently

large m, the set f�(m)j ; j = 1; :::; Ng is linearly independent over F , thus over F[x],
and form a basis for J?m . Therefore

Pm =
NX
j=1

�
(m)
j 
 e(m)j

for some basis fe(m)j ; j = 1; :::; Ng for E. Consider the operators Tm : F �! F
de�ned by

Tmf = f �
NX
j=1

(�j � �(m)j )(f)ej ;8f 2 F .

Clearly

Tme
(m)
k = e

(m)
k �

NX
j=1

�j(e
(m)
k )ej +

NX
j=1

�
(m)
j (e

(m)
k )ej

= e
(m)
k � Pe(m)k + ek = ek
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and kIF � Tmk ! 0. Hence, for su¢ ciently large m, the operators Tm are invertible
and T�1m ! IF . Thus e

(m)
j = T�1m ej ! ej and together with �

(m)
j ! �j on F we

have
PN

j=1 �
(m)
j 
 e(m)j !

PN
j=1 �j 
 ej as m ! 1 or equivalently Pm ! P

uniformly on the bounded subsets of F .
To prove (4.3) we need to show that Pmu ! Pu for any monomial u of degree

k. Since 1 2 F , Pm1 �! P1, and it is so for k = 0. Assuming that it is true for a
given k, let v be a monomial of degree k + 1. Then v = xju for some monomial u
of degree k and some j = 1; :::; d. We have xjPmu! xjPu and since

xjPmu; xjPu 2 xjE � F;
the uniform convergence of Pm on the unit ball of F implies

Pm(v)� P (v) = Pm(xjPmu)� P (xjPu)! 0.

To prove the converse, let � 2 (kerP )? and Pm satisfy (4.3). Then P �� = �
and, since the restriction of � onto the �nite-dimensional subspace E is a continuous
functional, (4.3) implies �(Pmf)! �(Pf) and (P �m�)f ! (P ��)f = �(f) for every
f 2 F[x]. Thus

�m := (P
�
m�) 2 (kerPm)?

satis�es (4.2). �
Remark 4.3. If Pmf ! Pf for all f 2 F[x] then for f 2 kerP we have

fm := f � Pmf 2 kerPm
and (f � Pmf)! f . In other words Jm ! J implies that

(4.5) for every f 2 J there exists fm 2 Jm such that fm ! f .

Turning to investigation of the two properties mentioned in the introduction to
this section, we start by showing that any two N -dimensional subspaces of F[x] can
be simultaneously complemented by an ideal J 2 JN . In fact we prove a bit more:
Proposition 4.4. Given G,E 2 GN , there exists an open and dense set Z � (Fd)N
such that for every Z 2 Z the ideal J(Z) is a Lagrange ideal in JN (Z consists of
N distinct points) and J(Z) complements G and E simultaneously.

Proof. Let fg1; :::; gNg be a basis for G. For an ordered set
Z = (z1; :::; zN ) 2 (Fd)N

consider the determinant function of Z:

g(Z) := det(gj(zk); j; k = 1; :::; N).

It is a standard result that a sequence of N scalar-valued function is linearly in-
dependent if and only if their restrictions to some set of N distinct points in their
common domain is linearly independent. Hence g(Z) is not identically zero and
for some Z 2 (Fd)N the ideal J(Z) complements G. Observe that g 2 F[Z] is
a polynomial in dN variables Z = (z1; :::; zN ) and thus is di¤erent from zero for
"almost all" Z 2 (Fd)N . That is the set

Z1 := fZ 2 (Fd)N : g(Z) 6= 0g = fZ 2 (Fd)N : G� J(Z) = F[x]g
is an open and dense set in (Fd)N . Similarly the set

Z2 := fZ 2 (Fd)N : G� J(Z) = F[x]g
is an open and dense. It remains to set Z := Z1 \ Z2. �
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Next we will describe ideal projectors onto one very speci�c space

E := spanf1; x1; x21; :::; xN�11 g

and show that ideal projectors onto this space in d variables bear similarity to the
ideal projectors onto F<n[x; y] in the bivariate setting.
We view E as an N -dimensional subspace of F[x] = F[x1; x2; :::; xd]. From the

de Boor�s formula, every ideal projector P onto E is determined by d polynomials
p1; :::; pd in E:

(4.6)

P (xN1 ) = p1 =
PN�1

j=0 b1;jx
j
1;

P (x2) = p2 =
PN�1

j=0 b2;jx
j
1;

...
P (xd) = pd =

PN�1
j=0 bd;jx

j
1.

Equivalently, every ideal J 2 JE is generated by polynomials of the form

(4.7) fxN1 � p1(x1); x2 � p2(x1); :::; xd � pd(x1)g:

and thus J 2 JE is completely determined by a (generalized) sequence of d � N
scalars

(4.8) B = (bk;j ; k = 1; :::; d; j = 0; :::; N � 1).

It is a unique feature of the space E that the converse is also true.

Proposition 4.5. Every sequence (p1; :::; pd) of polynomials in E de�nes an ideal
J =



xN1 � p1; x2 � p2; :::; xd � pd

�
that complements E.

Proof. It is clear from the construction of E that E \ J = f0g. Let f 2 F[x1] be a
polynomial in x1 only. Using the division algorithm, we have f = q(xN1 � p1) + r
with deg r < N . Thus the ideal



xN1 � p1

�
complements F<N [x1] in F[x1] and

E + J � F[x1]. Inductively, we assume that E + J � F[x1; :::; xk], k < d and prove
that E+J � F[x1; :::; xk; xk+1], i.e., we need to show that xnk+1F[x1; :::; xk] � E+J
for all n. For f 2 F[x1; :::; xk] we have

(4.9) xk+1f = (xk+1 � pk+1)f + pk+1f 2 E + J

since the �rst term is in the ideal J and the second belongs to E+J by the inductive
assumption. Using induction on n, assume that f 2 xnk+1F[x1; :::; xk] and conclude
that xk+1f 2 xn+1k+1F[x1; :::; xk] has a representation (4.9). �

In view of this proposition we can identify projectors onto the space E with FdN .
With every sequence of parameters B 2 FdN we associate a unique ideal projector
QB onto E by (4.6). In accordance with (2.1):

(4.10) QBf =
N�1X
j=0

rj;f (B)x
j
1; rj;f 2 FdN [B],

i.e., rj;f are polynomials in the dN variables B.

Theorem 4.6. Let E =spanf1; x1; x21; :::; xN�11 g � F[x] and let J 2 JE. For every
G 2 GN there exists a sequence (Jm) of ideals in JE \ JG such that Jm ! J .
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Proof. By Proposition 4.6, there exists an open and dense family of sets

Z = fz1; :::; zNg � Fd

of points such that the ideal

(4.11) J(Z) = ff 2 Fd : f(z1) = f(z2) = ::: = f(zN ) = 0g
complements G and E at the same time. Thus there exists a B 2 FdN such that the
kernel of the ideal projection QB onto E complements G. Let g1; :::; gN be a basis
for G. The fact that kerQB complements G is equivalent to kerQB \ G = f0g,
which means that the assumption:

QB(
NX
j=1

�jgj) =
NX
j=1

�jQBgj = 0

implies that �j = 0 for all j = 1; :::; N . That is, the functions QBg1; :::; QBgN are
linearly independent. But

QBgj =
N�1X
n=0

rn;gj (B)x
n
1

where rn;gj (B) are polynomials in d � N variables B. The linear independence is
equivalent to

det(rn;gj (B); j = 1; :::N ;n = 0; :::; N � 1) 6= 0.
This determinant is itself a polynomial in B and since it is non-vanishing for one
particular choice of B, the set of all B such that this determinant is non-zero is
open and dense. Hence starting with an arbitrary ideal

JB =

*
xN1 �

N�1X
j=0

b1;jx
j
1; xk �

N�1X
j=0

bk;jx
j
1; k = 2; :::; d

+
complemented by E we can perturb scalars in B so that the resulting ideal J ~B
simultaneously complements E and G. �

In complex case F = C we have

Theorem 4.7. Every ideal J � C[x], complemented by the space E described above,
is a limit of radical ideals.

Proof. Let J � C[x] be given by (4.6). Then

xN1 � p1(x1) =
N�1Y
j=0

(x1 � z1;j)

and once again we perturb p1 to obtain polynomials p
(m)
1 2 E such that

xN1 � p
(m)
1 (x1) =

N�1Y
j=0

(x1 � z(m)1;j )

with distinct zeroes fz(m)1;0 ; :::; z
(m)
1;N�1g and

(4.12) z
(m)
1;j ! z1;j

for every j = 0; :::; n� 1.
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Let z(m)k;j = pk(z
(m)
1;j ) for k = 2; :::; d. Then the ideal

Jm :=
D
xN1 � p

(m)
1 (x1); x2 � p2(x1); :::; xd � pd(x1)

E
has the associated variety

Z(Jm) = fz0 := (z(m)1;0 ; z
(m)
2;0 ; :::; z

(m)
d;0 ); :::; zN�1 := (z

(m)
1;N�1; :::; z

(m)
d;N�1)g

that consists of precisely N distinct points. Thus Jm is a radical ideal and by (4.12)
and De�nition 4.1 we conclude that Jm ! J . �

Theorem 4.8. Let J 2 JN be an ideal in C[x] and E be as above. The following
are equivalent:
(1) J is a limit of radical ideals in JN .
(2) For any G 2 GN there exists a sequence (Jm 2 JG) such that Jm ! J .
(3) There exists a sequence (Jm 2 JE) such that Jm ! J .

Proof. (1))(2) follows from the Proposition 4.4. The implication (2))(3) is obvi-
ous. To prove that (3))(1) we only need to prove that J is a limit of radical ideals
which is nothing but the Theorem 4.7. �

5. Perturbations of Bivariate Ideal Projectors

In one variable, every ideal J 2 JN complements F<N [x], i.e., JN = JF<n[x]. In
two or more variables this is not the case. In fact (cf. [16]), no N -dimensional
subspace G � F[x] has the property that JN = JG. In this section we will use
Theorem 2.4 to show that JF<n[x;y] is "dense" in JN(n). This property fails in
three or more variables (cf. [19]). We will show that given any N(n)-dimensional
space G � F[x] and any ideal projector P onto F<n[x; y] there exists a sequence
of ideal projectors Pm onto F<n[x; y] such that Pmf ! Pf for all f 2 F[x; y] and
kerPm 2 JG.

Proposition 5.1. Let PA and PAm be projectors onto F<n[x; y] as de�ned in Corol-
lary 2.3. Then Am ! A if and only if PAm(f)! PA(f) for all f 2 F[x; y].

Proof. By Corollary 3.4

PAf =

n�1X
j+k<n

qj;k;f (A)x
jyk

where qj;k;f 2 F[A] are polynomials (therefore continuous functions) in n(n + 1)
variables (entries of the matrix A). This implies the su¢ ciency. Conversely,
PAm

(f)! PA(f) implies PAm
(xjyn�j)! PA(x

jyn�j) for every j = 0; :::; n. Thus
the coe¢ cients of the leading form of PAm

(xjyn�j) converge to the coe¢ cients of
the leading form of PA(xjyn�j). By Corollary 3.2, this implies that Am ! A. �

We are now ready for the main theorem of this section:

Theorem 5.2. Let G be a subspace of F[x; y] with dimG = N(n) = dimF<n[x; y]
and let P be an ideal projector onto F<n[x; y]. Then there exists a sequence of ideal
projectors (Pm) onto F<n[x; y] such that Pm(f) ! P (f) for all f 2 F[x; y] and
kerPm complements G for all m.



18 BORIS SHEKHTMAN

Proof. Let A be an n � (n + 1) matrix and PA be the corresponding projector
onto F<n[x; y]. Let fg1; :::; gN(n)g be a linear basis for G. To prove that kerPA is
complements G we only need to prove that kerPA \ G = f0g. In other words we
need to prove that for every g 2 G, PA(g) = 0 implies g = 0. Equivalently, we need
to show that the polynomials

PAgj =
X

m+k<n

[PAgj(m; k)xmyk

are linearly independent. This is equivalent to proving that the N(n) � N(n)
matrix CA whose j-th row consists of ordered coe¢ cients [PAgj(m; k) has a non-
zero determinant. Since, by Corollary 3.4, [PAgj(m; k) are �xed polynomial in the
entries of the matrix A, hence detCA is a polynomial in the entries of the matrix
A. By Proposition 4.4, this polynomial is not identically zero, and thus detCA 6= 0
for all A in some open and dense set. In particular, it means that for a �xed
matrix A and a �xed m > 0, there exists a matrix Am such that kA�Amk < 1

m
and kerPAm

is complemented by G. Thus, by proposition 5.1, we conclude that
PAm

(f)! PA(f) for all f 2 F[x; y]. �

In one dimension every ideal projector P from C[x] onto C<N [x] is a limit of
Lagrange projectors (Theorem 4.7). Combination of Theorem 4.8 and Theorem 5.2
yield the same conclusion in two variables:

Corollary 5.3. Every ideal projector P from C[x; y] onto C<n[x; y] is a limit of
Lagrange projectors.

This provides a partial answer to a question, posed by de Boor [3]. Actually,
it is known (cf. [15]) that the result is true for a general �nite-dimensional ideal
projectors in C[x; y] and is false for projectors in C[x] for d > 2. Unlike the general
case, the proof presented here does not rely on the notion of Hilbert schemes and
algebraic geometry. For this reason, I feel it to be worthwhile.
We �nish this short section with a few remarks and open problems.
1) The combination of the results of [15] and Theorem 4.8 provides an extension

of Theorem 5.2 in the complex case:

Corollary 5.4. Let J 2 JN be an ideal in C[x; y] and let G 2 GN . Then there
exists a sequence of (radical) ideals Jm 2 JG such that Jm ! J .

The combination of the same two theorems implies

Corollary 5.5. For d > 2, there exists an ideal J 2 JN such that J can not be
approximated by ideals in JE.

The results of [19] allow to choose the ideal J in the previous corollary in JF<n[x]
for real and complex �eld F. Related, is the question, posed by de Boor (cf. [2]):
What properties of (kerP )? imply that P is a limit of Lagrange projectors?
2) The Theorem 2.4 provides a parametrization of F<n[x; y] by an irreducible

a¢ ne variety. It is shown in [7] that, in the complex case, the family JN of ideals
in C[x; y] of codimension N can be parameterized by an irreducible algebraic (as
oppose to a¢ ne) variety (cf. [10], De�nition 2, p.52) of dimension 2N . As a
consequence every �nite-dimensional ideal projector in C[x; y] is a limit of Lagrange
projectors (cf [15]). Equivalently, for every �nite-dimensional space G � C[x; y] and
every ideal J with codimJ = dimG, there exists a small perturbation ~J of J with
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~J 2 PG. It would be nice to �nd a direct proof of this fact without the use of [7].
In particular, it would be nice to know the spaces G � F[x; y] such that JG can be
parameterized by an irreducible a¢ ne variety of dimension 2N . As of now, I do
not have a proof of the analogue of Corollary 5.5 (as opposed to Theorem 5.2) in
the real case.
3) It would be interesting to determine the relationship between the properties

of the matrix A and the properties of the ideal projector PA. For instance: What
properties of A imply that PA is a Lagrange projector and how to determine the
interpolation sites of PA from the entrees of A? More generally, what is the rela-
tionship between the entries of A and the space (kerPA)?? Corollary 3.8 is a small
step in that direction.
4) Corollary 3.9 has an interesting application in the study of the "error formulas"

for ideal projectors (cf. [18]). I don�t know if the analogous result is true in an
arbitrary number of variables.
I would like to thank Carl de Boor, Geir Ellingsrud and an anonymous referee

for the previous version of this paper for many, many, many corrections and a
plethora of useful recommendations. Some are still waiting for the time when my
understanding of Algebraic Geometry reaches an appropriate level. I also want to
extend my gratitude to the three referees for this paper for a number of constructive
suggestions.
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