Some families of Connected Quandles
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1 Non-abelian version of Alexander quandles

More information and references about the constructions below can be found at:
http://shell.cas.usf.edu/quandle.

Joyce and Matveev showed that, for a group G and its automorphism f, the operation = *xy =
f(zy~1)y defines a quandle structure on G.

It is shown by Xiang-dong Hou that it gives a latin, non-Alexander quandle if f fixes only the
identity element and G is not abelian. He also showed that two such automorphism f and g give
isomorphic quandles if and only if they are conjugate in Aut(QG).

Edwin Clark (with help from Michael Kenyon) found that the smallest non-abelian group G with
such an automorphism has order 27, and is unique. He found that there are two non-conjugate such
automorphisms, and they give rise to the rig quandles C'[27,27] and C[27,28]. He also computed
that the (order, number) of such quandles as follows, for order 100 or less.

27, 2
48, 1
64, 21
75, 3
80, 1
81, 10

For all non-abelian groups G up to order 63 with a representative f of each conjugacy class of
Aut(G), such that f is not fixed point free and the resulting quandle is connected.

(There are 319 groups of order up to 63, among which 213 are non-abelian. There are 63
quandles of the above type out of these, and 4688 quandles that are not connected.)

The following is a list of those connected non-latin such quandles with order < 36, with the rig
quandle numbering and the groups they come from.

Edwin’s list and comments:

M[ 1]
M[ 2]

C[ 8, 1], connected
C[12, 2], connected = true, from group

Q8.
Ad.

true, from group



M[ 3] C[12, 1], connected = true, from group = A4.

M[ 4] C[24, 2], connected = true, from group = ‘SL(2,3)°.

M[ 5] C[24, 1], connected = true, from group = ‘SL(2,3)°¢.

M[ 6] C[24, 8], connected = true, from group = ‘C3 x Q8°.

M[ 7] = C[27,14], connected = true, from group = ¢(C3 x C3) : C3°.
M[ 8] = C[27, 6], connected = true, from group = ¢(C3 x C3) : C3°.
M[ 9] = C[27, 1], connected = true, from group = ¢(C3 x C3) : C3°.
M[10] = C[32, 7], connected = true, from group = ‘(C4 x C2) : C4°.
M[11] = C[32, 9], connected = true, from group = ‘(C4 x C2) : C4°.
M[12] = C[32, 1], connected = true, from group = ‘(C4 x C2) : C4°.
M[13] = C[32, 8], connected = true, from group = ‘(C4 x C2) : C4°.
M[14] = C[32, 5], connected = true, from group = ‘C2 x C2 x Q8°.
M[15] = C[32, 2], connected = true, from group = ‘C2 x C2 x Q8°.
M[16] = C[32, 3], connected = true, from group = ¢(C2 x D8) : C2°.
M[17] = C[32, 6], connected = true, from group = ¢(C2 x D8) : C2°.
M[18] = C[32, 4], connected = true, from group = ‘(C2 x Q8) : C2°.

It is interesting that C[8,1] is non-Abelian Alexander. Aut(Q8) = S_4 so it
should be possible to figure out what f gives C[8,1] if it hasn’t already been done.

This raises the question for what f are the quandles connected?

Here’s a list of all the groups for which such connected non-latin quandles exist.
I have eliminated those that as above have several.

[ "(C2xC2x(C2xC2) :C3", "(C2 xC2xC2 :C7", "(C2 x C2) : C9",
"(C2 x D8) : C2", "(C2 x @8) : C2", "(C3 x C3) : C3", "(C4 x C2) : C4",
"(C4 x C4) : C3", "A4", "AB" "C2 x C2 x A4", "C2 x C2 x Q8", "C3 x A4",

"C3 x Q8", "5 x A4", "5 x Q8", "o7 x Q8“, "Q8", IISL(2’3)II ]

All 63 of them with the orders of f are as follows.
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(C4 x C2) : C4, automorphism order = 3
(C4 x C2) : C4, automorphism order = 6
C2 x C2 x (8, automorphism order = 6
C2 x C2 x (8, automorphism order = 3
(C2 x D8) : C2, automorphism order = 3
(C2 x D8) : C2, automorphism order = 6
(C2 x @8) : C2, automorphism order = 5
(C2 x C2) : C9, automorphism order = 12
(C2 x C2) : C9, automorphism order = 6
(C2 x C2) : C9, automorphism order = 4
(C2 x C2) : C9, automorphism order = 2
(C2 x C2) : C9, automorphism order = 12
(C2 x C2) : C9, automorphism order = 6
C3 x A4, automorphism order = 12

C3 x A4, automorphism order = 6

C3 x A4, automorphism order = 4

C3 x A4, automorphism order = 2

C5 x (08, automorphism order = 12

C5 x (08, automorphism order = 12

C5 x Q8, automorphism order = 6

(C4 x C4) : C3, automorphism order = 4
(C4 x C4) : C3, automorphism order = 4
(C4 x C4) : C3, automorphism order = 8
(C4 x C4) : C3, automorphism order = 4
(C4 x C4) : C3, automorphism order = 2
C2 x C2 x A4, automorphism order = 12
C2 x C2 x A4, automorphism order = 6

(C2 x C2 x C2 x C2) : C3, automorphism
(C2 x C2 x C2 x C2) : C3, automorphism
(C2 x C2 x C2 x C2) : C3, automorphism
(C2 x C2 x C2 x C2) : C3, automorphism
C7 x Q8, automorphism order = 3

C7 x Q8, automorphism order = 6

C7 x Q8, automorphism order = 3

C7 x Q8, automorphism order = 6

C7 x Q8, automorphism order = 6

(C2 x C2 x C2) : C7, automorphism order
(C2 x C2 x C2) : C7, automorphism order
(C2 x C2 x C2) : C7, automorphism order
(C2 x C2 x C2) : C7, automorphism order
A5, automorphism order = 3
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automorphism order
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55, A5, automorphism order = 2
56, A5, automorphism order = 4
57, A5, automorphism order = 5

58, C5 x A4, automorphism order = 4
59, C5 x A4, automorphism order = 4
60, C5 x A4, automorphism order = 4
61, C5 x A4, automorphism order = 4
62, C5 x A4, automorphism order = 4
63, C5 x A4, automorphism order = 2

There are additional 15 for groups of order 64:

1, C4 . (C4 x C4), automorphism order = 3

2, C4 . (C4 x C4), automorphism order = 6

3, C4 . (C4 x C4), automorphism order = 6

4, C4 . (C4 x C4), automorphism order = 6

5, ((C2 x Q8) : C2) : C2, automorphism order = 3
6, ((C2 x Q8) : C2) : C2, automorphism order = 6
7, ((C2 x Q8) : C2) : C2, automorphism order = 6
8, ((C2 x Q8) : C2) : C2, automorphism order = 6
9, Q8 x (8, automorphism order = 3

10, Q8 x Q8, automorphism order = 6

11, ((C4 x C4) : C2) : C2, automorphism order = 3

12, ((C4 x C4) : C2) : C2, automorphism order = 6

13, (C2 x C2) . (C2 x C2 x C2 x C2), automorphism order = 5
14, C2 x C2 x C2 x (8, automorphism order = 21

15, C2 x C2 x C2 x (8, automorphism order = 21

2 Core of groups

If G is a group, Core(G) is the quandle (G, ) with z *y = ya{ — 1)y (see, for example, Joyce’s
paper). These are always Keis.

If G is abelian this is an Alexander quandle with t = —1. So it suffices to look at non-abelian
G only.

For |G| < 36 and nonabelian, GAP finds only the following connected Core(G)

Cc [12, 8] Core (A1t (4))

c [21, 8] Core(Z_7:2_33) (N:H is semidirect product of H acting on N)
C [24,17] = Core(SL(2,3))

C [27, 21 = Core((Z_3 \times Z_3):Z_3) (also is Alexander)



c [27, 4]

For many groups
when Core(G) is
Latin iff G has

= Core(Z_9 : Z_3) (also is Alexander)

have even order.

G, Core(G) is not connected. I’m not sure
connected. It is well-known that Core(G) is
odd order. Note that two of the groups above

For a brief review of Core(G) and some references see the introduction

to http://www.karlin.mff.cuni.cz/"stanovsk/math/gop.pdf

Here are all examples of connected Core(G) where G is

not abelian and |G| < 2°7. GAP computes them easily.
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12:
21:
24:
27:
27:
36:
36:
39:
48:
48:
55:
56:
57:
60:
60:
63:
63:
72:
72:
75:
80:
81:
81:
81:
81:
81:
81:
81:
81:
81:

Core(A4)

Core(C7 : C3)
Core(SL(2,3))
Core((C3 x C3) : C3)
Core(C9 : C3)
Core((C2 x C2) : C9)
Core(C3 x A4)
Core(C13 : C3)
Core((C4 x C4) : C3)

Core((C2 x C2 x C2 x C2) : C3)

Core(C11 : Cb)
Core((C2 x C2 x C2)
Core(C19 : C3)
Core(A5)

Core(C5 x A4)
Core(C7 : C9)
Core(C3 x (C7 : C3))
Core(Q8 : C9)
Core(C3 x SL(2,3))
Core((C5 x C5) : C3)

: C7)

Core((C2 x C2 x C2 x C2) : Cb)

Core((C9 x C3) : C3)
Core(C9 : C9)

Core(C27 : C3)

Core((C3 x C3 x C3)
Core((C9 x C3) : C3)
Core((C9 x C3) : C3)
Core(C3 . ((C3 x C3)
Core(C3 x ((C3 x C3)
Core(C3 x (C9 : C3))

: C3)

: C3) = (C3 x C3) . (C3 x C3))
: C3))



order 81: Core((C9 x C3) : C3)

order 84: Core(C7 x A4)

order 84: Core((C14 x C2) : C3)

order 93: Core(C31 : C3)

order 96: Core(((C4 x C2) : C4) : C3)
order 96: Core((C2 x C2 x Q8) : C3)
order 96: Core(((C2 x D8) : C2) : C3)
order 105: Core(C5 x (C7 : C3))

order 108: Core((C2 x C2) : C27)
order 108: Core(C9 x A4)

order 108: Core((C18 x C2) : C3)
order 108: Core(C3 x ((C2 x C2) : C9))
order 108: Core(((C2 x C2) : C9) : C3)
order 108: Core((C6 x C6) : C3)

order 108: Core(C3 x C3 x A4)

order 111: Core(C37 : C3)

order 117: Core(C13 : C9)

order 117: Core(C3 x (C13 : C3))
order 120: Core(SL(2,5))

order 120: Core(C5 x SL(2,3))

order 125: Core((C5 x C5) : Cb)

order 125: Core(C25 : Cb)

3 Conjugation quandles in PSL(2,q)

The following examples of conjugation quandles of order pq
were found by GAP, where p < q
are primes in the group PSL(2,q).

quandle order = 15 = 3%5 Group = PSL(2,5)
quandle order = 21 = 3%7 Group = PSL(2,7)
quandle order = 55 = 5%11 Group = PSL(2,11)
quandle order = 91 = 7%13 Group = PSL(2,13)

quandle order = 253 = 11%23 Group = PSL(2,23)
quandle order = 703 = 19*37 Group = PSL(2,37)

quandle order = 1081 = 23%47 Group = PSL(2,47)
quandle order = 1711 = 29%59 Group = PSL(2,59)
quandle order = 1891 = 31%61 Group = PSL(2,61)
quandle order = 2701 = 37*73 Group = PSL(2,73)
quandle order = 3403 = 41%83 Group = PSL(2,83)

quandle order = 5671 = 53*%107 Group = PSL(2,107)



quandle order = 12403 = 79%157 Group = PSL(2,157)
quandle order = 13861 = 83%167 Group = PSL(2,167)
quandle order = 15931 = 89%179 Group = PSL(2,179)
quandle order = 18721 = 97%193 Group = PSL(2,193)
quandle order = 25651 = 113%227 Group = PSL(2,227)

Moreover these are the only such example from PSL(2,q)

for the 48 primes q from 5 to 229. The primes p for which this happens

are 5, 7, 11, 13, 23, 37, 47, 59, 61, 73, 83, 107, 157, 167, 179, 193, 227
which is the OEIS sequence: http://oeis.org/A079149 --I omit 3 here: note
PSL(2,3) has conjugacy classes of sizes 1,4, and 3 , but not 3x*2.

There must be a theorem that PSL(2,q) has a conjugacy class of size pq if and only if
q is in A079149 and q > 3. It seems that the p in the order pq is a factor of either gq-1 or
if fact it appears that q = 2p+l1 or q = 2p-1.

Recall that there are no non-Alexander quandles of order 5%7.

4 Families of quandles parametrized by group elements

Let G be a group. Let X be a right G-module, and on G'x X, the operation defined by (a, g)*(b, h) =
(h~tgh,ah+b(1—h)) gives a quandle structure. This construction was found by Inoue-Jang-Oshiro.

J. Przyticki gave the non-abelian version: Let X be a group, G be a subgroup of Aut(X) acting
on the right ((z,g) — z-g = 29, (29) - h = x9"). Then the operation defined on G x X by
(g,a) * (h,b) = (h"1gh, (ab=1)" b) gives a quandle structure.

Motivated from these, W. Edwin Clark computed the quandle structure on C' x X where C
is a conjugacy class of the automorphism group of the group X, and the operation is given by
(g,a) * (h,b) = (h~tgh, (ab=)" b) for g,h € C, a,b € X, such that C x X is connected, and the
cardinality of C is larger than 1.

Q8 is the quaternion group of order 8.

Also N:H means the semidirect product of N and H as in the example
Aut(X) = (((C2 x C2 x C2 x C2) : C3) : C2) : C2

C2 x C2, Aut(X) = S3 conj class size = 3. order = 12.

Q8, Aut(X) = S4 conj class size = 6. order = 48.

Q8, Aut(X) = S4 conj class size = 6. order = 48.

C2 x C2 x C2, Aut(X) PSL(3,2) conj class size = 42. order = 336.
C2 x C2 x C2, Aut(X) PSL(3,2) conj class size = 56. order = 448.
C2 x C2 x C2, Aut(X) PSL(3,2) conj class size = 24. order = 192.
C2 x C2 x C2, Aut(X) PSL(3,2) conj class size = 21. order = 168.
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X =C2 x C2 x C2, Aut(X) = PSL(3,2) conj class size = 24. order = 192.

X = C3 x C3, Aut(X) = GL(2,3) conj class size = 6. order = 54.

X = C3 x C3, Aut(X) = GL(2,3) conj class size = 12. order = 108.

X = C3 x C3, Aut(X) = GL(2,3) conj class size = 6. order = 54.

X = A4, Aut(X) = S4 conj class size = 6. order = 72.

X = A4, Aut(X) = S4 conj class size = 6. order = 72.

X =C6 x C2, Aut(X) = D12 conj class size = 3. order = 36.

X =0C2xQ8, Aut(X) = (((C2 x C2 x C2 x C2) : C3) : C2) : C2 conj class size = 12.
order = 192.

X =0C2xQ8, Aut(X) = (((C2 x C2 x C2 x C2) : C3) : C2) : C2 conj class size = 12.
order = 192.

X =0C2xQ8, Aut(X) = (((C2 x C2 x C2 x C2) : C3) : C2) : C2 conj class size = 12.
order = 192.

X =0C2xQ8, Aut(X) = (((C2 x C2 x C2 x C2) : C3) : C2) : C2 conj class size = 12.
order = 192.

X = C10 x C2, Aut(X) = C4 x S3 conj class size = 3. order = 60.

X = C10 x C2, Aut(X) = C4 x S3 conj class size = 3. order = 60.

X = C10 x C2, Aut(X) = C4 x S3 conj class size = 3. order = 60.

X = SL(2,3), Aut(X) = S4 conj class size = 6. order = 144.

X = SL(2,3), Aut(X) = S4 conj class size = 6. order = 144.

X =C3 x Q8, Aut(X) = C2 x 5S4 conj class size = 6. order = 144.

X =C3 x Q8, Aut(X) = C2 x 5S4 conj class size = 6. order = 144.

The following are various properties of these 25 quandles in the same order as above:

M[ 1]: ord = 12, dual=M[ 1], Connected = true, LeftDist
Latin = false, Faithful = false

M[ 2]: ord = 48, dual=M[ 2], Connected = true, LeftDist = false,
Latin = false, Faithful = false

M[ 3]: ord = 48, dual=M[ 3], Connected = true, LeftDist = false,
Latin = false, Faithful = false

M[ 4]: ord = 336, dual=M[ 4], Connected = true, LeftDist = false,
Latin = false, Faithful = false

M[ 5]: ord = 448, dual=M[ 5], Connected = true, LeftDist = false,
Latin = false, Faithful = false

M[ 6]: ord = 192, dual=M[ 8], Connected = true, LeftDist = false,
Latin = false, Faithful = true

M[ 7]: ord = 168, dual=M[ 7], Connected = true, LeftDist = false,
Latin = false, Faithful = false

M[ 8]: ord = 192, dual=M[ 6], Connected = true, LeftDist = false,
Latin = false, Faithful = true

M[ 9]: ord = 54, dual=M[11], Connected = true, LeftDist = false,
Latin = false, Faithful = true

false,



M[10]: ord = 108, dual=M[10], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[11]: ord = 54, dual=M[ 9], Connected = true, LeftDist = false,
Latin = false, Faithful = true
M[12]: ord = 72, dual=M[12], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[13]: ord = 72, dual=M[13], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[14]: ord = 36, dual=M[14], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[15]: ord = 192, dual=M[15], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[16]: ord = 192, dual=M[16], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[17]: ord = 192, dual=M[17], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[18]: ord = 192, dual=M[18], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[19]: ord = 60, dual=M[20], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[20]: ord = 60, dual=M[19], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[21]: ord = 60, dual=M[21], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[22]: ord = 144, dual=M[22], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[23]: ord = 144, dual=M[23], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[24]: ord = 144, dual=M[24], Connected = true, LeftDist = false,
Latin = false, Faithful = false
M[25]: ord = 144, dual=M[25], Connected = true, LeftDist = false,
Latin = false, Faithful = false

Note that these are not simple quandles and so they cannot be isomorphic to
the large quandles found as conjugacy classes of simple non-abelian groups.



