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Abstract

Quandle 2-cocycles define invariants of classical and virtual knots, and extensions of quandles.

We show that the quandle 2-cocycle invariant with respect to a non-trivial 2-cocycle is constant,

or takes some restricted form, for classical knots when the corresponding extensions satisfy

certain algebraic conditions. Specific examples are presented from the list of connected quandles

of order less than 48.
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1 Introduction

Sets with certain self-distributive operations called quandles have been studied since the 1940s [18],

and have been applied to knot theory since early 1980s [13, 14]. The number of colorings of knot

diagrams by quandle elements, in particular, has been widely used as a knot invariant. Algebraic

homology theories for quandles were defined [3,12], and investigated. Knot invariants using cocycles

have been defined [3] and applied to knots and knotted surfaces [6]. Extensions of quandles by

cocycles have been studied, for example, in [1, 2, 11].

Computations using GAP [20] significantly expanded the list of quandles of small connected

quandles. These quandles, called Rig quandles, may be found in the GAP package Rig [19]. Rig

includes all connected quandles of order less than 48, at this time. Properties of some of Rig

quandles, such as homology groups and cocycle invariants, are also found in [19]. We use the

notation Q(n, i) for the i-th quandle of order n in the list of Rig quandles.

It is observed that some Rig quandles have non-trivial second homology, yet have constant

2-cocycle invariants with non-trivial 2-cocycles, as much as computer calculations have been per-

formed for the knot table (Remark 4.5, [9]). It does not seem to have been proved previously

whether they actually have constant values for all classical knots. From Theorem 5.5 in [7] and

using the Kronecker product, any non-trivial 2-cocycle has non-constant invariant values for some

virtual links. Thus it is of interest if these quandles actually have constant values for all classical

knots. More generally, possible values of the cocycle invariants are largely unknown, and are of

interest. In this paper, we show that certain algebraic properties of quandles imply that the cocycle

invariant is constant, or takes some restricted form, for classical knots. In particular, we prove that

several specific Rig quandles, including some of those conjectured in [9], have constant cocycle
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invariant values for all classical knots for some non-trivial 2-cocycles, and that several Rig quandles

take certain specific form as cocycle invariant values.

In Section 2, definitions, terminology and lemmas are presented. The main results and corol-

laries, and their proofs are given in Section 3.

2 Preliminaries

In this section we briefly review some definitions and examples. More details can be found, for

example, in [6].

A quandle X is a non-empty set with a binary operation (a, b) 7→ a ∗ b satisfying the following

conditions.

(Idempotency) For any a ∈ X, a ∗ a = a. (1)

(Right invertibility) For any b, c ∈ X, there is a unique a ∈ X such that a ∗ b = c. (2)

(Right self-distributivity) For any a, b, c ∈ X, we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c). (3)

A quandle homomorphism between two quandles X,Y is a map f : X → Y such that f(x ∗X y) =

f(x) ∗Y f(y), where ∗X and ∗Y denote the quandle operations of X and Y , respectively. A quandle

isomorphism is a bijective quandle homomorphism, and two quandles are isomorphic if there is

a quandle isomorphism between them. A quandle epimorphism f : X → Y is a covering [11] if

f(x) = f(y) implies a ∗ x = a ∗ y for any a, x, y ∈ X.

Let X be a quandle. The right translation Ra : X → X, by a ∈ X, is defined by Ra(x) = x ∗ a

for x ∈ X. Then Ra is an automorphism of X by Axioms (2) and (3). The subgroup of Sym(X)

generated by the permutations Ra, a ∈ X, is called the inner automorphism group of X, and

is denoted by Inn(X). The map ϕ : X → ϕ(X) ⊂ Inn(X) defined by ϕ(x) = Rx is called the

right-translation map. A right-translation map is a covering.

A quandle is connected if Inn(X) acts transitively on X. A quandle is faithful if the mapping

a 7→ Ra is an injection from X to Inn(X).

A generalized Alexander quandle is defined by a pair (G, f) where G is a group and f ∈ Aut(G),

and the quandle operation is defined by x∗y = f(xy−1)y. If G is abelian, this is called an Alexander

quandle.
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Figure 1: Colored crossings and cocycle weights

In this paper we denote by A a finite multiplicative abelian group, and the identity element is

denoted by 1. A function φ : X ×X → A for an abelian group A is called a quandle 2-cocycle [3]

if it satisfies

φ(x, y)φ(x, z)−1φ(x ∗ y, z)φ(x ∗ z, y ∗ z)−1 = 1
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for any x, y, z ∈ X and φ(x, x) = 1 for any x ∈ X. For a quandle 2-cocycle φ, E = X ×A becomes

a quandle by

(x, a) ∗ (y, b) = (x ∗ y, a φ(x, y))

for x, y ∈ X, a, b ∈ A, denoted by E(X,A, φ) or simply E(X,A), and it is called an abelian

extension of X by A. Let π : E(X,A) = X ×A→ X be the projection to the first factor. We also

say that a quandle epimorphism f : Y → X is an abelian extension if there exists an isomorphism

ν : E(X,A) → Y such that π = fν. An abelian extension is a covering. See [2] for more information

on abelian extensions of quandles and [3–5] for more on quandle cohomology.

Let X be a quandle, and φ be a 2-cocycle with coefficient group A, a finite abelian group. For a

coloring of a knot diagram by a quandle X as depicted in Figure 1 at a positive (left) and negative

(right) crossing, respectively, the pair (xτ , yτ ) of colors assigned to a pair of nearby arcs is called

the source colors. The third arc receives the color xτ ∗ yτ .

The 2-cocycle (or cocycle, for short) invariant is an element of the group ring Z[A] defined by

Φφ(K) =
∑

C

∏
τ φ(xτ , yτ )

ǫ(τ), where the product ranges over all crossings τ , the sum ranges over

all colorings of a given knot diagram, (xτ , yτ ) are source colors at the crossing τ , and ǫ(τ) is the

sign of τ as specified in Figure 1. For a given coloring C, the element
∏
τ φ(xτ , yτ )

ǫ(τ) ∈ A, in

multiplicative notation, is denoted by Bφ(K,C). For an abelian group A, the cocycle invariant

values take the form
∑

a∈A naa where na ∈ Z, and it is constant if na = 0 when a is not the identity

of A.

A 1-tangle is a properly embedded arc in a 3-ball, and the equivalence of 1-tangles is defined

by ambient isotopies of the 3-ball fixing the boundary (cf. [10]). A diagram of a 1-tangle is defined

in a manner similar to a knot diagram, from a regular projection to a disk by specifying crossing

information, see Figure 2(A). An orientation of a 1-tangle is specified by an arrow on a diagram

as depicted. A knot diagram is obtained from a 1-tangle diagram by closing the end points by

a trivial arc outside of a disk. This procedure is called the closure of a 1-tangle. If a 1-tangle is

oriented, then the closure inherits the orientation. Two diagrams of the same 1-tangle are related by

Reidemeister moves. There is a bijection between knots and 1-tangles, and invariants of 1-tangles

give rise to invariants of knots, see [11], for example.

b
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Figure 2: 1-tangles

A 1-tangle is obtained from a knot K as follows. Choose a base point b ∈ K and a small open

neighborhood B of b in the 3-sphere S3 such that (B,K∩B) is a trivial ball-arc pair (so that K∩B

is unknotted in B, see Figure 2(B)). Then (S3 \ Int(B),K ∩ (S3 \ Int(B))) is a 1-tangle called the

1-tangle associated with K. The resulting 1-tangle does not depend on the choice of a base point.

If a knot is oriented, then the corresponding 1-tangle inherits the orientation.
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A quandle coloring of an oriented 1-tangle diagram is defined in a manner similar to those

for knots. We do not require that the end points receive the same color for a quandle coloring

of 1-tangle diagrams. We say that a quandle X is end monochromatic [9] for a tangle T if any

coloring of T by X assigns the same color on the two end arcs. We use the same notations

Φφ(T ) =
∑

C

∏
τ φ(xτ , yτ )

ǫ(τ) and Bφ(T,C) for tangles T . Figures 1, 2, 3 are taken from [9].
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Figure 3: Colorings of a tangle

We recall the following two lemmas.

Lemma 2.1 ( [11] ). Let f : Y → X be a covering, and CX : A(T ) → X be a coloring of a 1-tangle

T by X. Let b0, b1 be the top and bottom arcs as depicted in Figure 3. Then for any y ∈ Y such

that f(y) = CX(b0), there exists a unique coloring CY : A(T ) → Y such that fCY = CX and

CY (b0) = y.

Lemma 2.2 ( [2, 9] ). Let f : X → Q be an abelian extension with a 2-cocycle φ. Then X is end

monochromatic for T if and only if Φφ(K) is constant, where T is a 1-tangle for a knot K.

Sketch proof of Lemmas 2.1 and 2.2. Lemma 2.1 is shown by traveling the tangle from top to

bottom, and extending CX with a given starting color y ∈ Y at b0 to CY through each under-

crossing using the coloring and the covering conditions. At a positive crossing, as shown in Figure 4,

if the color at the left under-arc is x ∈ X and lifted to x̃ ∈ Y , and the over-arc is colored by y ∈ X,

then the color at the right under-arc is lifted to x̃ ∗ ỹ ∈ Y , where the this lifting is independent of

choice of ỹ ∈ Y such that f(ỹ) = y so that it depends only on y. The lifting is similarly done at

negative crossings, and the unique lifting continues inductively.

Foe Lemma 2.2, let ν : X → E = E(Q,A) = Q×A be an isomorphism such that π = fν. Let

b0, b1 be the top and bottom arcs as depicted in Figure 3, and let CX be a coloring of T by X.

From [2], for any a ∈ A, there is a coloring CE : A(T ) → E such that CE(b0) = (CX(b0), a) and

CE(b1) = (CX(b1), aBφ(T,CX)). This is also indicated in Figure 4, where the contribution of the

cocycle value at a crossing appears at a crossing.

Suppose X is end monochromatic. Then Q is also end monochromatic. Thus for any coloring

CX , CX(b1) = CX(b0) holds. Hence ν(CX(b1), a Bφ(T,CX)) = ν(CX(b0), a), that is, Bφ(T,CX) =

1. Since CX(b0) = CX(b1), CX defines a coloring of K, and Bφ(K,CX ) = 1, hence Φφ(K) is

constant. The converse also holds. �

Lemma 2.3. Let ϕ : Y → X = ϕ(Y ) ⊂ Inn(Y ) be the right-translation map, and C : A(T ) → Y

be a coloring of a 1-tangle T by Y . For the top and bottom arcs b0 and b1 of T , respectively, let
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Figure 4: Lifting colorings

y0 = C(b0) and y1 = C(b1). Then it holds that ϕ(y0) = Ry0 = Ry1 = ϕ(y1) and hence X is end

monochromatic with T .

Proof. The proof in [9], based on corresponding statements in [15–17] on faithful quandles, applies

in this situation. The idea of proof is seen in Figure 3. The large circle behind the tangle T in the

figure can be pulled out of T if T corresponds to a classical knot. Hence any color y at the left of

the large circle should extend to the color to the right, so that for the colors y0 and y1 for the top

and bottom arcs b0 and b1 must satisfy y ∗ y0 = y ∗ y1, hence we obtain Ry0 = Ry1 .

3 Cocycle invariants and sequences

In this section we state and prove the main result of the paper.

Theorem 3.1. Let Y
ϕ
→ X

α
→ Q be a sequence of quandle homomorphisms where ϕ is the right-

translation map and α is an abelian extension with respect a 2-cocycle φ. Then the quandle cocycle

invariant Φφ(K) is constant for any classical knot K.

Proof. Let T be a 1-tangle of K, b0, b1 be the top and bottom arcs of T , respectively. Let C be a

coloring of a diagram of K by Q, and use the same notation C : A(T ) → Q for a corresponding

coloring of T such that C(b0) = C(b1) = x ∈ Q. Then C extends to a coloring CX : A(T ) → X.

Recall that the right-translation map is a covering. By assumption and Lemma 2.1, CX extends

to a coloring CY . Since α is an abelian extension, Lemma 2.2 and Lemma 2.3 imply that the cocycle

invariant is constant.

To apply the theorem to some Rig quandles, we observe the following.

Lemma 3.2. If ϕ : Y → ϕ(Y ) = X, for connected quandles X and Y , satisfies |Y |/|X| = 2, then

ϕ is an abelian extension.

Proof. For ϕ : Y → ϕ(Y ) = X, where X and Y are connected quandles, it is proved in [1] that

there is a quandle isomorphism ν : X × S → Y for a set S, such that π = ϕν for the projection

π : X × S → X. The quandle operation on X × S is defined by

(x, s) ∗ (y, t) = (x ∗ y, βx,y(s)) for (x, s), (y, t) ∈ X × S,

for β : X2 → Sym(S). The proof of Theorem 7.1 of [9] shows that if the cardinality of S is 2, then

we can assume S = Z2 and βx,y(a) = aφ(x, y) where φ is a 2-cocycle with coefficient group A = Z2.

Hence ϕ is an abelian extension.
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We say that an abelian extension f : Y → X is of index k if |Y |/|X| = k, and also the

corresponding 2-cocycle φ is said to be of index k, with the coefficient group A of order k.

Corollary 3.3. The following Rig quandles have non-trivial second cohomology groups with the

coefficient group A = Z2, yet give rise to the constant quandle 2-cocycle invariant for any classical

knot with the corresponding non-trivial 2-cocycles:

Q(6, 1), Q(10, 1), Q(12, 5), Q(12, 6), Q(12, 7), Q(12, 8), Q(16, 4), Q(16, 5),

Q(16, 6), Q(18, 1), Q(18, 2), Q(18, 8), Q(18, 9), Q(18, 10), Q(24, 3), Q(24, 4),

Q(24, 13), Q(24, 22), Q(30, 2), Q(30, 7), Q(30, 8), Q(40, 8), Q(40, 9), Q(40, 10),

Q(42, 1), Q(42, 3), Q(42, 4), Q(42, 7), Q(42, 8).

Proof. Computer calculations show the following quandle sequences of Rig quandles:

Q(24, 1)
ϕ
→ Q(12, 1)

ϕ
→ Q(6, 1),

Q(40, 2)
ϕ
→ Q(20, 3)

ϕ
→ Q(10, 1).

For the other quandles for which the sequences go out of bounds of Rig quandles, sequences of right-

translation maps are listed in Tables 1 and 2. The result follows from Lemma 3.2 and Theorem 3.1

when the maps are of index 2. The quandles listed in the statement satisfy the condition of index

2.

We remark that the above list contains all Rig quandles of order less than or equal to 16 that

were conjectured in [9] to have constant quandle 2-cocycle invariants for any classical knot with

non-trivial 2-cocycles except Q(12, 9), Q(15, 2), and Q(15, 7), for which the conjecture is still open.

Those in the above list of order larger than 16 do not even appear in the conjectured list in [9].

The reason why we were able to prove Corollary 3.3 for the conjectured and more extensive Rig

quandles is by the use of ϕ in Theorem 3.1.

Tables 1 and 2 contain sequences of connected quandles where all arrows represent right-

translation maps. The quandle on the left of each sequence is a generalized Alexander quandle, but

others in the sequence may or may not be generalized Alexander quandles. The right-most quandle

in each sequence is faithful, so the sequences cannot be extended non-trivially to the right with

right-translation maps. The notation R(n, j) is used to indicate a quandle of order n when n > 47

and hence not a Rig quandle. The index j is simply to distinguish non-isomorphic quandles.

R(192, 2) → R(48, 3) → Q(24, 3) → Q(12, 6)

R(192, 3) → R(48, 4) → Q(24, 4) → Q(12, 5)

Table 1: Four-term sequences of right-translation maps for small connected quandles

Remark 3.4. Terminating sequences of ϕ,

X = X0
ϕ
→ X1 = ϕ(X0)

ϕ
→ · · ·

ϕ
→ Xn = ϕ(Xn−1),

are discussed in [1], where Xn is faithful and Xj are not, for j = 1, . . . , n − 1. For the 790 Rig

quandles of order less than 48, there are 66 non-faithful quandles X, and all but two have faithful

images ϕ(X). The two exceptions are the above first two Rig quandles Q(24, 1) and Q(40, 2).

On the other hand, Tables 1 and 2 include many quandles X with ϕ(X) being non-faithful Rig

quandles.
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R(64, 1) → Q(32, 6) → Q(16, 4) R(64, 2) → Q(32, 7) → Q(16, 5)

R(64, 3) → Q(32, 8) → Q(16, 6) R(64, 4) → Q(32, 5) → Q(16, 4)

R(64, 5) → Q(32, 6) → Q(16, 4) R(64, 6) → Q(32, 5) → Q(16, 4)

R(72, 1) → Q(36, 21) → Q(18, 10) R(72, 2) → Q(36, 17) → Q(18, 8)

R(72, 3) → Q(36, 20) → Q(18, 9) R(72, 4) → Q(36, 4) → Q(18, 2)

R(72, 5) → Q(36, 1) → Q(18, 1) R(96, 1) → Q(24, 4) → Q(12, 5)

R(96, 2) → Q(24, 3) → Q(12, 6) R(96, 3) → R(48, 1) → Q(24, 22)

R(96, 4) → Q(24, 6) → Q(12, 9) R(96, 5) → Q(24, 6) → Q(12, 9)

R(96, 6) → Q(24, 6) → Q(12, 9) R(96, 7) → Q(24, 5) → Q(12, 8)

R(96, 8) → Q(24, 5) → Q(12, 8) R(96, 9) → R(48, 2) → Q(24, 22)

R(120, 1) → Q(20, 3) → Q(10, 1) R(120, 2) → R(60, 1) → Q(30, 8)

R(120, 3) → R(60, 2) → Q(30, 7) R(120, 4) → R(60, 3) → Q(30, 2)

R(120, 5) → Q(30, 1) → Q(15, 2) R(160, 1) → R(80, 1) → Q(40, 10)

R(160, 2) → Q(40, 20) → Q(20, 5) R(160, 3) → Q(40, 19) → Q(20, 6)

R(160, 4) → R(80, 2) → Q(40, 9) R(168, 1) → R(84, 1) → Q(42, 8)

R(168, 2) → R(84, 2) → Q(42, 3) R(168, 3) → R(84, 3) → Q(42, 7)

R(168, 4) → R(84, 4) → Q(42, 4) R(168, 5) → R(84, 5) → Q(42, 1)

R(192, 1) → Q(24, 14) → Q(12, 7) R(192, 4) → R(48, 5) → Q(24, 13)

R(216, 1) → R(72, 6) → Q(24, 21) R(216, 2) → Q(36, 17) → Q(18, 8)

R(216, 3) → Q(36, 1) → Q(18, 1)

Table 2: Three-term equences of right-translation maps for small connected quandles

Let X = Q(12, 5) or Q(12, 6). Then the second quandle cohomology group H2
Q(X,Z4) is

known [19] to be isomorphic to Z4. See [3, 6], for example, for details on quandle cohomology.

Let ψ : X × X → Z4 be a 2-cocycle which represents a generator of H2
Q(X,Z4) ∼= Z4. Let u

denote a multiplicative generator of A = Z4. Then recall that the cocycle invariant is written as

Φψ(K) =
∑3

j=0 aj(K)uj ∈ Z[A] for any knot K. The cocycle invariants Φψ(K) for X = Q(12, 5)

or Q(12, 6) with respect to ψ, computed for some knots in the table in [19] up to 9 crossing knots,

contain non-constant values, while for A = Z2 the invariant is stated to be constant in Corollary 3.3.

This is explained by the following, which solves the conjecture stated in [9].

Corollary 3.5. Let X = Q(12, 5) or Q(12, 6), and ψ : X × X → A = Z4 be a 2-cocycle which

represents a generator of H2
Q(X,Z4) ∼= Z4. Let Φψ(K) =

∑3
j=0 aj(K)uj ∈ Z[A] be the cocycle

invariant. Then a1(K) = a3(K) = 0 for any classical knot K.

Proof. The 2-cocycles φ corresponding to the sequences used in Corollary 3.3 and found in Table 2

are of index 2 and is cohomologous to ψ2. Then

Φφ(K) =
3∑

j=0

aj(K)u2j = [ a0(K) + a2(K) ]u0 + [ a1(K) + a3(K) ]u2

is constant by Corollary 3.3. Since aj(K) are non-negative integers, the result follows.

A similar situation is found for X = Q(18, 1) or Q(18, 8), where H2
Q(X,Z6) ∼= Z6. Let u be a

multiplicative generator of A = Z6. Then the invariant values are restricted to the following form.
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Corollary 3.6. Let X = Q(18, 1) or Q(18, 8), and ψ : X×X → Z6 be a 2-cocycle which represents

a generator of H2
Q(X,Z6) ∼= Z6. Let Φψ(K) =

∑5
j=0 aj(K)uj ∈ Z[A] be the cocycle invariant.

Then ak(K) = 0 for k = 1, 3, 5 for any classical knot K.

The cocycle invariant for connected quandles of order 18 are computed in [19] for up to 7 crossing

knots at the time of writing. The invariant values for Q(18, 8) do contain non-constant values. For

Q(18, 1), the invariant is constant, and we do not know whether this is an artifact of limited number

of knots or it is constant for all classical knots. In [19], homology groups are computed for connected

quandles of order less than 36, and we are not able to derive similar conclusions for larger quandles

listed in Corollary 3.3 at this time.
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