Histories of Maize
The Italian explorer Girolamo Benzoni (c. 1541–55) recorded the steps involved in processing husked corn to make fresh dough. First the kernels were ground with a mano and metate and then patted into small cakes and finally cooked on a comal or griddle (from Girolamo Benzoni, *La historia del mundo nuevo di M. Girolamo Benzoni Milanese*, Venetia, F. Rampazeto. 1565. p. 56, verso). Images such as this woodcut and accounts from various chroniclers who came to the New World emphasized the role of maize as a primary staple, the staff of life, essentially synonymous to Old World wheat and barley. These early descriptions and the later role of maize as one of the world’s primary economic staples predisposed many scholars to emphasize and, in some instances, assert that *Zea mays* L. was the catalyst to the development of civilization in this hemisphere. The contributions in this volume demonstrate that its role was more complex and varied than had been previously assumed. These histories of maize show that in some cases its symbolic role to ethnic identity, religion, and elite status may have been as important as its economic role to such developmental processes. (Courtesy of the Rare Books Division, The New York Public Library, Astor, Lenox and Tilden Foundations)
Histories of Maize

Multidisciplinary Approaches to the Prehistory, Linguistics, Biogeography, Domestication, and Evolution of Maize

Edited by

John E. Staller
Department of Anthropology
University of Kentucky

Robert H. Tykot
Department of Anthropology
University of South Florida

Bruce F. Benz
Department of Biology
Texas Wesleyan University
In memory of Richard S. MacNeish and Donald W. Lathrap for their inspiration, insights, and pioneering research on the origin and culture history of maize.
4. Dating the Initial Spread of Zea mays
 MICHAEL BLAKE
 Introduction 55
 Temporal Frameworks for Zea mays’ Early Dispersal 56
 Direct Dating of Maize 57
 A Note on the Indirect Dating of Maize 59
 Dating the Early Distribution of Zea Pollen 60
 Dating the Early Distribution of Maize Phytoliths 63
 Dating the Early Distribution of Moderate-to-High Stable Carbon Isotope Ratios 65
 Comparing the Different Lines of Evidence 68
 Discussion of the Social Implications of Maize’s Early Spread: Initial Uses of Maize 68

5. El Riego and Early Maize
 Agricultural Evolution
 BRUCE F. BENZ, LI CHENG, STEPHEN W. LEAVITT, AND CHRIS EASTOE
 Introduction 73
 Domestication and Agriculture 74
 Methods 75
 Results: Calibrating and Averaging AMS Dates 77
 Results: Morphological Trends and Rates 78
 Results: Evolutionary Rates 78
 Results: Stable Isotope Determinations 79
 Discussion and Summary 80

6. Ancient DNA and the Integration of Archaeological and Genetic Approaches to the Study of Maize Domestication
 VIVIANE R. JAENICKE-DESPRÉS AND BRUCE D. SMITH
 Introduction 83
 Morphological and Molecular Approaches to Documenting the Early History of Maize 84
 Molecular Level Analysis of Archaeological Maize: A Case Study 85
 Monitoring for Selection of Preferred Attributes in Ancient Maize 85
 The Archaeological Maize 87
 Tt1: Maize Plant Architecture 4400 Years Ago 87
 Pbf and Su1: The Development of Starch and Protein Properties 88
 Population Substructure in the Sugary-1 Gene 89
 The Timing and Sequence of Selection for Key Attributes in Maize: Combining Morphological and Molecular Evidence 90
 Loss of Natural Seed Dispersal Mechanisms 91
 Fewer Larger Seed “Packages” 91
 Loss of Germination Dormancy 91
 Terminal Seed Clusters and Uniform Ripening 92
 Improved Starch and Protein Quality 92
 Future Directions in Ancient DNA Analysis of Crop Plants 92

7. Ancient Maize in the American Southwest: What Does It Look Like and What Can It Tell Us?
 LISA W. HUCKELL
 Introduction 97
 Archaeological Context 98
 Chronology 98
 The Sites 98
 Analysis of the Maize: Methods and Materials 99
 Results 101
 Discussion 104
 Conclusions 106

8. Environmental Mosaics, Agricultural Diversity, and the Evolutionary Adoption of Maize in the American Southwest
 WILLIAM E. DOOLITTLE AND JONATHAN B. MABRY
 Introduction 109
 The Simplistic Paradigm 110
 Proto-Agriculture 111
 Diversity in Early Water Management 112
 Agricultural Niches in an Environmental Mosaic 115
 Maize Varieties and Crop Complexes 115
 Conclusion 117

9. Toward a Biologically Based Method of Phytolith Classification
 GREG LADEN
 Introduction 123
 The Raw Data and Its Presumed Meaning 124
 Exploring Genetic versus Nongenetic Variation 124
 Conclusions 128
16. Dietary Variation and Prehistoric Maize Farming in the Middle Ohio Valley
DIANA M. GREENLEE

Introduction 215
Late Woodland and Late Prehistoric Subsistence Records 217
Theory and Method 217
Theoretical Framework 217
Generating Dietary Data 218
The Isotope Record of Dietary Change 220
Multiple Populations? 221
Recent Efforts to Account for Dietary Change 221
Geographic Variation in Maize-Based Farming Systems 222
Recent Efforts to Account for Geographic Variation in Diet 223
Evaluation 229
Conclusions 229
Future Directions 231

17. A Hard Row to Hoe: Changing Maize Use in the American Bottom and Surrounding Areas
ELEANORA A. REBER

Introduction 236
Models of Maize Adoption in the American Bottom 236
Types of Analysis Used 237
Paleoethnobotany and Stable Carbon Isotope Analysis 237
Absorbed Pottery Residue Analysis 238
Early Emergent Mississippian 239
Late Emergent Mississippian 241
The Mississippian Lohmann Phase (CAL AD 1050–1100) 242
Middle Mississippian Phases (CAL AD 1100–1350) 244
Stirling Phase (CAL AD 1100–1200) 244
Moorehead Phase (CAL AD 1200–1300) 244
Discussion 244
Conclusions 245

18. Evidence for Early Use of Maize in Peninsular Florida
JENNIFER A. KELLY, ROBERT H. TYKOT, AND JERALD T. MILANICH

Introduction 249
The Natural Setting of Peninsular Florida 250
Historic Evidence for Plant Foods in Florida 251
Stable Isotope Studies in Florida 251
Human Skeletal Samples in This Study 252

19. Prehistoric Maize in Southern Ontario: Contributions from Stable Isotope Studies
M. ANNE KATZENBERG

Introduction 263
Previous Studies 264
Stable Isotope Analysis of Faunal Remains: Earlier Study and New Data 265
Refining Estimates of the Introduction of Maize in Southern Ontario from Human Collagen Samples 270
Conclusions 270

20. The Stable and Radio-Isotope Chemistry of Eastern Basketmaker and Pueblo Groups in the Four Corners Region of the American Southwest: Implications for Anasazi Diets, Origins, and Abandonments in Southwestern Colorado
JOAN BRENNER COLTRAIN, JOEL C. JANETSKI, AND SHAWN W. CARLYLE

Introduction 276
Overview of Basketmaker II Research 276
Site Descriptions 277
Talus Village 277
Sites 22 and 23 277
Site 22 278
Site 23 278
Unnamed Sites 278
Methods 278
Stable Carbon Isotope Analysis 278
Stable Nitrogen Isotope Analysis 278
Laboratory Procedures 278
21. The Agricultural Productivity of Chaco Canyon and the Source(s) of Pre-Hispanic Maize Found in Pueblo Bonito
LARRY BENSON, JOHN STEIN, HOWARD TAYLOR, RICHARD FRIEDMAN, AND THOMAS C. WINDES

Introduction 290
Agricultural Productivity and Population Densities of the Chaco Canyon Core Area 292
Acres under Cultivation 293
Southwestern American Indian Maize Yields and Rates of Consumption 301
Estimated Population Densities Supported by Chaco Canyon Maize Production 301
Areas from Which Maize May Have Been Imported 301
Archaeological Maize Samples 302
Chemical Tracing of Biological and Archaeobiological Materials 302
Methodological Considerations: Sampling and Laboratory Methods 303
Results and Discussion 307
Summary and Conclusions 311

22. Stable Carbon Isotope Analysis and Human Diet: A Synthesis
HENRY P. SCHWARCZ

Introduction 315
Theoretical Basis of the Use of Isotopes 316
The Significance of Isotopes in Reconstruction of Paleodiet in the Americas 316
Rate of Spread of Maize and Agriculture 317
Isotopic Studies in North America 318
Mesoamerica 319
South America 319
Other Isotopic Methods 320
Conclusions 320

23. Caribbean Maize: First Farmers to Columbus
LEE A. NEWSOM

Introduction 325
Caribbean Biogeography and Physical Geography in Brief 326
Synopsis of the History of Human Settlement and Cultivation Practices 327
The Evidence for Maize: Archaeological Research 329
Archaeobotany 329
Human Bone Chemistry 331
Discussion 331
Why Such a Low Signal? 331
The Development of a Uniquely Caribbean Cuisine 332
Conclusion 333

24. Maize on the Move
J. SCOTT RAYMOND AND WARREN R. DEBOER

Introduction 337
Ethnographic Evidence 339
Discussion 340
Conclusions 341

25. The Gift of the Variation and Dispersion of Maize: Social and Technological Context in Amerindian Societies
RENÉE M. BONZANI AND AUGUSTO OYUELA-CAYCEDO

Introduction 344
The Development of Ceramics: Its Social Setting 345
Ceramics and Maize: Dispersion in South America and the Caribbean 345
Timing of Maturation of Maize 350
Conclusions 351
ROBERT A. DULL

Introduction 357
Making Sense of Fossil Zea Pollen Samples from El Salvador and Beyond 358
Prehistoric Maize from Western El Salvador 360
The Pacific Coastal Plain 360
The Rio Paz Basin 360
The Sierra de Apaneca–Llamatepec Highlands 361
Prehistoric Maize Fields from Central El Salvador 362
Valle de las Hamacas (San Salvador) 362
The Zapotitán Basin 363
Conclusions 363

27. Pre-Columbian Maize Agriculture in Costa Rica: Pollen and Other Evidence from Lake and Swamp Sediments
SALLY P. HORN

Introduction 368
Maize Pollen Identification and Dispersal and Associated Paleoenvironmental Evidence 368
Maize Pollen in Archaeological Regions of Costa Rica 370
The Central Highlands–Atlantic Watershed Archaeological Region 371
The Guanacaste–Nicoya Archaeological Region 375
The Diquís Archaeological Region 376
Conclusion 376

28. Caral–Supe and the North Central Area of Peru: The History of Maize in the Land Where Civilization Came into Being
RUTH SHADY

Introduction 381
The Social System of Caral–Supe 382
The Territory of Caral 383
The Settlement of Caral 385
Tools for Farming 387
Maize from Caral 387
Residential Sector A, Subsector A1 387
Subsector A5 391
Sector I2: Residential Units 391
Sector H1: The Gallery Pyramid 392
Sector C, Subsector C2 393
Residential Sector NN2 395
Settlement of Miraya, Subsector C4 396
Sector C5 398
Interpretations 399
Conclusions 401

29. Prehistoric Maize from Northern Chile: An Evaluation of the Evidence
MARIO A. RIVERA

Introduction 403
The Archaeological Evidence 403
Tiliviche 404
Camarones 404
Quiani 406
Cañamo 407
Caleta Huelén 407
Chiu Chiu 407
Guatacondo-Ramaditas 407
Tulán 408
Pichasca, San Pedro Viejo 409
El Salto 409
Discussion of the Evidence 409

30. Early Maize on the Copacabana Peninsula: Implications for the Archaeology of the Lake Titicaca Basin
SERGIO J. CHÁVEZ AND ROBERT G. THOMPSON

Introduction 415
Archaeological Background and Paleobotanical Maize Samples from Copacabana 417
Opal Phytoliths 419
Food Residue Phytolith Assemblages 420
Maize Chaff Assemblages 422
Blind Tests of Phytolith Assemblage Recognition 423
Materials and Methods of Phytolith Identification in Ancient and Modern Samples 424
Comparisons of Residues and Modern Maize Varieties 425
Discussion and Conclusions 426

31. The Movements of Maize into Middle Horizon Tiwanaku, Bolivia
CHRISTINE A. HASTORF, WILLIAM T. WHITEHEAD, MARIA C. BRUNO, AND MELANIE WRIGHT

Introduction 429
Tiwanaku: An Early Highland Polity 430
The Andes: Ecological Diversity, Maize Diversity 431
Maize at Tiwanaku 432
Hypotheses 432
Research Goals 433
Data 434
Methods 435
Analysis of the Data 435
Results 437
Discussion 441
Conclusions 443
32. The Social, Symbolic, and Economic Significance of Zea mays L. in the Late Horizon Period
JOHN E. STALLER

Introduction 449
The Social and Symbolic Significance of Maize 451
Social and Symbolic Aspects of Maize to Interaction and Sealing Alliances 455
An Encounter of Historic Proportions 456
The Significance and Role of Maize to Andean Economy 462
Symbolic Aspects of Maize to Inca State Religion 464
Summary and Conclusions 465

PART IV
THE HISTORIES OF MAIZE: NORTH AMERICA AND NORTHERN MEXICO

33. Early Agriculture in Chihuahua, Mexico
ROBERT J. HARD, A. C. MACWILLIAMS, JOHN R. RONEY, KAREN R. ADAMS, AND WILLIAM L. MERRILL

Introduction 471
Early Agriculture 471
The Introduction of Maize 473
Early Agriculture in Chihuahua 474
Paleoenvironment 474
Previous Research in Chihuahua 475
Northwestern Chihuahua 475
South-Central Chihuahua 478
D-Shaped Terrace Sites 478
Cerros de Trincheras 479
The Sierra Tarahumara 479
Discussion 480

34. Protohistoric and Contact Period Salinas Pueblo Maize: Trend or Departure?
KATHARINE D. RAINEY AND KATHERINE A. SPIELMANN

Introduction to the Salinas Area 487
Research Questions and Data 489
Data Sample 490
Data Analysis Techniques 490

Maize Consumption 491
Maize Production 492
Maize Trait Variation 494
Conclusions: Trend or Departure? 495

35. Early Maize Agriculture in the Northern Rio Grande Valley, New Mexico
BRADLEY J. VIERRA AND RICHARD I. FORD

Introduction 497
A Review of Early Agriculture in the Northern Rio Grande 498
An Evaluation of Early Maize Morphology and Dates in the Northern Rio Grande 501
Early Agriculture in the Northern Rio Grande 505
Conclusion 507

36. Hominy Technology and the Emergence of Mississippian Societies
THOMAS P. MYERS

Introduction 511
Hominy Technology 511
Alternative Methods of Hominy Production 512
Other Methods of Freeing the Essential Nutrients 514
Testing the Hypothesis 514
A New Race of Maize 514
Cultural Changes 515
Physical Changes 515
Origins of the Hominy Revolution 516
American Bottoms and the Central Mississippi 516
Lower Mississippi and Arkansas Lowlands 516
Southeast 517
Northeast 517
Conclusions 517

37. The Migrations of Maize into the Southeastern United States
ROBERT LUSTECK

Introduction 521
Phytoliths 521
The Assemblage Approach 522
Maize History and Varieties 522
Maize in the Southeastern United States 523
The Pilot Study 524
Methods and Materials 524
Results 524
Conclusion 524
38. The Science behind the Three Sisters Mound System: An Agronomic Assessment of an Indigenous Agricultural System in the Northeast
 JANE MT. PLEASANT

 Introduction 529
 Mounds 530
 Soil Temperature and Moisture 531
 Soil Organic Matter 532
 Soil Fertility 532
 Soil Erosion and Compaction 532
 Spacing and Plant Population 533
 Intercropping 534
 An Integrated System 535

39. The Origin and Spread of Maize (Zea mays) in New England
 ELIZABETH S. CHILTON

 Introduction 539
 The Maize Debate and Mobile Farmers 540
 New England’s Mobile Farmers 540
 The Maize Chronology and the Importance of AMS Dating 541
 Maize Dating Project 543
 Implications of a Chronology for Maize Horticulture in New England 545

40. Pre-Contact Maize from Ontario, Canada: Context, Chronology, Variation, and Plant Association
 GARY W. CRAWFORD, DELLA SAUNDERS, AND DAVID G. SMITH

 Introduction 549
 Middle Woodland, Late Woodland I, and Late Woodland II in Southern Ontario 550
 Paleoethnobotany of Middle Woodland, Princess Point, and Late Woodland II 551
 Maize in the Northeast 552
 Princess Point Maize 554
 Contexts 554
 Plant Associations 554
 Late Woodland I Maize Morphology 556
 Discussion 556

PART V

THE HISTORIES OF MAIZE:
THE LANGUAGE OF MAIZE

41. Siouan Tribal Contacts and Dispersions Evidenced in the Terminology for Maize and Other Cultigens
 ROBERT L. RANKIN

 Introduction 564
 Glottochronological Dating 564
 Impressionistic Dating 565
 Improving Dating Techniques 565
 Gourds 566
 Squash (Often Pumpkin) 566
 Maize 567
 Other Technology 571
 Beans 571
 Summary 572
 The Agricultural and Technological Chronology 574
 The Siouan Family Tree 574
 Further Research 575

42. Maize in Word and Image in Southeastern Mesoamerica
 BRIAN STROSS

 Introduction 578
 Vocabulary 579
 Basic Maize Words 579
 Maize Growth Stages 581
 Food Preparation 581
 Ritual Names and Maize Deities 583
 Narratives 583
 Sayings, Metaphors, and Beliefs 586
 Rituals 586
 Numbers 588
 Glyphs 589
 Images 591
 Calendar 593
 Plants 596
 Conclusion 597
Contributors

Karen R. Adams (33) Crow Canyon Archaeological Center, Tucson, Arizona 85716
Janis B. Alcorn (43) The Garfield Foundation, Chevy Chase, Maryland 20815
Traci Ardren (13) Department of Anthropology, University of Miami, Coral Gables, Florida 33124
Larry Benson (21) U.S. Geological Survey, Boulder, Colorado 80303
Bruce F. Benz (2, 5, 48) Department of Science and Mathematics, Texas Wesleyan University, Ft. Worth, Texas 76105
Michael Blake (4, 12) Department of Anthropology and Sociology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
Renée M. Bonzani (25) Department of Anthropology, University of Kentucky, Lexington, Lexington, Kentucky 40506
Joan Brenner Coltrain (20) Department of Anthropology, University of Utah, Salt Lake City, Utah 84112
Terence A. Brown (1) Faculty of Life Sciences, Jacksons Mill, University of Manchester, Manchester M60 1QD, United Kingdom
Cecil H. Brown (47) Department of Anthropology, Northern Illinois University, DeKalb, Illinois 60115
Eugenia Brown Mansell (13) Department of Anthropology, University of South Florida, Tampa, Florida 33620
Maria C. Bruno (31) Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri 63130
Richard L. Burger (14) Department of Anthropology, Yale University, New Haven, Connecticut 06520

Shawn W. Carlyle (20) Department of Anthropology, University of Utah, Salt Lake City, Utah 84112
Sergio J. Chávez (30, 45) Department of Anthropology, Central Michigan University, Mt. Pleasant, Michigan 48859
Li Cheng (5) Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona 85721
Elizabeth S. Chilton (39) Department of Anthropology, University of Massachusetts, Amherst, Massachusetts 01003
Brian Chisholm (12) Department of Anthropology and Sociology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
Gary W. Crawford (40) Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada
Bruce H. Dahlin (13) Department of Sociology and Anthropology, Howard University, Washington, D.C. 20059
Warren R. DeBoer (24) Department of Anthropology, Queens College, City University of New York, Flushing, New York 11367
William E. Doolittle (8) Department of Geography, University of Texas, Austin, Texas 78712
Robert A. Dull (26) Department of Geography and the Environment, University of Texas, Austin, Texas 78712
Chris Eastoe (5), Department of Geosciences, University of Arizona, Tucson, Arizona 85721
Barbara Edmonson (43) Department of Anthropology, Tulane University, New Orleans, Louisiana 70118
Richard I. Ford (35), Museum of Anthropology, University of Michigan, Ann Arbor, Michigan 48109
Contributors

David A. Freidel (13) Department of Anthropology, Southern Methodist University, Dallas, Texas 75275

Richard Friedman (21) City of Farmington Geographic Information Systems, Farmington, New Mexico 87401

Adolfo F. Gil (15) CONICET; Departamento de Antropología, Museo de Historia Natural de San Rafael, (5600) San Rafael, Mendoza, Argentina

Diana M. Greenlee (16) Department of Anthropology, University of Washington, Seattle, Washington 98195

Robert J. Hard (33) Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas 78249

Christine A. Hastorf (31) Department of Anthropology, University of California-Berkeley, Berkeley, California 94720

Cándido Hernández Vidales (43) Tamajajec, San Antonio via Coxcatlan, San Luis Potosi CP 79830, Mexico

Jane H. Hill (46) Department of Anthropology, University of Arizona, Tucson, Arizona 85721

Nicholas A. Hopkins (44) Department of Modern Languages and Linguistics, Florida State University, Tallahassee, Florida 32306

Sally P. Horn (27) Department of Geography, The University of Tennessee, Knoxville, Tennessee 37996

Lisa W. Huckell (7) Maxwell Museum of Anthropology and University of New Mexico

Hugh H. Iltis (3) Department of Botany Herbarium, University of Wisconsin-Madison, Madison, Wisconsin 53706

Viviane Jaenicke-Després (6) Department of Molecular Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig D-04103, Germany

Joel C. Janetski (20) Department of Anthropology, Brigham Young University, Provo, Utah 84602

M. Anne Katzenberg (19) Department of Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Jennifer A. Kelly (18), Department of Anthropology, University of South Florida, Tampa, Florida 33620

Greg Laden (9) Department of Anthropology, University of Minnesota, Minneapolis, Minneapolis 55455

Steven W. Leavitt (5) Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona 85721

Fred J. Longstaffe (11) Department of Earth Sciences, The University of Western Ontario, London, Ontario N6A 5C2, Canada

Robert Lusteck (37) Department of Anthropology, University of Minnesota, Minneapolis, Minneapolis 55455

Jonathan B. Mabry (8) Desert Archaeology, Inc., Tucson, Arizona 85716

A.C. MacWilliams (33) Department of Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada

William L. Merrill (33) Department of Anthropology, Smithsonian Institution, Washington, D.C. 20002

Jerald T. Milanich (18), Department of Anthropology, University of South Florida, Tampa, Florida 33620

Jane Mt. Pleasant (38) Horticulture Department, Director of the American Indian Program, Cornell University, Ithaca, New York 14853

Thomas P. Myers (36) Professor and Curator, University of Nebraska State Museum, Lincoln, Nebraska 68588

Gustavo Neme (15) CONICET; Departamento de Antropología, Museo de Historia Natural de San Rafael, (5600) San Rafael, Mendoza, Argentina

Lee A. Newsom (23) Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania 16802

Augusto Oyuela-Caycedo (25) Department of Anthropology, University of Florida, Gainesville, Florida 32611

Katharine D. Rainey (34) Archaeobotanical Consultant, Huntersville, North Carolina 28078

Robert L. Rankin (41) Department of Linguistics, University of Kansas, Lawrence, Kansas, 66044

J. Scott Raymond (24) Department of Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Eleanor A. Reber (17) Department of Anthropology, University of North Carolina, Wilmington, North Carolina 28401

Mario A. Rivera (29) Beloit College, Beloit, Wisconsin

John R. Roney (33) Albuquerque Field Office, Bureau of Land Management, Albuquerque, New Mexico 87107

Della Saunders (40) Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada

Henry P. Schwarcz (11, 22), School of Geology and Geography, McMaster University, Hamilton, Ontario L8S 4L9, Canada

Ruth Shady (28) Director, Caral-Supe Special Archaeological Project, Jr. De La Unión No. 1040, 3 er. Piso, Lima, Perú
Nicole R. Shelnut (15) Department of Anthropology, University of South Florida, Tampa, Florida 33620
Bruce D. Smith (6) Archaeobiology Program, Smithsonian Institution, Washington, D.C. 20013
David G. Smith (40) Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada
Katherine A. Spielmann (34) Department of Anthropology, Arizona State University, Tempe, Arizona 85287
John E. Staller (32, 48) Department of Anthropology, University of Kentucky, Lexington, Kentucky 40506
John Stein (21) Navajo Nation Historic Preservation Department, Chaco Protection Sites Program, Window Rock, Arizona 86515
Brian Stross (42) Department of Anthropology, The University of Texas at Austin, Texas 78712
Howard Taylor (21) U.S. Geological Survey, Boulder, Colorado 80303
Robert Thompson (30) Interdisciplinary Archaeological Science, University of Minnesota, Minneapolis
Robert H. Tykot (10, 13, 14, 15, 18) Department of Anthropology, University of South Florida, Tampa, Florida 33620
Nikolaas J. van der Merwe (14) Department of Archaeology, University of Cape Town, South Africa, Rondebosch 7701, South Africa
Bradley J. Vierra (35) ENV-ECO, MS M887, Los Alamos National Laboratory, Los Alamos, New Mexico
Christine D. White (11) Department of Anthropology, The University of Western Ontario, London, Ontario N6A 5C2, Canada
William T. Whitehead (31) Department of Anthropology and Sociology, Ripon College, Ripon, Wisconsin 54971
Thomas C. Windes (21) National Park Service, Albuquerque, New Mexico 87106
Melanie Wright (31) UK Data Archive, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
The goal of the editors of this volume on maize is to bring together contributions, which would individually incorporate and collectively assemble a comprehensive multidisciplinary set of data, that developed particular lines or types of evidence from specific time periods (and regions) throughout the Pre-Columbian geographic range of maize cultivation. Another primary goal in organizing this volume was to be holistic, in that the total range of coverage would encompass the entire Western hemisphere and include research from the social, biological, and earth sciences. This volume is organized into five parts dealing with different aspects and regions of research on the origin and spread of maize science. The scope and breadth of the research takes into account recent methodological and technological innovations from the physical, biological, and social sciences. These recently developed technical and methodological approaches provide ever-increasing detail and direct evidence on the antiquity, evolution, and cultural importance of maize in the ancient Americas. We believe that such approaches have essentially transformed our understanding of the roles and importance of maize and other domesticates to sociocultural developments in prehistory, making this publication timely. My colleagues, Robert H. Tykot and Bruce F. Benz, and I hope that the readers of this volume agree that the research presented herein has established this to be the case.

One of our two European contributors observed that such a book could never have been realized had it been organized and published outside of North America (see Chapter 1). Rather it would have been broken up into several books specialized on the respective scientific discipline and specialization concerned. These volumes would have presumably included research that was specifically geared to the interested specialists in those fields. Archaeological research on the domestication of grains in the Old World has developed within competing models that consider “acculturation” or “waves of advance,” whereas in the Americas they have generally been couched within foraging–farming dichotomies that are specific and distinct to different regions of the hemisphere and their associated time periods [4, 5, 6, 9, 19].

Although the Old World approaches lend themselves well to models used or tested by human geneticists and linguists, they have generally been anathema to North American archaeologists. In the Old World, emphasis has been placed on initial causes or events (as opposed to earliest presence), whereas here in the Americas there has been a clear focus on the developmental or evolutionary, or both, processes associated with plant domestication and maize agriculture. The Old World emphasis on migration and diffusion of plant domestication also takes away from the general focus on the distinctions that important cultigens had to different regions and time periods, whereas in the Americas this has been clearly evident in the methodological approaches to understanding the archaeological record (see Chapters 23 and 36). Despite differences in theoretical and methodological approaches to plant domestication in general and economic plants (mainly grains) in particular, the assumption that maize, like wheat and barley in the Old World, provided the economic basis for the development of civilization has been a central thesis among scholars in the archaeological sciences in both hemispheres. Remarkably, many of the contributions in this volume challenge those basic assumptions.

Although the chapters in this volume appear to support the contention that maize was a major economic staple, some contributions herein indicate that when and where this occurred is dramatically different than had been previously suggested in the literature. Other contributors present evidence to suggest that the way maize affected sociocultural processes is in fact far more complex and varied than had
been originally assumed (see Chapters 8 and 21). One of the primary themes that run through many of these contributions, particularly the paleodietary evidence from stable carbon isotopes, is that maize was not initially the important economic food source that many archaeologists assumed (see Chapters 2, 3, 5, 6, 11–13, 20, and 28). In some cases, it never achieved economic importance in certain regions, although it did seem to play an important role in other aspects of sociocultural development (see Chapters 24, 25, and 30). Another important divergence from previous assumptions brought out by this volume is that maize was only domesticated once. Its ancestor, teosinte (Zea mays ssp. parviglumis), was domesticated in the Balsas River drainage of central Mexico (Chapters 2 and 3) [14]. This differs from previous hypotheses regarding a tripartite origin of maize promoted by Mangelsdorf [13] and others and by extension the possibility of multiple domestication events in different regions of the Americas [8, 11, 15, 17].

Since the publication of the DNA microsatellite data on extant populations of maize and teosinte in 2002, research on ancient maize has been at a historical crossroads [14]. These important data suggest that like most of the Old World staples, maize was only domesticated once, but rather than focus on the migrations of farming populations or the acceptance of maize agriculture in diverse regions, what the contributions in this volume suggest is that there will be an even greater appreciation for research on maize from the social and particularly the biological sciences. The botanical evidence has historically influenced archaeological interpretation, but the recent evidence from molecular biology suggests that such data may now set the limits for what is possible regarding the ancient origins and early spread of maize in the Americas [7].

The holistic approach we have inherited from the founders of American Anthropology is largely responsible for the multidisciplinary organization of this volume [12, 16, 21–24]. They provided Americanist archaeology with the possibility that such multidisciplinary approaches could ever have been brought together as a single reference source on maize science. Many recent advances to our knowledge come from new scientific techniques and approaches to the direct study of archaeological maize collections and the physical remains of the human populations who consumed it (Chapters 29 and 31). The development of Accelerator Mass Spectrometry (AMS) radiocarbon dating has had a profound effect in our understanding of the chronological spread of maize in the Americas and greatly revised our previous assumptions of its antiquity based on indirect dating techniques [2, 3, 18, 20]. The recent techniques involving isotope analysis, including research on phytoliths, have provided detailed information on the antiquity and role of maize to ancient cultures throughout the Americas and are highlighted and referenced throughout the volume (Chapters 9, 17, 30, and 37). These state-of-the-art scientific approaches and their associated methodologies stand in contrast to the more traditional forms of analyses such as historical linguistics, archaeological analysis of stratigraphy, and the classification and detailed study of artifacts.

The first section of this volume deals with the molecular, biological, and morphological research that has so greatly affected recent research on maize. This section of the volume also includes a detailed analysis of the chronology of its spread in the Americas (see Chapter 4). Recently developed techniques in maize DNA research have also revised our earlier perceptions of the antiquity and spread of maize to different regions of the Americas and provided evidence for the previously unknown presence of undomesticated teosinte genes (Chapter 6). Chapter 2 by Benz, on maize in the Americas, addresses some of these biological and chronological data and the underlying biases in previous research methodologies when maize was still believed to have multiple origins [13]. Several chapters present data derived from the latest advances in the study of maize origins—morphology and microfossil analysis—asking the question: What can such research on ancient maize tell us about the origin, history, and spread of this important cultigen? Chapters presenting evidence on the physical characteristics of archaeological maize remains also include an assessment of methodological approaches on microfossils and carbon residues that appear to provide greater detailed information on the identification and spread of ancient maize lineages (see Chapters 7, 9, 26, 27, 34, and 37). These chapters suggest that the future of maize research will be more heavily influenced by molecular biology, particularly the maize genome project, and botanical research on plant morphology, as scholars will attempt to quantify, identify, and trace those genes, traits, and morphological characteristics related to human as opposed to natural selection.

An economic staple throughout the Western hemisphere at the time of European contact, the evolution and spread of maize (Zea mays L.) have been topics of major archaeological research in the Americas for more than a century [1]. The second part of the volume deals with the stable carbon isotope analysis and paleodiet and directly addresses these previous concerns with direct quantitative evidence of its economic importance. Researchers working in areas ranging from as far afield as southern Canada and Argentina discuss the dietary, social, and economic implications of stable carbon isotope analyses from human skeletal remains (see Chapters 15 and 40). Research using strontium isotopes and elemental analyses of biochemistry involving human skeletons, as well as plants and animals, can now be used to determine whether people, plants, or animals were displaced or brought in from other areas or regions than where they were identified archaeologically. Strontium isotopic research is generating data that has facilitated our understanding of how maize was manipulated and used by ancient...
societies and challenges our previous assumptions of how maize was dispersed and its role in the ancient economy (see Chapter 21).

In recent years, multidisciplinary research using a variety of new methods and techniques in stable carbon isotope analysis has clarified and provided detailed data on the dietary importance of maize in distinct cultural settings and time periods (see Chapter 10). Isotopic research on ancient human skeletons, particularly in the past decade, has greatly expanded our understanding of human adaptation, and in some cases, required maize specialists from the natural and social sciences to revise long-held theories on the spread and effects of maize on the development of sociocultural complexity. The section on stable carbon isotope analysis provides the most up-to-date results on paleodiet in the Americas. The summary by Henry Schwarcz (see Chapter 22) represents one of the most comprehensive treatments of these data in the published literature. Results from various contributions indicate that maize became a primary staple in the Americas much later than had been previously thought and that its role in sociocultural development is much more complex and varied in some regions of the Neotropics, particularly in the areas adjacent to where it was originally domesticated (see Chapter 13). In other regions of the Americas it became a food staple late in the prehistoric sequence, and in some regions its adoption and role in the ancient economy was highly varied, and it was never a primary staple (see Chapters 15, 16, 18, and 19). These data provide refreshing and informative insights into the spread and economic importance of maize, and in many ways they challenge our previous assumptions of its importance and role in sociocultural development.

The chapters in Parts III to IV are organized chronologically by geographic region going from the earliest evidence for maize domestication to its later spread into other areas of the hemisphere. Considerations of the scientific, theoretical, and methodological approach also influenced the organization of this volume. The geographic and topical divisions are in two parts: Part III: Central and South America and Part IV: North America and Northern Mexico. Many recent scientific advances in our knowledge surrounding the increasing dependence on plant domestication and particularly the role of maize in ancient economies are explored in these chapters. Most of the research is archaeological and many contributions incorporate the most recent multidisciplinary evidence to build consensus on primary issues surrounding maize science that are based on internally consistent lines of evidence. The innovative and original approaches presented in this volume provide a basis for the future of multidisciplinary research on this important New World cultigen.

Part III represents a natural extension of the first parts of the volume in its multidisciplinary research and geographic and chronological breadth and scope and is distinguished to some extent in that the research primarily concerns the social sciences—the ethnohistory, archaeology, and contextual associations of ancient maize. Numerous ethnohistoric documents and ethnographic accounts are presented to examine the social and symbolic significance of maize to sociocultural development. Ethnohistoric accounts generally emphasized maize as the preeminent grain of the Pre-Hispanic New World, a plant that was critical to sociocultural developments in Mexico and Central and South America at the time of contact. These accounts were largely biased by the importance of cereal grains in the Old World and have long influenced archaeological assumptions regarding the economic role of maize in Native American economies. In exploring little known ethnohistoric accounts of Native Andean speakers one of the contributions has uncovered evidence that suggests that maize also played a major role in cultural perceptions of hierarchy and status and that its role in the economy went far beyond dietary considerations (see Chapter 32).

Recent multidisciplinary lines of evidence have recorded the changing role of maize to sociocultural development in different chronological, geographic, and cultural settings. The ethnographical, ethnohistorical, paleobotanical, and archaeological evidence presented in these chapters has generated even more detailed evidence of complex sets of data regarding the phylogeny, chronology, evolution, and the sociocultural and socioeconomic significance of this important New World cultigen. The different social and symbolic roles maize played are explored in diverse chronological and cultural settings (see Chapters 31, 34, and 35). Other chapters, emphasize the significance of Native American practices regarding maize agriculture. The intercropping of the maize, beans, and squash triad is examined from an agroonomic perspective, and the spread of maize lineages is traced through time and space (see Chapters 38–40). Some contributors trace the early movements of maize into the American Southwest and northern Mexico and provide innovative and original insights into its role in sociocultural development and adaptation (see Chapters 33 and 35).

The linguistic section of this volume, Part V, takes the reader back into Americanist anthropological science. The chapters presented here are multidimensional in scope and comprehensive in the regions covered. Some contributors use historical linguistics such as glottochronology to explore the dispersal of this plant among the widely dispersed Siouan language family in North America and the multi-branched language families (Mayan, Mixe–Zoquean, Oto–Manguean, and Uto–Aztecan) and language groups of Mesoamerica (see Chapters 41 and 46). Cecil Brown (see Chapter 47) uses linguistic analysis to trace the spread of the terminology surrounding maize by various Native linguistic groups throughout the hemisphere. Moreover, the results from this ambitious contribution indicate that such data are largely consistent with the most current chronological evi-
dence of its spread. These contributions emphasize the importance of historical linguistics and language to our understanding of the antiquity, meaning, and the roles of maize in widely dispersed and economically diverse cultures.

Some linguistic contributors examined the vocabularies surrounding the cultivation and preparation of maize to correlate them with established archaeological dates for their introduction with linguistic developments, whereas others analyzed indigenous folk taxonomies to explore the meaning and uses of maize among ethnographic cultures and by extension their ancient ancestors (see Chapters 44 and 45).

Brian Stross (Chapter 42) analyzes images of maize, depicted in iconography, discussed in narratives, and stylized in glyphs, to gain an understanding of the ideological and mythological significance that this plant had to Mayan civilization. Alcorn, Edmonson, and Hernández Vidalles (see Chapter 43) explore the mythological origins and cultural significance of maize as it is expressed in language and revealed in legend and song of the Teenek (Huastec) of San Luis Potosí and Veracruz, who are currently residing in the moist tropical forests and dry forest zones on the eastern side of the Sierra Madre Oriental. In prehistoric times they also lived along the Gulf Coast up through Tamaulipas and into the dry areas west of the mountains—including the area of the cave where teosinte and small maize ears were discovered by Richard MacNeish decades ago.

The ethnographic and linguistic evidence presented in this part of the volume represent an affirmation of American anthropological science, and as Gordon Willey and Philip Phillips [23] once said, “archaeology is anthropology or it is nothing at all” [p. 2]. The linguistic chapters are in this part of the volume to emphasize the anthropological roots of American archaeology and reaffirm what was stated at the beginning of this introduction. It has only been a decade since the last important landmark synthesis on maize science was published, but as these chapters clearly indicate, much has changed and been redefined regarding the spread and significance of maize in that short period of time [10].

In the volume summary, Benz and Stoller (see Chapter 48) explore the multidisciplinary research on maize in different regions of the Americas to show how the data presented in this volume are in some cases a natural extension of the previous results, and in other ways a dramatic departure with conclusions and data that directly challenge the conventional wisdom and provide compelling evidence to suggest that many of our current assumptions and preconceptions are no longer tenable. This final statement on the volume and maize science reaffirms the power of integrating multiple lines of internally consistent data in light of the previous claims and assumptions that have been made in the important and often controversial history of research on maize.

Acknowledgments

I would like to express my sincerest thanks to Irwin Rovner (North Carolina State University) and Bruce F. Benz (Texas Wesleyan University) for their readings of preliminary drafts of this introduction to the volume. Their comments and suggestions provided valuable insights. I take all responsibility for the contents, assessments, and opinions expressed in this introduction. I would also like to extend my sincerest thanks to The Field Museum, particularly the research library. Most of the research, planning, and organization of this volume and the symposium from which it was derived was undertaken while I was a research associate with the museum, and if it was not for the assistance of the library staff and my access to their remarkable collections much of my research associated with this project would not have been possible. I learned a great deal in my interactions with various staff members from all of the various departments and to them I am deeply indebted for their hospitality and their willingness to share their ideas and time.

References Cited