ASMOsosia XI
Interdisciplinary Studies on Ancient Stone

PROCEEDINGS
of the XI ASMOsosIA Conference, Split 2015

Edited by Daniela Matetić Poljak and Katja Marasović

Publishers:

ARTS ACADEMY IN SPLIT
UNIVERSITY OF SPLIT

and

UNIVERSITY OF SPLIT
FACULTY OF CIVIL ENGINEERING,
ARCHITECTURE AND GEODESY

Technical editor:
Kate Bošković

English language editor:
Graham McMaster

Computer pre-press:
Nikola Križanac

Cover design:
Mladen Ćulić

Cover page:
Sigma shaped mensa of *pavonazzetto* marble from Diocletian's palace in Split

ISBN 978-953-6116-75-1 (Faculty of Civil Engineering, Architecture and Geodesy)

e-ISBN 978-953-6116-79-9 (Faculty of Civil Engineering, Architecture and Geodesy)

CIP available at the digital catalogue of the University Library in Split, no 170529005
Association for the Study of Marble & Other Stones in Antiquity

ASMOSIA XI
Interdisciplinary Studies of Ancient Stone

Proceedings of the Eleventh International Conference of ASMOSIA,
Split, 18–22 May 2015

Edited by
Daniela Matetić Poljak
Katja Marasović

Split, 2018
Thassos, Known Inscriptions with New Data
Tony Kozelj and Manuela Wurch-Kozelj ... 131

The Value of Marble in Roman *Hispalis*: Contextual, Typological and Lithological Analysis of an Assemblage of Large Architectural Elements Recovered at No. 17 Goyeneta Street (Seville, Spain)
Ruth Taylor, Oliva Rodríguez, Esther Ontiveros, Maria Luisa Loza, José Beltrán and Araceli Rodríguez .. 143

Giallo Antico in Context. Distribution, Use and Commercial Actors According to New Stratigraphic Data from the Western Mediterranean (2nd C. BC – Late 1st C. AD)
Stefan Ardeleanu ... 155

Amethystus: Ancient Properties and Iconographic Selection
Luigi Pedroni .. 167

2. PROVENANCE IDENTIFICATION I: (MARBLE)

Unraveling the Carrara – Göktepe Entanglement
Walter Prochaska, Donato Attanasio and Matthias Bruno ... 175

The Marble of Roman Imperial Portraits
Donato Attanasio, Matthias Bruno, Walter Prochaska and Ali Bahadir Yavuz ... 185

Tracing Alabaster (Gypsum or Anhydrite) Artwork Using Trace Element Analysis and a Multi-Isotope Approach (Sr, S, O)
Lise Leroux, Wolfram Kloppmann, Philippe Bromblet, Catherine Guerrot, Anthony H. Cooper, Pierre-Yves Le Pogam, Dominique Vingtaine and Noel Worley .. 195

Roman Monolithic Fountains and Thasian Marble
Annewies van den Hoek, Donato Attanasio and John J. Herrmann 207

Archaeometric Analysis of the Alabaster Thresholds of Villa A, Oplontis (Torre Annunziata, Italy) and New Sr and Pb Isotopic Data for *Alabastro Ghiaccione del Circeo*
Simon J. Barker, Simona Perna, J. Clayton Fant, Lorenzo Lazzarini and Igor M. Villa ... 215

Roman Villas of Lake Garda and the Occurrence of Coloured Marbles in the Western Part of "Regio X Venetia et Histria" (Northern Italy)
Roberto Bugini, Luisa Folli and Elisabetta Roffia ... 231

Calcitic Marble from Thasos in the North Adriatic Basin: Ravenna, Aquileia, and Milan
John J. Herrmann, Robert H. Tykot and Annewies van den Hoek 239

Characterisation of White Marble Objects from the Temple of Apollo and the House of Augustus (Palatine Hill, Rome)
Francesca Giustini, Mauro Brilli, Enrico Gallochio and Patrizio Pensabene 247

Study and Archeometric Analysis of the Marble Elements Found in the Roman Theater at Aeclanum (Mirabella Eclano, Avellino - Italy)
Antonio Mesisca, Lorenzo Lazzarini, Stefano Cancelliere and Monica Salvadori 255
CALCITIC MARBLE FROM THASOS IN THE NORTH ADRIATIC BASIN: RAVENNA, AQUILEIA, AND MILAN

John J. Herrmann¹, Robert H. Tykot² and Annewies van den Hoek³

¹ Museum of Fine Arts, Boston, Massachusetts, United States (jherrmannjr@gmail.com)
² Department of Anthropology, University of South Florida, Tampa, Florida, United States (rtykot@usf.edu)
³ Harvard University, Cambridge, Massachusetts, United States (annewies_vandenhoek@harvard.edu)

Abstract

Macroscopic examination is used as a guide for selecting candidates for testing in a search for Thasian marble artifacts in the north Adriatic region. Five Roman and Early Byzantine artifacts could be sampled in Ravenna, Aquileia, and Milan: three sarcophagi, a pulpit, and a column shaft. Grain size was measured in some cases. Four of the five candidates clearly proved to be marble from Thasos, and the other seemed more likely to be Thasian than Proconnesian.

Keywords
Late Antique, stable isotopes, X-ray fluorescence, Early Byzantine, sarcophagi, ambo

Macroscopic evidence for Proconnesian and Thasian marble in the North Adriatic/Po Valley region and sampling

On a macroscopic basis, it has long been evident that the quarries of Proconnesus near Constantinople had a dominant position in the Adriatic region, as they did throughout the Eastern Mediterranean.¹ Grayish marble with long, dark gray bands typical of Proconnesus is widespread throughout the region.² Fernando Rebecchi has pointed out the dominance of Proconnesian marble in sarcophagi produced at Ravenna during the second and third centuries, although a few products from Attica, Ephesus, and Assos also reached the region.³ Proconnesian dominance of the market for marble in the North Aegean continued during the Early Christian period. Stylistically, most architectural decoration in Ravenna, the most important city of the region in Early Byzantine times, has close parallels in Constantinople, and F. W. Deichmann has affirmed that most of the marble used in Ravenna was Proconnesian.⁴ Yuri Marano has collected literary sources that speak of or allude to the importation of Proconnesian marble products to Ravenna in the sixth century.⁵

Traditional art-historical methods, however, have shown that marble products from the Aegean island of Thasos also managed on rare occasions to reach the northern Adriatic. Semi-finished Ionic capitals of a kind produced during the fourth century in the quarries of calcitic marble at Aliki on Thasos have appeared at Aquileia. One is in the Archaeological Museum (Fig. 1),⁶ and another, which was redecorated in the Middle Ages, is in Aquileia Cathedral.⁷ Macroscopic examination of the marble reinforces these identifications. Archaeometric study has shown that the maximum grain size (MGS) of calcitic marble from Thasos is usually substantially

Fig. 1. Schematic (semifinished) Ionic capital from Thasos, untested, 380-410, Aquileia Museum

2 For the properties of Proconnesian marble, see LAZZARINI 2015.
3 REBECCHI 1978, 251, 255, 257, fig. 5.
4 DEICHMANN 1969, 64.
6 HERRMANN, SODINI 1977, 490, fig. 32; HERRMANN 1988, 84, 92; MARANO 2008A, 199.
7 CUSCITO 2008, 382-383, fig. 5, ascribed to the project of Bishop Cromazio (388-408).
greater than that from Proconnesus, and Thasian calcite tends to have softer or more rounded markings than typical Proconnesian marble. On an optical basis, Patrizio Pensabene has also identified a large column shaft (Fig. 2) and four fragmentary shafts at Aquileia as Thasian. Marble from Thasos also appears to be present in Ravenna as well as Aquileia. The most striking Thasian-looking pieces there are several coarse-grained, spotted slabs in the pavement of the mid-sixth century church of San Vitale (Fig. 3); their markings can be closely matched in the quarries at Aliki on Thasos (Fig. 4).

The pavement of S. Vitale could not be sampled to check the macroscopic evidence, but a few other Thasian-looking objects in Ravenna could be. Small chips were taken from a fragmentary ambo (pulpit) (Fig. 5) and two sarcophagi (Figs. 6-7). At Aquileia, a tiny chip could be taken from the large Thasian-looking column shaft (Fig. 2). A sarcophagus at Milan also appeared to be Thasian, and a tiny chip was taken there too (Fig. 8). The Sarcophagus of the Wine Merchant in the Archaeological Museum in Ancona also appears to be Thasian calcite, but permission for a sample has not been granted (Fig. 10).

8 ATTANASIO 2003, 110, fig. 5.3.
9 PENSABENE 2015, 613, fig. 6.
10 PROFUMO 2005.
Fig. 6. Sarcophagus of Archbishop Felix (†725), marble from Aliki, Thasos, ca. 3rd century, reused 8th century. S. Apollinare in Classe. USF 19899.

Fig. 7. Crucifer Lamb Sarcophagus, marble probably from the acropolis quarry, Thasos, possibly quarried in the 5th century and decorated in the 7th century. S. Apollinare in Classe. USF 19900

Fig. 8. Christian Sarcophagus, excavated in Milan, marble from Aliki, Thasos, early fourth century. Castello Sforzesco, Milan. USF 8455
Methodology and analysis

The samples were analyzed at the University of South Florida (USF). The ratios of stable isotopes of carbon and oxygen were measured, and three of the five samples were large enough to permit measurement of the maximum grain size (MGS). A portable X-ray fluorescence spectrometer (pXRF) was used to measure levels of the trace elements manganese (Mn) and strontium (Sr). Differences in Mn can also be determined with cathodoluminescence (CL) and, above all, with paramagnetic resonance spectography (EPR), for which there are extensive quantitative results. With CL and EPR, the intensity of the response corresponds to the level of Mn++. In pXRF the Mn response reflects the differences in both Mn++ in the crystal lattice and Mn in trace elements. The Mn levels of Thasian calcitic marble tend to be high, and those of Proconnesian are low.

Results of testing

The isotopic ratios of four of the five samples found their only match in the calcitic marble quarries at Aliki, Thasos (USF19898-9, 19901, 8455) (Table 1, Fig. 9). Three of these four samples could also be studied with pXRF, and all had relatively high levels of Mn, confirming their origin from Aliki, Thasos (USF 19898-9, 19901). Proconnesian marble, on the contrary, tends to have low levels of Mn.

One sample (USF 19900) had isotopic ratios that fell in another part of the field for Aliki and in the fields of many quarries of Asia Minor and Greece (Fig. 9). Most of the non-Thasian quarries can be eliminated for historical reasons; the quarries of Paros probably did not produce fresh marble during Late Antiquity; the fine-grained marble of Mt. Hymettus is unlike the marble used in Ravenna, and no gray-white marble from Asiatic sites other than Proconnesus is known in the North Adriatic. Proconnesus, however, is a good possibility isotopically, as are other quarries on Thasos: those on Cape Fanari and on the Acropolis. The very coarse grain of USF19900 (mgs = 4mm), however, tends to exclude Proconnesus (Table II). Since USF19900 lacks very low intensity/low Mn comparable to the median value of Proconnesus 1 (Table 2). Since USF 19900 lacks the long, sharp dark veins typical of Proconnesian marble and has very large MGS, it is likely to be a product of this small Thasian quarry of calcitic marble.

In different ways, all three of the analyzed sarcophagi are typical of the North Adriatic basin and have been ascribed to Ravenna, where the imported chests and lids were decorated. Two have the familiar local scheme of three niches framed by a lintel and corner pilasters. The example in Milan dates from around 300 (USF8455, Fig. 8). The sarcophagus of Archbishop Felix (709-725) was given its three-niche scheme in the eighth century, but the chest was quarried much earlier; a fragment of an S-curve molding (cyma) along the right end survives from its first phase (USF19899, Fig. 6a). Moldings along the end are features of Ravennate sarcophagi of the second and third centuries. The Crucifer Lamb Sarcophagus (USF19900) (Fig. 7), whose figures probably date from the eighth century, is also a recut older piece. Its unusual projecting molding above recalls a sarcophagus of the fifth century at Ravenna. One of the capitals in Aquileia has plausibly been ascribed to the rebuilding of the cathedral between 388 and 408, and the other capital and the column shaft there could well date from that time as well (Figs. 1-2, USF19901). The slabs in the S. Vitale pavement are reused in the Medieval pavement, but they probably stem from the original pavement of around 540 (Fig. 3). The ambo fragment (Fig. 5, USF19898) belongs to the late sixth or early seventh century.

The untested sarcophagus-front with three niches found in Ancona also appears to be Thasian calcite; the ”sarcophagus of the wine merchant” (il Sarcofago del vinaio) in the Museo Archeologico of Ancona has the coarse grain, grayish color, and short, soft dark-gray streaks typical of Aliki or Fanari (Fig. 10). The sarcophagus has been dated to the mid-third century and has also been attributed to a workshop of Ravenna. On the basis of this group of tests, it seems likely that the third century was the main period of importation of quarry-rough Thasian sarcophagi to the north Aegean.

References

11 ATTANASIO et al. in this volume.
12 VAN KEUREN et al. 2012, 349-351, table 1, lines 7-9.
13 ATTANASIO 2003, database diskette; ATTANASIO et al. 2006, 139, figs. 2.11a.
14 ATTANASIO et al. 2006, 140, table 2.11a; MANIATIS et al. 2009, 268, fig. 5; MANIATIS et al. 2010, 53, fig. 7.
17 VALENTI ZUCCHINI, BUCCI 1968, cat. no. 25 (2nd half 5th century); KOLLWITZ, HERDEJURGEN 1979, cat. no. B 11, pl. 60-63 (late 5th century).
18 PROFUMO 2005. The stone is called limestone.
Figure 9. Isotopic ratios of North Adriatic samples (diagram from VAN KEUREN et al. 2012) Table 1. Afy = Afyon; Ca = Carrara; Eph = Ephesus; Pa/Cho = Paros 2, Chorodaki; Pa/Ma = Paros, Marathi; Pro = Proconnesus; ThC = Thasos, calcitic quarries (Aliki)

<table>
<thead>
<tr>
<th>USF #</th>
<th>Site</th>
<th>description</th>
<th>Mn</th>
<th>Sr</th>
<th>δ13C</th>
<th>δ18O</th>
<th>MGS</th>
<th>Quarry: preferred underlined</th>
</tr>
</thead>
<tbody>
<tr>
<td>19898</td>
<td>Ravenna, Museo Nazionale, inv.620</td>
<td>Slab from ambo inscribed SCO...NI</td>
<td>High</td>
<td>low</td>
<td>3.2</td>
<td>0.6</td>
<td>3-4 mm</td>
<td>Th-Al, Proc</td>
</tr>
<tr>
<td>19899</td>
<td>S. Apollinare in Classe (Ravenna)</td>
<td>Sarcophagus of Archbishop Felix</td>
<td>High</td>
<td>low</td>
<td>3.3</td>
<td>0.0</td>
<td>3-4 mm</td>
<td>Th-Al, Proc</td>
</tr>
<tr>
<td>19900</td>
<td>S. Apollinare in Classe (Ravenna)</td>
<td>Crucifer Lamb Sarcophagus</td>
<td>Low</td>
<td>low</td>
<td>2.4</td>
<td>-2.9</td>
<td>4 mm</td>
<td>Th-Al, Proc</td>
</tr>
<tr>
<td>19901</td>
<td>Aquileia, Museo Archeologico</td>
<td>Tall column shaft in front of old facade</td>
<td>High</td>
<td>low</td>
<td>3.4</td>
<td>0.7</td>
<td>-</td>
<td>Th-Al, Proc</td>
</tr>
<tr>
<td>8455</td>
<td>Milan, Castello Sforzesco, inv. 203</td>
<td>Tetrarchic sarcophagus</td>
<td>--</td>
<td>--</td>
<td>3.9</td>
<td>0.1</td>
<td>-</td>
<td>Th-Al, Proc</td>
</tr>
</tbody>
</table>

Af = Afyon; Aphro = Aphrodisias; Hym = Hymettos; Paros = Paros, Marathi, Lychnites; Proc = Proconnesus; Th-Al = Thasos, Aliki; Th-Ph = Thasos, Phanari; Th-Acr = Thasos, Acropolis

Table 1. Analysis of Thasian-looking objects in Ravenna, Aquileia, and Milan

19 ANGIOLINI MARTINELLI 1968, cat. no. 20 (2nd half 6th century); DEICHMANN 1969, 73, 280, fig. 101. Compare ambo of Marinianus (595-606); DEICHMANN 1969, 73, fig. 98, 102-102.

20 Felix died in 724: LAWRENCE 1945, 3, 40-41, 48-49, fig. 73; VALENTI ZUCCHINI, BUCCI 1968, cat. no. 58; DEICHMANN 1969, 86, fig. 175; KOLLWITZ, HERDEJURGEN 1979, 169-170, pl. 85.2, 86.3, 89.8.

21 LAWRENCE 1945, 37, 39, 41, 44, fig. 69 (7th century); VALENTI ZUCCHINI, BUCCI 1968, cat. no. 59 (8th century); DEICHMANN 1969, 86; KOLLWITZ, HERDEJURGEN 1979, 170-171, pl. 85.4 (early 8th century).

22 PENSABENE 2015, fig. 5.

25 HERRMANN et al. in this volume.
the northern Adriatic and to Ostia, but importation con-
tinued or was resumed at the end of the sixth century, as demonstrated by the sarcophagus of around 600 in Siracusa. The ambo of Aliki marble in Ravenna was both quarried and sculpted around 600 and forms a chrono-
logical parallel to the late sarcophagus in Siracusa.

Conclusions

Macroscopic examination of marble objects at several sites in the North Adriatic made it possible to dis-
tinguish the calcitic marble of Thasos from that of Pro-
connesus with considerable success; five Thasian-look-
ing sculptures at Aquileia, Ravenna, and Milan could be sampled, and isotopic analysis, measurements of MGS, and analysis with pXRF confirmed that at least four of the five pieces were certainly from the Aliki quarries on Thasos. The fifth piece seems to be marble from Acrop-
olis quarry on Thasos (Fig. 7).

On the basis of these analyses, it appears that calcit-
ic marble from Thasos made sporadic appearances in the Central and North Adriatic region from the third through the sixth century. The marble appears to have arrived in the region roughly shaped and been finished locally. Columns and Thasian-type Ionic capitals were imported to Aquileia (as they were to Rome) from Thasos in the late fourth century. Pavement slabs seem to have been imported in the time of Justinian. An ambo was imported in post-Justini-
anic times. For the first time, sarcophagi of Thasian marble can be identified in the Adriatic region; three of the five artifacts sampled were sarcophagi, and two of them came to Italy in the third or early fourth centuries.

The apparent rarity of Thasian marble artifacts found so far in the North Adriatic indicates that Thasos

Fig. 10. Sarcophagus of the Wine Dealer, probably marble from Aliki, excavated in Ancona, mid–third century

<table>
<thead>
<tr>
<th>sample</th>
<th>Quarry</th>
<th>D13 C</th>
<th>D18O</th>
<th>Intens (Mn++)</th>
<th>MGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th_AT1</td>
<td>Acropolis</td>
<td>2.66</td>
<td>-4.52</td>
<td>0.053</td>
<td>3.5</td>
</tr>
<tr>
<td>Th_AT2</td>
<td>Acropolis</td>
<td>2.08</td>
<td>-4.56</td>
<td>1.057</td>
<td>3.4</td>
</tr>
<tr>
<td>Th_AC1</td>
<td>Acropolis</td>
<td>1.89</td>
<td>-2.96</td>
<td>0.072</td>
<td>3.8</td>
</tr>
<tr>
<td>Th_AC2</td>
<td>Acropolis</td>
<td>2.07</td>
<td>-4.74</td>
<td>0.274</td>
<td>3.3</td>
</tr>
<tr>
<td>Th_AC3</td>
<td>Acropolis</td>
<td>2.25</td>
<td>-2.46</td>
<td>0.110</td>
<td>3.7</td>
</tr>
<tr>
<td>Th_AC4</td>
<td>Acropolis</td>
<td>2.10</td>
<td>-3.20</td>
<td>0.612</td>
<td>4.0</td>
</tr>
<tr>
<td>Th_P1</td>
<td>Cape Fanari</td>
<td>1.50</td>
<td>-3.30</td>
<td>0.244</td>
<td>6.0</td>
</tr>
<tr>
<td>Th_P2</td>
<td>Cape Fanari</td>
<td>2.31</td>
<td>-2.36</td>
<td>0.508</td>
<td>6.5</td>
</tr>
<tr>
<td>Th_P3</td>
<td>Cape Fanari</td>
<td>2.26</td>
<td>-1.91</td>
<td>0.428</td>
<td>7.5</td>
</tr>
<tr>
<td>Several hundred</td>
<td>Proconnesus 1</td>
<td>2.65</td>
<td>-2.07</td>
<td>0.06</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Table 2. Quarry data for Acropolis and Cape Fanari, Thasos (Attanasio 2006, Table 2.11a); compared with averages for Proconnesus 1 (VAN KEUREN et al. 2012 Table 1)
was a very junior partner to Proconnesus in supplying grayish, coarse-grained calcitic marble to the region. In this respect, the situation is similar to what is seen in the Early Byzantine Eastern Mediterranean, where Thasian marble had a marginal presence in the architectural market alongside Proconnesian. In fourth- and early-fifth century Rome, on the other hand, Thasian calcite was a fairly consistent presence. Future larger-scale studies at Ravenna and elsewhere in the North Aegean are needed to provide a fuller picture of the Thasian share of the market there, but this pilot project demonstrates that, at least, it did have a presence.

ACKNOWLEDGMENTS

We are grateful for the cooperation of Arch. Antonella Ranaldi and the Soprintendenza per i Beni Architettonici e Paesaggistici per le province di Ravenna, Ferrara, Forlì-Cesena, Rimini; Dr. Angelo Maria Ardovino, Ministero per i Beni Culturali e Ambientali, Soprintendenza Archeologica, Milano.

BIBLIOGRAPHY

ANGIOLINI MARTINELLI P. 1968: Corpus della scultura paleocristian bizantina ed altomedioevale di Ravenna, 1: Altari, amboni, cibori, cornici, plutei con figure di animali e con intrecci, transenne e frammenti vari, Roma.

ATTANASIO D., HERRMANN J., TYKOT R., VAN DEN HOEK A. in this volume: "Roman and Early Byzantine sarcophagi of calcitic marble from Thasos in Italy", in ASMOSIA XI.

KOCH G. 1982: Römische Sarkophage, Munich.
VALENTI ZUCCHINI G., BUCCI M. 1968: Corpus della scultura paleocristiana bizantina ed altomedioevale di Ravenna, 2: I sarcofagi a figure e a carattere simbolico, Roma.