Important Notice to Authors

Attached is a PDF proof of your forthcoming article in PRB. Your article has 8 pages and the Accession Code is BN12247.

Please note that as part of the production process, APS converts all articles, regardless of their original source, into standardized XML that in turn is used to create the PDF and online versions of the article as well as to populate third-party systems such as Portico, CrossRef, and Web of Science. We share our authors’ high expectations for the fidelity of the conversion into XML and for the accuracy and appearance of the final, formatted PDF. This process works exceptionally well for the vast majority of articles; however, please check carefully all key elements of your PDF proof, particularly any equations or tables.

Figures submitted electronically as separate PostScript files containing color usually appear in color in the online journal. However, all figures will appear as grayscale images in the print journal unless the color figure charges have been paid in advance, in accordance with our policy for color in print (http://publish.aps.org/authors/color-figures-print) and the relevant figure captions read “Color”. For figures that will be color online but grayscale in print, please ensure that the text and captions clearly describe the figures to readers who view the article only in grayscale.

No further publication processing will occur until we receive your response to this proof.

Specific Questions and Comments to Address for This Paper

1. The .eps file for Fig. 1 does not match the ones in the PDF you supplied. Please confirm that the correct figure was used.
2. Please confirm expansion of VSM.
3. Please confirm expansion of ACMS.
4. FCC not mentioned in text although it is shown in Fig. 2. Please consider adding FCC text to the Fig. 2 discussion, including the expansion of FCC, and then delete expansion in Fig. 2 caption.
5. Please confirm wording.
6. Please confirm expansion of EXAFS.
7. Please include description of inset.
8. Please confirm expansion of RMXS.
9. Please confirm expansion of (SR.
10. Please provide page no. for Ref. [3].

Other Items to Check

- Please note that the original manuscript has been converted to XML prior to the creation of the PDF proof, as described above. Please carefully check all key elements of the paper, particularly the equations and tabular data.
- Please check PACS numbers. More information on PACS numbers is available online at http://publish.aps.org/PACS/.
- Title: Please check; be mindful that the title may have been changed during the peer review process.
- Author list: Please make sure all authors are presented, in the appropriate order, and that all names are spelled correctly.
- Please make sure you have inserted a byline footnote containing the email address for the corresponding author, if desired. Please note that this is not inserted automatically by this journal.
- Affiliations: Please check to be sure the institution names are spelled correctly and attributed to the appropriate author(s).
- Receipt date: Please confirm accuracy.
- Acknowledgments: Please be sure to appropriately acknowledge all funding sources.
- Hyphenation: Please note hyphens may have been inserted in word pairs that function as adjectives when they occur before a noun, as in “x-ray diffraction,” “4-mm-long gas cell,” and “R-matrix theory.” However, hyphens are deleted from word pairs when they are not used as adjectives before nouns, as in “emission by x rays,” “was 4 mm in length,” and “the R matrix is tested.”

Note also that Physical Review follows U.S. English guidelines in that hyphens are not used after prefixes or before suffixes: superresolution, quasiequilibrium, nanoprecipitates, resonancelike, clockwise.
- Please check that your figures are accurate and sized properly. Make sure all labeling is sufficiently legible. Figure quality in this proof is representative of the quality to be used in the online journal. To achieve manageable file size for online delivery, some compression and downsampling of figures may have occurred. Fine details may have become somewhat fuzzy, especially in color figures. The print journal uses files of higher resolution and therefore details may be sharper in print. Figures to be published in color online will appear in color on these proofs if viewed on a color monitor or printed on a color printer.

Overall, please proofread the entire article very carefully.

Ways to Respond
Web: If you accessed this proof online, follow the instructions on the web page to submit corrections.

Email: Send corrections to prbproofs@aptaracorp.com
Subject: BN12247 proof corrections

Fax: Return this proof with corrections to +1.703.791.1217. Write Attention: PRB Project Manager and the Article ID, BN12247, on the proof copy unless it is already printed on your proof printout.

Mail: Return this proof with corrections to Attention: PRB Project Manager, Physical Review B, c/o Aptara, 3110 Fairview Park Drive, Suite #900, Falls Church, VA 22042-4534, USA.
Macroscopic phase diagram and magnetocaloric study of metamagnetic transitions in the spin chain system Ca$_3$Co$_2$O$_6$

P. Lampen, N. S. Bingham, M. H. Phan,* and H. Srikanta*

Department of Physics, University of South Florida, Tampa, FL 33620, USA

H. T. Yi and S. W. Cheong
Rutgers Center for Emergent Materials and Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854, USA

(Received 17 January 2014; revised manuscript received 26 March 2014; published xxxxxx)

The magnetic entropy change (ΔS_M) in a single crystal of the geometrically frustrated spin chain system Ca$_3$Co$_2$O$_6$ has been determined under the influence of a wide range of temperatures and magnetic field variations. Our findings are consistent with the spin-density wave description of the zero field order, and with the suppression of the modulated state at low field. Metamagnetic transitions to the ferrimagnetic up-up-down configuration and full ferromagnetic alignment are observed upon the application of moderate magnetic fields in the c direction. At low temperatures, an increase in ΔS_M supports the presence of short-range magnetic correlations coexisting with long-range order up to large fields. Depending on the temperature regime, local maxima or minima in $\Delta S_M(H)$ can be found within the ferrimagnetic phase, which are identified with intermediate configurations among the chains. A new magnetic phase diagram has been constructed from the magnetic field and temperature dependence of magnetic entropy change.

DOI: 10.1103/PhysRevB.00.004400

PACS number(s): 75.47.Lx, 75.30.Sg

I. INTRODUCTION

The magnetic behavior of the spin chain cobaltite Ca$_3$Co$_2$O$_6$ combines geometric frustration with intrinsic low dimensionality, giving rise to complex physical phenomena that continue to attract a great deal of interest [1–7]. Crystalizing in the rhombohedral space group R3c [8], Ca$_3$Co$_2$O$_6$ consists of face-sharing CoO$_6$ trigonal prisms and CoO$_8$ octahedra alternating along the c axis to form chains. As a result, the system exhibits pronounced quasi-one-dimensional magnetic characteristics. With six nearest neighbors, the CoO$_6$ chains form a triangular lattice in the ab plane, separated by non-magnetic Ca atoms (Fig. 1). Due to the nature of its geometry and single-ion axial anisotropy, Ca$_3$Co$_2$O$_6$ has long been considered to be a model triangular-lattice Ising antiferromagnet, where each chain can be represented by a single rigid spin on a two-dimensional (2D) lattice [9]. However, more recent theoretical predictions and experimental results have shown this description to be oversimplified, and a full three-dimensional (3D) picture must be invoked to account for the wide range of unusual physical phenomena found in the system [1,5,10]. Intrachain Co-Co separation is approximately one half of the interchain Co-Co distance, contributing to large anisotropy and competing exchange interactions: ferromagnetic (FM) coupling along the chains (J_1) and weak antiferromagnetic (AFM) coupling between nearest- and next-nearest-neighbor chains through a helical Co-O-O-Co super-exchange pathway (J_2, J_3) [2,10–12], leading to significant magnetic frustration.

Neutron diffraction, magnetization, and specific heat studies [13–15] indicate long-range magnetic ordering below $T_c \approx 25$ K, in good agreement with the predicted strength of the intrachain FM exchange parameter ($J_1 \approx 25$ K) [2]. The ordered state in zero field is similar to the partially disordered antiferromagnetic (PDA) phase found in some geometrically frustrated ABX_3 compounds such as CsCoCl$_3$ and RbFeB$_3$, in which $\frac{1}{3}$ of the chains couple antiferromagnetically, with the remaining $\frac{2}{3}$ incoherent (no long-range order along the chain; no coupling with neighboring chains) [15–18]. However, resonant x-ray scattering [19] revealed incommensurate magnetic order along the chains, implying a long wavelength spin-density wave (SDW). Subsequent neutron scattering and computational results have unambiguously established the existence of a SDW along the c axis with long periodicity (up to ~1000 Å), with a phase shift of $\frac{120^\circ}{2}$ between adjacent chains [1,10,12,14]. As a consequence of the amplitude modulation of the intrachain moment, the up-down-incoherent triangular unit of the PDA phase is only realized at specific points along the c axis.

The application of a small magnetic field on a triangular Ising-like AFM lattice has the effect of lifting degeneracy and imparting a preferred orientation to the incoherent spin chain, resulting in a ferrimagnetic up-up-down configuration among the chains with a magnetization equal to $\frac{1}{2}$ of the saturation value (M_S) [20]. Indeed, a magnetization plateau with $M \sim M_S/3$ is a well-known feature of Ca$_3$Co$_2$O$_6$ below the critical magnetic field (~ 3.6 T) where FM order is established [6,15]. The more unique aspects of the field-driven magnetization curves occur below 10 K, where additional plateaus emerge in the magnetization at regular field intervals (1.2 T, 2.4 T, 3.6 T, with higher field steps occasionally observed), accompanied by an increase in magnetic hysteresis. Due to similarities with experimental results on single-molecule magnets, quantum tunneling of magnetization (QTM) was proposed as the driving mechanism behind the multiple step behavior [21]; however, this idea has been challenged [22,23]. The appearance of the additional plateaus corresponds to the onset of extremely slow spin dynamics, while their number and height depend strongly on history and sweep rate, indicating...
that nonequilibrium processes underlie this phenomenon [1,4,20,24–26].

Although the question of the true ground state of this complex frustrated spin chain system and its temperature and time variation have been highly scrutinized, less work has been undertaken on the field dependence of the magnetic order at intermediate temperatures. Several phase diagrams can be found in the literature based on bulk magnetization [15,27,28] and muon spin relaxation measurements [29]. However, these do not take into account the current understanding of the SDW ground state or the more recently described low-temperature short-range order phase [5,7,23]. In this work we have applied the magnetic field and temperature dependence of magnetic entropy change as a probe of the magnetic states of Ca₃Co₂O₆. The results obtained are fully consistent with recent findings [5,7], thus allowing us to establish a more comprehensive magnetic phase diagram for this exotic system.

The magnetic entropy change (ΔSM) in a system is related to the magnetic field (H) and magnetization (M) through the thermodynamic Maxwell relation, which yields an expression for the isothermal ΔSM produced by a magnetic field change of ΔH = H′ − H, [30]:

\[ΔS_M(T) = \mu_0 \int_{H}^{H'} \left(\frac{∂M(T,H)}{∂T} \right)_H dH. \]

It follows that ΔSM(T) reaches its maximum value where the derivative ∂M/∂T is largest, resulting in a peak in the entropy change where the magnetization changes rapidly near a phase transition. In addition to its conventional use in characterizing materials for magnetic refrigeration applications, we have recently demonstrated that the magnetic entropy change also provides a useful tool to study phase transitions and magnetic states subject to an applied field [31–35]. The sensitivity of the magnetic entropy change to small changes in the magnetization, given its relation to ∂M/∂T combined with the dependence of the sign of ΔSM with temperature and applied field.

II. EXPERIMENT

High-quality single-crystalline samples of Ca₃Co₂O₆ were grown using a flux technique with K₂CO₃ and KCl flux [27]. This method yielded needlelike single crystals with dimensions up to 7 × 1.5 × 1.5 mm. Measurements of the temperature dependence of magnetization and the magnetic entropy change associated with the magnetocaloric effect were performed in a commercial Physical Property Measurement System (PPMS) from Quantum Design with a vibrating sample magnetometer (VSM) attachment. Isothermal magnetization curves were collected over a temperature range of 2–20 K at intervals of 1 K, and 10–120 K at intervals of 5 K. The magnetic field was stabilized before taking a data point every 0.07 T with a sweep rate of 0.01 T/s between points up to a maximum field of 7 T. In the low-temperature region (2–20 K), the system was warmed to 100 K—well above the onset of long-range magnetic order—in between the acquisition of each M(H) curve in order to clear the sample history and minimize the development of time-dependent phases. Using the AC/DC Magnetometry System (ACMS) option of the PPMS, both the real \(\chi(T) \) and imaginary \(\chi''(T) \) components of the ac susceptibility were simultaneously measured while warming up from 5 K. In all cases, the external field was directed along the c axis of the crystal.

III. RESULTS

Figure 2 shows the characterization of the magnetization along the easy direction of the single crystal. The expected sharp growth of magnetization is observed in the M(T) curves.

![FIG. 1. (Color online) Representation of Ca₃Co₂O₆ crystal structure from Ref. [23]: stacked Ca/O octahedra (light blue) and trigonal prismatic (dark blue) polyhedral chains run along the c axis. Oxygen atoms are shown in red. Right: the chains form a triangular lattice in the ab plane separated by Ca atoms (gray).](image)

![FIG. 2. (Color online) Temperature-dependent magnetization curves collected under the ZFC, field-cooled cooling (FCC), and FCW protocols under an applied dc field of 10 mT. Inset (a): Temperature-dependent ac susceptibility taken at an ac field of 0.1 mT for varying frequencies. Inset (b): Magnetic-field-dependent magnetization curves at 25 and 5 K.](image)
below 25 K as the onset of long-range magnetic order in
the intrinsically frustrated system leads to a large increase
in susceptibility. A splitting between the magnetization curves
measured while warming up and cooling down for \(T < 25 \) K
shows that thermal hysteresis is present throughout the ordered
temperature region. At 25 K, two steps are observed in the \(M \)
\((H) \) curves [Fig. 2(b)] with plateaus at \(M \sim M_S/3 \) from small
fields (corresponding to \(1/3 \) of the chains aligned with the field
and \(1/3 \) of the chains antialigned), and \(M \sim M_S = 4.8 \mu_B/\text{f.u.} \)
for \(H \geq 3.3 \) T; this second critical field approaches 3.6 T as
the temperature decreases. For \(T = 5 \) K, two additional steps
are observed to split the first magnetization plateau at 1.2 T
and 2.4 T, although the number of steps—corresponding to
switching between metastable states—can vary according to
the sweep rate.

Bifurcation of the magnetization curves collected under
zero-field-cooling (ZFC) and field-cooled warming (FCW)
protocols occurs at \(\sim 18 \) K, and a cusp in the ZFC curve marks
the crossover in relaxation mechanisms below \(\sim 8 \) K [36]. A
shift in the peak location of the ac susceptibility curves with
varying frequency further demonstrates the slow dynamics of
the geometrically frustrated system [Fig. 2(a)]. The peak shift
is characterized by the phenomenological parameter often used
to compare spin glass systems, \(K = \Delta T_f/(T_f \Delta \log f) \), where
\(T_f \) is the freezing temperature taken as the peak in \(\chi''(T) \).
The value of \(K = 0.171 \) calculated from our susceptibility
data, in good agreement with the results of Maignan et al.
[27], is outside the expected range for conventional spin
glasses (0.005–0.01) [37] and superparamagnetic compounds
(0.10–0.13) [38]. However, the related compounds Ca\(_3\)Co\(_2\)O\(_6\)
[39] and Ca\(_3\)CoRh\(_2\)O\(_6\) [40] show frequency dependence in the
superparamagnetic range, emphasizing the unique aspects of
Ca\(_3\)Co\(_2\)O\(_6\) even among other spin chain systems.

The magnetic entropy change in the system is calculated
through the application of Eq. (1) to a series of \(M \) \((H) \)
isotherms collected across the temperature region of interest
in Ca\(_3\)Co\(_2\)O\(_6\). The temperature and field dependence of the
entropy change \((\Delta S_M(T, H)) \) is shown in Fig. 3. The dominant
feature in \(\Delta S_M(T) \) is a minimum near the long-range ordering
temperature 25 K [Fig. 3(a)]; however, finite negative values
of \(\Delta S_M \) persist up to 120 K, signifying weak FM interactions
at high temperatures. In general, a decrease in \(\Delta S_M \) upon
the application of an external magnetic field is associated
with FM alignment in a material as the Zeeman energy suppresses
thermal fluctuations, thus reducing the entropy of the spin
system. On the other hand, an increase in magnetic entropy
with field in an antiferromagnet can be observed as moderate
applied fields may decouple individual spins from sublattices
aligned in opposition to the applied field direction [41,42].
The development of FM correlations within the chains well above
25 K would account for the gradual high-temperature fall off
the magnetization (Fig. 2) and entropy change [Fig. 3(a)].
Such short-range magnetic interactions within the chains are
also suggested by anomalies in extended x-ray absorption fine
structure (EXAFS) [11], Mössbauer [43], and magnetoelectric
results [3] in this temperature range.

Below 25 K, more complex temperature- and field-induced
features are apparent in the \(\Delta S_M(H,T) \) surface [Fig. 3(b)],
indicating that several types of magnetic order are present.
The details of the local features in the entropy change are best
understood through an examination of its field dependence at
several representative temperatures. The gradual and uniform
decrease in \(\Delta S_M(H) \) at \(T = 30 \) K [Fig. 4(a)] with increasing
external field strength is a signature of the short-range
correlations discussed above, as localized FM clusters in the
chains are stabilized and expanded by the application of a
moderate field. As the temperature is decreased below the
onset of long-range order, the variation of \(\Delta S_M \) with applied
field becomes nontrivial. At 15 K, \(\Delta S_M \) exhibits a minimum
at \(H_{CI} \sim 2 \) T [Fig. 4(b)] and then increases in the range 2 T
\(< H < 3.5 \) T. As established from Fig. 2 and previous reports
[6,15,23], by 2 T the compound is in the ferrimagnetic (FIM)
up-down configuration. A second metamagnetic transition
to FM order is induced at \(H_{FM} \sim 3.5 \) T, above which \(\Delta S_M(H) \)
FIG. 4. (Color online) Magnetic entropy change as a function of applied magnetic field at various constant temperatures, (a) 30 K, (b) 15 K, (c) 12 K, (d) 10 K, and (e) 5 K. (f) First derivative of magnetic entropy change with applied field.

decreases monotonically with applied field as expected in a FM material. The minimum value in the entropy $\Delta S_M(H_{C1})$ increases as the temperature is lowered, with a crossover in the initial (low field) entropy change from negative to positive at 12 K [Fig. 4(c)]. The entropy change below 12 K is characterized by the emergence of a positive peak at a field H_{C2} that increases as the temperature is lowered and reaches ~ 2.4 T at 2 K. The field required to saturate the sample also increases rapidly below 12 K, such that by 5 K, no critical field exists above which the entropy change decreases uniformly, i.e., a homogeneous FM phase is not established up to 7 T.

At low temperature, Ca$_3$Co$_2$O$_6$ is characterized by very slow dynamics and a unique time-dependent order-order transition [5,21]. Therefore, the measurement protocol, in particular thermal history, is an important consideration in evaluating the observed magnetization and hence the magnetic entropy change. To illustrate these effects, $\Delta S_M(T, H)$ was calculated after acquiring a second set of data between 20 and 2 K without the intermediate warming step, i.e., measuring an $M(H)$ isotherm, decreasing the temperature by 1 K, then acquiring the next isotherm immediately after temperature stabilization, for an effective cooling rate of ~ 1.2 K h$^{-1}$.

Figure 5 compares the entropy change as a function of temperature for measurement protocols with (solid symbols) and without (open symbols) the intermediate warming step. In the data collected without warming, ΔS_M reaches very large apparent values of close to 40 J/kg K at base temperature subject to an applied field of 7 T.

IV. DISCUSSION

Distinct relaxation mechanisms have been observed at very low and higher temperatures in Ca$_3$Co$_2$O$_6$, with an intermediate regime over which the two relaxation processes have a comparable effect [21]. Above 14 K, the $\Delta S_M(T)$ curves at a given field in Fig. 5 lie on top of one another. However, at the onset of the slowing dynamics, there is a splitting between the data obtained under different protocols. The temperature of the divergence of $\Delta S_M(T)$ is in good agreement with the appearance of short-range magnetic order, as discussed below. It is well known that a changing magnetic field applied in a glassy region introduces nonequilibrium and aftereffects, and for this reason the use of the Maxwell relation is strictly

FIG. 5. (Color online) Comparison of magnetic entropy change as a function of temperature for measurement protocols with and without warming between isotherms (solid symbols and open symbols, respectively).
valid only when the system is in thermodynamic equilibrium \[44,45\]. Similar nonequilibrium effects occur in the course of a first-order transition, and thus the magnetization results depend on the kinetics of the transition and therefore the experimental procedure \[45\]. It has been shown that artifacts associated with the use of the Maxwell relation at a first-order transition can be eliminated by warming the sample well above \(T_c\), ensuring that the transition is always crossed in the same manner \[46\]. We take a similar approach in measuring \(\Delta S_M(T)\) for analysis.

It can be seen (Fig. 4) that more extreme apparent values of magnetic entropy change occur when the warming step is not undertaken. In this case, remanent effects from repeated application and removal of a field in the low-temperature region with extremely slow dynamics result in arbitrarily large differences in the magnetic state between successive isotherms.

In addition to standard glassy effects, a small amount of a time-dependent commensurate antiferromagnetic (CAF) phase may be present in the system for the data taken without warming, since the thermal history is not erased. An ultraslow zero-field order-order transition between the incommensurate SDW and the commensurate CAF phase with distinct translational symmetry occurs between \(8\) and \(12\) K \[5,12,47\].

The CAFM phase evolves with a characteristic time \(\tau = 1.4\) h at \(10\) K and \(\tau = 3.9\) h at \(8\) K, and the transition is never complete \[5\]. In the sample rapidly cooled \((-2\) K/min) to 2 K, the magnetic state is “frozen in,” and the CAFM phase is not present. Even when held at higher temperatures \((8-12)\) K where the dynamics are such that the transition may occur, a detailed study of the time dependence of the relative phase fractions found no significant signature of the CAFM phase after the first 15 min \[5\]. Therefore, the presence of the CAFM phase can be excluded in the case of the magnetization data collected under the warming protocol (Fig. 3) in which the system was cooled rapidly \((\text{in excess of 2 K/min})\) to each temperature of interest, and a magnetic field was applied to initialize the \(M(H)\) measurement immediately after temperature stabilization.

In the earliest proposed phase diagram for Ca\(_3\)Co\(_2\)O\(_6\) by Kageyama \textit{et al.} \[15\] [Fig. 6(a)], as well as the later works of Maignan \textit{et al.} \[27\] and Goko \textit{et al.} \[28\], the establishment of the FIM state in the high-temperature region was shown to occur only after the application of a substantial magnetic field. In these cases, the critical field was taken as the field at which the magnetization of the \(M(H)\) curve crosses \(M_S/3\). Determined in this way, the apparent crossover field from the zero-field state to the FIM state will be quite large due to significant rounding of the steps just below 25 K. However, the majority of the growth in magnetization in the initial field-induced step occurs almost immediately when a field is introduced. Indeed, calculations have shown that a weak field breaks the ground state degeneracy, resulting in the FIM up-up-down phase, while rounding of the steps could be accounted for by a random exchange term simulating the inhomogeneity of a real system \[25\]. The AFM and FM Bragg peaks that collectively describe the FIM phase also showed a rapid step close to 0 T \[7,47\]. Thus the overall magnetic order is up-up-down from very small fields, although the spin chains cannot be described as perfectly rigid due to thermal fluctuations. In Fig. 4(b), the negative values of magnetic entropy change observed for \(H < H_{C1}\) are consistent with enhanced intrachain FM order (reducing the configurational entropy) resulting from an increase in the axial applied field.

Therefore, given the known relationship among chains on the triangular lattice unit at the end points of field range \(H_{C1}(\uparrow\uparrow\uparrow) < H < H_{FM}(\uparrow\uparrow\downarrow)\), it is reasonable to attribute the increase in the entropy across this interval to the reversal of the third chain. This process is quite extended in field; however, we note that it involves the flipping of a large (theoretically infinite) number of individual spins against the satisfied FM interchain interaction at a high cost in energy.

As the temperature is lowered, a crossover occurs from a decrease in \(\Delta S_M\) with field to a strong initial increase—pointing to growing disorder in the system. An unusual drop in the intensity of AFM reflections at low temperatures has been noted in Ca\(_3\)Co\(_2\)O\(_6\) by several groups \[48,49\]. This phenomenon has been attributed to the existence of short-range magnetic ordering with a correlation length \(\sim 180-250\) Å coexisting with long-range order phases at zero field \[7,14\], and resonant x-ray scattering has confirmed that only a fraction of the total spin moments contribute to the signal in the SDW state, with the rest exhibiting short-range order (SRO) \[23\]. Such SRO is manifested as a Lorentzian contribution to the

![Phase Diagram](image-url)
AFM Bragg peaks that appears below 15 K, and reaches a maximum at 8 K with an equilibrium volume fraction of ~0.4 [5,7]. While some description of the properties of the SRO phase has been provided experimentally, such methods are not suited to address its origin. However, theoretical investigations of the magnetization steps have shown domains of reduced metastable magnetization that may be related to the observations of SRO: In several studies, authors defined cells of spin chains with various discrete energies (e.g., ranging from −6 to +6) depending on the number of “up” (+1) and “down” (−1) nearest neighbors [4,22,26,27]. In a small applied field, while cells corresponding to the up-up-down configuration formed the majority phase, significant numbers of cells with different energies were also present. These differently configured spin chain units tended to chain or cluster into interlinked domains [4,22,26].

From Fig. 4(c)–4(e), the presence of the SRO AFM phase, expected to contribute to the total magnetic entropy in a positive manner, is evident from the observation of $\Delta S_M > 0$ for all applied fields at low temperatures. A positive peak in $\Delta S_M (H = H_{C2})$ is the predominant feature in the low- to moderate-field range below ~10 K. While the origin of the peak is unclear, given its observed temperature dependence it is most likely associated with the presence of SRO. For $10 K < T < 15 K$, the SRO phase is present but not significant, based on the small values of H_{C2} and $\Delta S_M (H_{C2})$. As $T \to 2 K$, H_{C2} approaches 2.4 T, the field at which the second fractional magnetization plateau is seen in the $M (H)$ curves. Recent Monte Carlo results predict a fractional reversal of spin chains as the magnetic field is increased just below the second magnetization step, which initially introduces more disorder into chains aligned against the field [26]. This may be related to our observation of a local maximum in $\Delta S_M (H)$ near this field at base temperature; however, we note that the exchange constant J_3 was neglected in this model. It is clear from the monotonic increase of ΔS_M and the nonsaturation of the magnetization below 6 K that some degree of the SRO phase persists up to the highest fields available in our experimental setup. Indeed, it was observed that at 2 K, the short-range contribution to the neutron diffraction patterns decreased in a stepwise fashion at fields corresponding to the magnetization plateaus but retained nonzero intensity even above 3.6 T [7]. Our current results and other reports [1,4,23] indicate that the overall magnetic order for $H < H_{C1}$ is ferrimagnetic at low temperatures, although with greater complexity than the up-up-down configuration established for $T > 10 K$. Collectively, the intermediate chain configurations in the multiple-magnetization-step range can be described as belonging to a metastable ferrimagnetic (mFIM) phase.

Spin-density wave ground states are not uncommon in geometrically frustrated triangular lattice antiferromagnets, which possess strong single-ion anisotropy, but are generally sensitive to perturbations such as a magnetic field [50]. In $\text{Ca}_3\text{Co}_2\text{O}_6$, the field-induced transformation from the zero-field SDW to the FIM phase must necessarily be complete once sufficient field is applied to result in the initialization step, where the FIM phase is unambiguously established. In the $\Delta S_M (H)$ curves measured between 2 and 25 K, we note the absence of a clear feature (i.e., a peak) in an appropriate field range to be attributed to the suppression of the SDW. However, a change in slope at low fields, visible as a peak in a plot of $d(\Delta S_M)/dH$ vs H (Fig. 4(f)), points to a shift in the balance of phases contributing to the magnetic entropy. The field-induced crossover from the SDW to the FIM phase was observed directly by Mazzoli et al. [23] with resonant magnetic x-ray scattering (RMXS) as an incommensurate to commensurate “lock-in” transition. At 5 K, this transition occurred at ~0.4 T, in good agreement with the peak location we find in $d(\Delta S_M)/dH$. Crossover fields reported for various temperatures in Ref. [47] show similarly good agreement with the low-field slope change in ΔS_M, providing additional support for the interpretation of this feature as the relaxation of the SDW, hereafter referred to as H_{SDW}. This critical field is more or less temperature independent between 20 and 10 K (~0.1–0.2 T), but it grows significantly at low temperatures. In order to exit the SDW phase, the system must decrease the coherence length of the chains in the c direction in order to minimize the energy required to relax the modulation, which has a periodicity of up to 1000 Å in $\text{Ca}_3\text{Co}_2\text{O}_6$ [10,23]. The frozen free-energy landscape at very low temperatures in this frustrated system makes such a relaxation increasingly costly in terms of Zeeman energy.

In Fig. 6(c), a phase diagram is constructed based on our observations of the magnetic entropy change in $\text{Ca}_3\text{Co}_2\text{O}_6$. The field at which the system enters the FM state (H_{FM}) is taken as the field above which SRO decreases uniformly. This value remains close to 3.6 T for all temperatures below 25 K, in agreement with the location of the step in magnetization, marked by a dashed line. Between H_{C1} and H_{FM}, the entropy of the system increases during the flipping process of the third spin chain in the up-up-down configuration. Short-range correlations with an AFM character are present below 15 K and grow in volume fraction as the temperature is lowered, resulting in a crossover from $\Delta S_M (H) < 0$ to $\Delta S_M (H) > 0$ at 12 K. The SRO phase is affected by magnetic fields, but below 6 K, it is not completely suppressed up to 7 T. A line bordering the region in which the SRO phase contributes significantly to the magnetic behavior is extrapolated between the point at which H_{FM} begins to increase and the emergence of H_{C2}. At local maximum in $\Delta S_M (H)$ due to field-induced disorder in chains aligned in opposition to the applied field. Below ~12 K, slowing dynamics result in the dependence of the observed features on measurement protocol. Figure 6(c) thus presents the “rapid-cooled” phase diagram of $\text{Ca}_3\text{Co}_2\text{O}_6$: modifications can be expected at low temperatures if the CAFM phase is allowed to develop or the thermal history is not erased between successive measurements.

The first proposed phase diagram for $\text{Ca}_3\text{Co}_2\text{O}_6$ by Kageyama et al. in 1997 [15] [Fig. 6(a)] relied on the steps in the $M (H)$ curves to define the boundaries between FIM and FM phases and predicted a PDA order at zero field. A nearly identical magnetization-derived diagram was reported in 2004 [28] and modified in 2007 via muon spin relaxation (μSR) [Fig. 6(b)] by Takeshita et al. [29]. As discussed above, the boundary between the zero-field order (identified in all cases as PDA) was taken as the point at which $M = M_S/3$ by Kageyama et al. [15] and Goko et al. [28], resulting in large critical fields. It is interesting to note that in Fig. 6(b), the μSR data at 20 K indicate a change in slope of the relaxation.
time at 0.4 T, attributed by the authors to the boundary between the PDA and FIM phases [29]. Given the good agreement, it is likely that this field corresponds to the suppression of the SDW subsequently observed by Mazzoli et al. [23] and in the current magnetic entropy study. In all previous phase diagrams, the appearance of irreversibility in the ZFC and field-cooling $M(T)$ curves at $\sim 10–12$ K was taken to indicate the spin freezing temperature, below which the PDA phase was no longer present and no features were reported, in contrast to more recent observations showing that the long-range zero field order (SDW rather than PDA) persists to 2 K [5]. The utilization of the temperature- and field-dependent ΔS_M results has allowed us to modify the phase diagram to reflect the current understanding of the role of SDW and SRO phases in Ca$_3$Co$_2$O$_6$, as well as to extend results to temperatures below the onset of slow dynamics (~ 10 K).

Although derived from bulk magnetization, the magnetic entropy calculations provide greater sensitivity to field-induced variation within macroscopic phases. This has allowed us to resolve subfeatures of the FIM phase, including the field extent of conversion between the up-up-down and up-up-up configurations at high temperatures that has not previously been reported, as well as a critical field H_C at which a maximum entropy occurs in the mFIM region. These phenomena are of interest for further study with more direct experimental probes (e.g., neutron and/or x-ray scattering) and computational techniques.

V. CONCLUSIONS

The phase diagram of the frustrated spin chain compound Ca$_3$Co$_2$O$_6$ was established over a wide range of fields and temperatures by an investigation of the magnetic entropy change in the system. The present results are consistent with the SDW description of the ground state at zero field and indicate the suppression of the modulated state in favor of a FIM up-up-down arrangement of the spin chains with the application of a moderate field. Below 15 K, a high degree of disorder induced by low magnetic fields points to a significant contribution from a phase with short-range order.

ACKNOWLEDGMENTS

Research at the University of South Florida was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438 (magnetic studies). Research at Rutgers was supported by Grant No. NSF–BMR–1104484 (synthesis of samples).
[47] C. L. Fleck, Magnetism in the Complex Cobaltates $Y_{1-x}Sr_xCoO_3$ (0.7 $\leq x \leq$ 0.95) and $Ca_3Co_2O_6$. (The University of Warwick, Coventry, 2011).