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We look at a model of random graphs suggested by Gilbert: given an integer n and
δ > 0, scatter n vertices independently and uniformly on a metric space, and then

add edges connecting pairs of vertices of distance less than δ apart.

We consider the asymptotics when the metric space is the interval [0, 1], and δ =
δ(n) is a function of n, for n→∞. We prove that every upwards closed property of

(ordered) graphs has at least a weak threshold in this model on this metric space. (But

we do find a metric space on which some upwards closed properties do not even have
weak thresholds in this model.) We also prove that every upwards closed property

with a threshold much above Connectivity’s threshold has a strong threshold. (But

we also find a sequence of upwards closed properties with lower thresholds that are
strictly weak.)

1. Introduction

We investigate strong and weak thresholds on a one-dimensional version of one of the

oldest models of random graphs.

E. Gilbert’s “random plane networks” ([11]) were not explored much (as such) until the

early 1990s, although there was a lot of closely related work on “coverage processes” (see,

e.g., [18]), “poisson point processes” (see, e.g., [7]), and even “close pairs” (see, e.g., [24]),

when work on “disk graphs” (see, e.g., [6], [15]), “interval graphs” (see, e.g., [13]), “sphere-

of-influence graphs” (see, e.g., [8], [20], [28]) and “random graphs on Euclidean space”
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(see, e.g., [27], [22]) started to appear. In the 1990s, E. Godehardt and B. Harris ([13])

started carrying out the Erdős-Rényi programme for Gilbert’s Random Plane Networks,

motivated by problems arising in cluster analysis [12, 14]; more logical considerations

motivated [22], or for the more general situation, [29]. M. Penrose ([23]) has written a

book on these networks.

In this article, we will look at weak and strong thresholds on random networks on line

segments, and we will find:

• If the random network is on a line segment, then all upwards closed properties have at

least weak thresholds.

• There is a metric space on which the upwards closed property “there are no isolated

vertices” does not have even a weak threshold.

• If the random network is on a line segment, and if a given upwards closed property has

a large enough (edge probability much bigger than (lnn)/n) threshold, the threshold

will be strong. (Compare this to the Erdős-Rényi Model, where Friedgut ([10]) shows

that “big enough” is something like 1/ lnn (and conjectured to be as low as 1/(lnn)2

or so), and where, by [4], for each rational r > 0, there exist strictly weak thresholds

as low as n−r.)

• However, there is a hierarchy of properties with low and strictly weak thresholds,

similar to the evolution of very sparse graphs in the Erdős-Rényi Model.

Here is an outline of the paper. In Section 2, we describe the nomenclature and in-

troduce the model of random graphs we are dealing with. In Section 3, we give precise

characterizations of the models of random networks that we will look at. In Section 4,

we prove that random networks over a line segment admit at least weak thresholds for

all upwards closed properties, but that there is a space consisting of many line segments

over which random networks do not admit a weak threshold for the property “there are

no isolated vertices.” In Section 5, we prove that for each k, the property “there is a

k-vertex component” does not have a strong threshold; we also prove that any property

whose threshold is much greater than the threshold of Connectivity has a strong thresh-
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old (in fact, if δ(n) is much higher than the threshold for Connectivity, then almost surely

a random network of cutoff δ(n) is a subgraph of an (independently selected) random

network of cutoff (1 + ε)δ(n).

I would like to thank Stephen Suen for his advice, especially on Theorem 5.2, and to

the referees and Mathew Penrose for their helpful suggestions, especially on Theorem 5.1.

2. Preliminaries

We presume familiarity with the basic notions of probability, graph theory, and thresh-

olds. Our primary probability reference is [25].

Here are a few definitions and facts that we will need. For example, using [25, IV.5.1],

one can show that:

Remark 2.1. If γ is gamma distributed with parameter λ and t degrees of freedom,

then for any ε, 0 < ε < 1/2, P [|γ − t/λ| > εt/λ] < 2e−ε2t/4.

Denote the order of a graph G = 〈V,E〉, number of vertices in V , by ‖G‖. If < linearly

orders V , call 〈V,E, <〉 an ordered graph; sometimes as a convenience, we will produce

a linear ordering of a graph (and then put the ordering away when we are finished with

it).

Definition 2.1. If G and H are graphs such that G and H share the same vertices, and

the edge set of G is a subset of the edge set of H, write “G ≤ H.” Letting “∼=” mean

isomorphism, if G1
∼= G2 ≤ H, write G1 ≤ H. Write “G < H” if G ≤ H and G 6∼= H.

Let Θ be a property of graphs or of ordered graphs. Call Θ upwards-closed if, for any

graphs G and H, G ≤ H implies that G ∈ Θ =⇒ H ∈ Θ.

The graphs we are interested in are defined on some kind of metric space. In this

article, the metric space will be an interval of real numbers (or a union of intervals),

with the one-dimensional Euclidean metric. The order will be induced by the standard

ordering of the reals. We will need a space of possible tuples of vertices.



4 McColm

Definition 2.2. For each n, let Ωn = {(x1, . . . , xn) ∈ R: 0 < x1 < · · · < xn}.

Then for a given probability measure Pn on Ωn with a probability density function f ,

we will select a tuple ~x = (x1, . . . , xn) of n points on R to be the vertices of the graph. The

probability that the chosen tuple is an element of A ⊆ Ωn is thus Pn[A] =
∫
· · ·
∫

A
f(~x) d~x.

Definition 2.3. Fix a positive integer n, a positive real δ, and a probability measure

Pn on Ωn. Select ~v = (v1, . . . , vn) ∈ Ωn according to the measure Pn, and let V~v =

{v1, . . . , vn} and E~v,δ = {{vi, vj} ⊆ V~v: i, j ∈ [n] & 0 < |vi − vj | < δ}. Then the

random network GPn

n,δ is the network 〈V~v, E~v,δ, <~v〉, where <~v is the ordering induced by

the ordering of R, and δ is its cutoff.

Thus GPn

n,δ is a graph-valued r.v., and

P[GPn

n,δ
∼= G] = Pn [{~v ∈ Ωn: 〈V~v, E~v,δ, <~v〉 ∼= G}]

and so

P[GPn

n,δ ∈ Θ] = Pn

[ ⋃
G∈Θ

{~v ∈ Ωn: 〈V~v, E~v,δ, <~v〉 ∼= G}

]
.

We need another ‘obvious’ fact (recalling the notation of Definitions 2.3 and 2.1): if

δ < δ′, then 〈V~v, E~v,δ, <~v〉 ≤ 〈V~v, E~v,δ′ , <~v〉. Thus if Θ is an upwards closed property and

δ < δ′, then 〈V~v, E~v,δ, <~v〉 ∈ Θ =⇒ 〈V~v, E~v,δ′ , <~v〉 ∈ Θ. Thus:

Lemma 2.1. If Θ is an upwards closed property, and if 0 < δ < δ′, then for any n,

P[GPn

n,δ ∈ Θ] ≤ P[GPn

n,δ′ ∈ Θ].

Before we turn to thresholds, we should note a difference between the random network

models, in which the increasing parameter is the cutoff δ, and the Erdős-Rényi Model, in

which the increasing parameter is the number of edges. In the random network models,

the number of edges closely tracks the cutoff as follows: if we scatter n vertices uniformly

and independently on the interval [0, 1] (this is what we will call the Model RN), and if

the cutoff is δ, then the number of edges is very close to (δ − δ2)n2.
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We now turn to thresholds.

Definition 2.4. Fix a sequence S = (Pn: n ∈ Z+), where, for each n, the measure Pn

is a probability distribution on Ωn.

For each function δ: Z+ → R+, and each n, let GPn

n,δ(n) be the random variable ranging

over the n-vertex networks from vectors of distribution Pn and cutoff δ(n).

Fix an upwards closed property Θ.

A function δΘ: Z+ → R+ is a weak threshold function for Θ on S if the following is

true for every function δ: Z+ → R+:

• If δ(n) � δΘ(n) as n →∞, then P[GPn

n,δ(n) ∈ Θ] = o(1).

• If δ(n) � δΘ(n) as n →∞, then P[GPn

n,δ(n) ∈ Θ] = 1− o(1).

A function δΘ: Z+ → R+ is a strong threshold function for Θ on S if the following is

true for every fixed ε > 0:

• First, P[GPn

n,(1−ε)δ(n) ∈ Θ] = o(1).

• Second, P[GPn

n,(1+ε)δ(n) ∈ Θ] = 1− o(1).

For example, by [22], δ(n) = (lnn)/n is a strong threshold for Connectivity in Gilbert’s

random networks on [0, 1] (Model RN (Model 3.1) below). We will make use of this fact

below.

3. The Models

Here is the primary model that we are interested in. We define it with additional gener-

ality that we will find useful later.

Model 3.1 (Model RN). Fix T, δ > 0. If ν is the Lebesgue measure, let P[A] = ν[A]/T

for each measurable A ⊆ [0, T ]. Independently select ρ1, . . . , ρn ∈ [0, T ] according to the

(uniform) probability measure P. Let Gn,δ,T be the network of vertex set {ρ1, . . . , ρn},

cutoff δ, and with < being the usual ordering on the reals. Let Gn,δ = Gn,δ,1.

Given ρ1, . . . , ρn, let ~ξ = (ξ1, . . . , ξn) be the tuple of the numbers ρ1, . . . , ρn listed in

increasing order. Then if A ⊆ Ωn, Pn[A] is the probability that ~ξ ∈ A.
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Note that Gn,δ has the same distribution as GPn

n,δ(n).

For any permutation π: [n] → [n], Ωn,π,T = {~x ∈ [0, T ]n: xπ(1) < xπ(2) < · · · < xπ(n)},

and the spaces Ωn,π,T partition all but a null set of [0, T ]n into n! pieces of equal measure

Tn/n!. Thus:

Proposition 3.1. Fix T > 0 and a positive integer n. In Model RN, the probability

density function for Pn is f(x1, . . . , xn) = n!/Tn for all x1, . . . , xn such that 0 ≤ x1 <

· · · < xn ≤ T .

We will need a gadget for Model RN. Given a measurable set O ⊆ Ωn, and given c > 0,

let Oc = {(cx1, . . . , cxn): (x1, . . . , xn) ∈ O}. The following is an exercise in changing

variables, which we leave to the reader.

Lemma 3.1. For any n ∈ Z+, δ, T, c > 0 and any property Θ, P[Gn,cδ,cT ∈ Θ] =

P[Gn,δ,T ∈ Θ].

3.1. Another Model

The Model RN is often difficult to deal with directly, so we will construct a similar if

less natural model that approximates Model RN. This model will satisfy the threshold

results we are after, and it is a close enough approximation of Model RN so that Model

RN must also satisfy these threshold results.

Model 3.2 (Model RN?). Fix a positive integer n, and a real number δ > 0. Set

ζ0 = 0. Let ζ1, . . . , ζn be an independent set of exponential random variables of parameter

n, and for each t ∈ [n], let

ξt =
t∑

l=1

ζl.

Choose a random graph G?
n,δ as follows. Independently select real values for ζ1, . . . , ζn,

and then compute ξ1, . . . , ξn. Let V ?
n = {ξ1, . . . , ξn} (and ~ξ?

n = (ξ1, . . . , ξn)). Then G?
n,δ is

the network of vertex set V ?
n and cutoff δ, and thus of edge set {{ξi, ξj}: i 6= j & |ξi−ξj | <

δ}.
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We should make three observations that will become important later.

Lemma 3.2. The p.d.f. of the random variable ~ξ?
n = (ξ1, . . . , ξn) from Model RN? above

is f?(x1, . . . , xn) = nne−nxn if (x1, . . . , xn) ∈ Ωn.

Remark 3.1. Notice that for each t ∈ [n], ξt is a gamma variable of parameter n and

degree t.

We will obtain threshold results for Model RN?, and translate these to threshold results

for Model RN. We will need an alternate version of Model RN?.

Proposition 3.2. Suppose that ξ1, . . . , ξn are selected are selected as follows:

• Let γn+1 be gamma distributed with parameter n and n + 1 degrees of freedom.

• Then independently and uniformly select ρ1, . . . , ρn ∈ [0, γn+1], and let ξ1, . . . , ξn be

ρ1, . . . , ρn in increasing order.

• Let V = {ξ1, . . . , ξn} and E = {{ξj , ξk}: |ξj − ξk| < δ}.

Then the p.d.f. of the r.v.s ξ1, . . . , ξn is the p.d.f. of Model RN?.

We leave this computation of p.d.f.s to the reader.

3.2. Comparing Models RN and RN?

We want to use Model RN? to approximate Model RN. Observant readers should notice

a similarity between this result and [3, VII.3, Thm. 8].

Here is the basic lemma.

Lemma 3.3. Fix n, δ > 0, and T > 0. Let Gn,δ,T be the Model RN r.v. of these

parameters, and recall that Gn,δ = Gn,δ,1. Choose ε, α > 0, ε < 1/2, so that if γTn,n+1

is gamma-distributed with parameter Tn and n + 1 degrees of freedom, then

P
[
T − ε

2
< γTn,n+1 < T +

ε

2

]
> 1− α.

Then:

1 If P[G?
n,δ ∈ Θ] < α, then P[Gn,(1−ε)δ ∈ Θ] < α/(1− α).
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2 If P[Gn,δ ∈ Θ] < α, then P[G?
n,(1−ε)δ ∈ Θ] < 2α.

3 If P[G?
n,δ ∈ Θ] > 1− α, then P[Gn,(1+ε)δ ∈ Θ] > (1− 2α)/(1− α).

4 If P[Gn,δ ∈ Θ] > 1− α, then P[G?
n,(1+ε)δ ∈ Θ] > 1− 2α.

Proof. We will prove (1) and (2); the proofs of (3) and (4) are similar. For simplicity,

suppose that T = 1.

We start with the proof of (1). Let gn,n+1 be the probability distribution function of

γn,n+1. As we have P[G?
n,δ ∈ Θ] < α, by Proposition 3.2, it follows that∫ 1+ε/2

1−ε/2

P[Gn,δ,t ∈ Θ]gn,n+1(t) dt < P[G?
n,δ ∈ Θ] < α.

As
∫ 1+ε/2

1−ε/2
gn,n+1(t) dt > 1 − α, and as P[Gn,δ,t ∈ Θ] decreases as t increases (by

Lemmas 2.1 and 3.1), P[Gn,δ,1+ε/2 ∈ Θ] < α/(1 − α), hence P[Gn,(1−ε)δ ∈ Θ] =

P[Gn,δ,(1−ε)−1 ∈ Θ] ≤ P[Gn,δ,1+ε/2 ∈ Θ] < α/(1− α).

Now for the proof of (2). If P[Gn,δ ∈ Θ] < α, then by Lemma 3.1, P[Gn,(1−ε/2)δ,1−ε/2 ∈

Θ] < α, so, by Lemma 2.1, P[Gn,(1−ε)δ,1−ε/2 ∈ Θ] < α. Compute:

P[G?
n,(1−ε)δ ∈ Θ] =

∫ ∞

0

P[Gn,(1−ε)δ,t ∈ Θ]gn,n+1(t) dt

< α +
∫ 1+ε/2

1−ε/2

P[Gn,(1−ε)δ,t ∈ Θ]gn,n+1(t) dt

< α + (1− α)P[Gn,(1−ε)δ,1−ε/2 ∈ Θ],

the last inequality also by Lemma 2.1. But P[Gn,(1−ε)δ,1−ε/2 ∈ Θ] = P[Gn,βδ ∈ Θ],

where β = (1 − ε)/(1 − ε/2) < 1, so P[Gn,βδ ∈ Θ] ≤ P[Gn,δ ∈ Θ] < α, and thus

P[Gn,(1−ε)δ ∈ Θ] < α + (1− α)α < 2α, and we have proven (2).

Theorem 3.1. Models RN and RN? have the same strong and weak thresholds.

Proof. In Models RN and RN?, fix T = 1. Recall that the expected value of γn,n+1 is

n/(n + 1) ∼ 1, and that the variance of γn,n+1 is n/(n + 1)2 ∼ n−1. Thus the standard

deviation of γn,n+1 is about 1/
√

n — and for any ε, α > 0, we can choose N so large that

n > N implies that P[1− ε
2 < γn,n+1 < 1 + ε

2 ] > 1− α.

Suppose that δΘ is a strong threshold function for Θ in Model RN. Fix α, ε > 0, and
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choose N as in the previous paragraph. From Lemma 3.3, if P[Gn,(1−ε)δΘ(n) ∈ Θ] <

α, then P[G?
n,(1−2ε)δΘ(n) ∈ Θ] < 2α. Similarly, if P[Gn,(1+ε)δΘ(n) ∈ Θ] > 1 − α, then

P[G?
n,(1+2ε)δΘ(n) ∈ Θ] > 1 − 2α. Thus as ε and α were arbitrary, Model RN? also has a

strong threshold for Θ at δΘ.

Similarly, strong thresholds for Model RN? are strong thresholds for Model RN.

The proof for weak thresholds is similar, and we omit it, too.

4. Weak Thresholds

We turn to the broader subject of weak thresholds.

First, we claim that on the interval [0, 1], in Model RN, all upwards closed properties

admit weak thresholds. Second, we will construct a space on which Model RN does not

admit a weak threshold for the upwards closed property “there are no isolated vertices.”

4.1. On the Existence of Thresholds

First of all, all upwards closed properties admit weak thresholds in Model RN?. The

proof of this is based on the following lemma.

Lemma 4.1. Fix n, δ > 0. Let Θ be an upwards closed property of ordered graphs.

Then for every integer n and every δ > 0, P[G?
n,δ 6∈ Θ]2 ≥ P[G?

n,2δ 6∈ Θ].

To prove Lemma 4.1, we need a variant of Model RN?, in which we choose two random

networks independently, and then, in a sense, (deterministically) find their “meet.”

Model 4.1 (Model RN?sqrd). For fixed n and δ, use the distribution of Model 3.2

to independently choose the random networks G?,1
n,δ of vertices ξ1 < · · · < ξn, and G?,2

n,δ

of vertices ξ′1 < · · · < ξ′n. For each k ∈ [n], let ∆k = min{ξk − ξk−1, ξ
′
k − ξ′k−1}, letting

ξ0 = ξ′0 = 0. Let G2?
n,δ be the random network of vertex set {η1, . . . , ηn}, where, for each

k, ηk =
∑k

l=1 ∆l.

And now for a trick.



10 McColm

Lemma 4.2. For each n, δ, the distributions of G2?
n,δ and G?

n,2δ are identical.

Proof. Let ζ1, . . . , ζn be the successive exponential r.v.s (of parameter n) for con-

structing G?,1
n,δ, and let ζ ′1, . . . , ζ

′
n be the successive exponential r.v.s (of parameter n) for

selecting G?,2
n,δ. (Thus the r.v.s ξk =

∑k
i=1 ζi, k ∈ [n], give the vertices of G?,1

n,δ while the

r.v.s ξ′k =
∑k

i=1 ζ ′i, k ∈ [n], give the vertices of G?,2
n,δ.) Then G?,1

n,δ∨G?,2
n,δ can be constructed

by successively choosing ∆1, . . . ,∆n, where ∆k = min{ζk, ζ ′k} for each k ∈ [n], and then

letting ηk =
∑k

l=1 ∆l for each k ∈ [n]. To prove the lemma, it suffices to observe that

each random variable ∆k is exponential of parameter 2n, which we leave to the reader.

We can now prove Lemma 4.1.

Proof. For each n, δ > 0, P[G?
n,δ 6∈ Θ]2 is the probability that in independently choosing

two networks G?,1
n,δ and G?,2

n,δ, of meet G2?
n,δ, neither admits the property Θ. As Θ is upwards

closed, P[G2?
n,δ 6∈ Θ] ≤ P[G?,1

n,δ 6∈ Θ & G?,2
n,δ 6∈ Θ] = P[G?,1

n,δ 6∈ Θ] · P[G?,2
n,δ 6∈ Θ], and thus

P[G?
n,δ 6∈ Θ]2 ≥ P[G2?

n,δ 6∈ Θ]. As P[G2?
n,δ 6∈ Θ] = P[G?

n,2δ 6∈ Θ] (by Lemma 4.2), we have

P[G?
n,δ 6∈ Θ]2 ≥ P[G?

n,2δ 6∈ Θ], and we are done.

We can now prove that Model RN admits weak thresholds for upwards closed proper-

ties.

Theorem 4.1. For each upwards closed property Θ of ordered graphs, there is a function

δΘ: N → R≥0 such that for any function δ: N → R≥0:

• If δ(n) � δΘ(n), then P[Gn,δ(n) ∈ Θ] = o(1).

• If δ(n) � δΘ(n), then P[Gn,δ(n) ∈ Θ] = 1− o(1).

The following is essentially the same proof as that of [21, Theorem 0.1].

Proof. By Theorem 3.1, it suffices to prove this theorem for Model RN?. Let Θ be

upwards closed, and let δΘ(n) = supδ≥0

{
P[G?

n,δ ∈ Θ] ≤ 1
2

}
. By induction on k, as
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P[G?
n,δ 6∈ Θ]2 ≥ P[G?

n,2δ 6∈ Θ] by Lemma 4.1, P[G?
n,2kδΘ(n) ∈ Θ] = 1−P[G?

n,2kδΘ(n) 6∈ Θ] ≥

1− (P[G?
n,2kδΘ(n) 6∈ Θ])2

k ≥ 1− 2−2k

, and so if δ(n) � δΘ(n), P[G?
n,δ(n) ∈ Θ] = 1− o(1).

Similarly, if δ(n) � δΘ(n), P[G?
n,δ(n) ∈ Θ] = o(1), and we are done.

4.2. Sometimes there are no thresholds at all ...

There is a certain complacency about weak thresholds. Lacking melodrama, they are

ignored or taken for granted. So we now note that it is not particularly difficult to

construct models of random graphs that do not admit even weak thresholds for some

upwards closed properties. The point of this section is to suggest that somewhere there is a

very basic but very important theorem that says, “when the following natural conditions

are satisfied, then the model admits at least weak thresholds for all upwards closed

properties.” And that this as yet unformulated theorem is not trivial.

We need a generalization of Model RN.

Model 4.2 (Generalized RN). Fix a Lebesgue measurable I ⊆ R of finite measure. If

ν is the Lebesgue measure, let P[A] = ν[A]/ν[I] for each measurable A ⊆ I. Independently

select ζ1, . . . , ζn ∈ I according to the (uniform) probability measure P. Let GI
n,δ be the

network of vertex set {ζ1, . . . , ζn}, cutoff δ, and with < being the usual ordering on the

vertices.

From now on, let’s refer to the Generalized RN Model as Model GRN. And then:

Theorem 4.2. There is a set I ⊆ R, of Lebesgue measure 1, such that on I, Model

GRN does not admit a weak threshold for the upwards closed property “there are no

isolated vertices.”

Proof. Let Θ be the property of having no isolated vertices.

Let us first construct the set I. For each integer k ≥ 0, let nk = 22k

, and let α−1 =∑∞
k=0 n−1

k . For each integer k, let ik = α/nk and let Ik be the half-open interval [k, k+ik).

Let I =
⋃∞

k=0 Ik, and note that if ν is the Lebesgue measure, then ν[I] = 1. Let the metric
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on I be induced by the standard metric on R, so that, for example, the distance between

7, 12 ∈ I is 5.

Next, we set up a comparison of Models RN and GRN. For each n, let Gn,δ be the

random network (r.v.) generated by Model RN (only now for Model RN, we work on the

half-open interval [0, 1) instead of [0, 1], which will simplify nomenclature but make no

measurable difference), and let GI
n,δ be the random network (r.v.) generated by Model

GRN on I. There is a measure-preserving map from tuples of vertices of Model RN to

tuples of vertices of Model GRN, which we can construct as follows. We first construct

a Lebesgue measure preserving map from [0, 1) onto I: for any v ∈ [0, 1),

if
k∑

l=0

il ≤ v <

k+1∑
l=0

il, then let h(v) = k +

(
v −

k∑
l=0

il

)
.

The effect of this is to chop [0, 1) into a partition J0 ∪J1 ∪ · · ·, where Jl and Il are of the

same length for each l, and where h maps Jl onto Il by a shift operation.

This suggests an Alternative Method for generating the random networks of Model

GRN on I: generate the vertices ξ1, . . . , ξn in Model RN, then let ξ∗l = h(ξl) for each l,

and finally connect pairs of vertices ξ∗j , ξ∗l such that |ξ∗j − ξ∗l | < δ. If Gn,δ is the Model

RN graph, let h(Gn,δ) be the Alternative Method graph obtained from Gn,δ. Note that

the distribution of h(Gn,δ) is identical to that of GI
n,δ. But the Alternative Method tells

us that for any j, l, |ξj − ξl| ≤ |ξ∗j − ξ∗l |, and thus if ξl is isolated in Gn,δ, then ξ∗l is

isolated in h(Gn,δ). Thus P[Gn,δ ∈ Θ] ≥ P[h(Gn,δ) ∈ Θ] = P[GI
n,δ ∈ Θ].

Recall from [22] that a strong threshold for Connectivity in Model RN is (ln n)/n.

(This is easily verified for Model RN?: just look at the probability that there are or are

not any gaps of length (1± ε)(lnn)/n between any successive vertices.)

Continuing our investigation of the Alternative Method, the only ways that h(Gn,δ),

obtained from vertices that would generate Gn,δ, can have isolated vertices is:

1 If Gn,δ has isolated vertices (which is a.s. untrue if n is large and δ ≥ 2(lnn)/n), or

2 If there exists l and m such that ξl ∈ Jm while ξl−1, ξl+1 6∈ Jm and δ < 1− 2−2m−1
.
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Fix δ(n) = 2(lnn)/n. We will prove that

limn→∞P[GI
n,δ(n) ∈ Θ] = limn→∞P[h(Gn,δ(n)) ∈ Θ] ≥ e−α

and that limn→∞P[GI
n,0.9 ∈ Θ] ≤ 1 − αe−α. As 1 < α < 2, this will prevent Θ from

having a weak threshold in Model GRN.

First, we claim that limn→∞P[GI
n,δ(n) ∈ Θ] = limn→∞P[h(Gn,δ(n)) ∈ Θ] ≥ e−α. This

follows from the following observations.

• If n = nk, we claim that the probability that there are at least two vertices of GI
n,δ in

each Il, l < k, is 1− o(1). To see this, first let ηk,l be the number of vertices of GI
n,δ in

Il, and we claim that

P

[∨
l<k

ηk,l ≤ 1

]
≤

k−1∑
l=0

P[ηk,l ≤ 1] = o(1).

For each k, l, ηk,l is a binomial random variable of mean E[ηk,l] = nkil = α22k−2l

and variance V[ηk,l] = nkil(1 − il) < nkil = α22k−2l

. By Chebyshev’s Inequality, and

noting that α > 1,

k−1∑
l=0

P[ηk,l ≤ 1] ≤
k−1∑
l=0

P[|ηk,l − nkil| > 4
√

nkil
√

nkil]

<

k−1∑
l=0

(nkil)−1/2 =
1√
α

k−1∑
l=0

2(−2k+2l)/2 < k2−2k−2
→ 0,

as k →∞.

• If n = nk, we claim that the probability that there are no vertices of GI
n,δ in

⋃∞
l=k Il

is asymptotically e−α as k →∞. To see this, compute the probability(
1−

∞∑
l=k

il

)nk

=

(
1− α

∞∑
l=k

2−2l

)nk

=
(
1− α(1 + βk)2−2k

)22k

where limk→∞ βk = 0. Thus we have(
1− α(1 + βk)2−2k

)22k

∼ e−α(1+βk) → e−α.

Combining these two observations, h(Gn,δ(n)) has no isolated vertices if Gn,δ(n) does not

(which it a.s.does not as δ(n) = 2(lnn)/n), and with probability of at least e−α if n = nk,
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k large, there are no vertices in
⋃∞

l=k Il. Thus limn→∞P[GI
n,δ ∈ Θ] = limn→∞P[h(Gn,δ) ∈

Θ] ≥ e−α.

Second, we claim that limn→∞P[Gn,0.9 ∈ Θ] ≤ 1−αe−α. For this, it suffices to observe

that the probability of having precisely one vertex of GI
nk,0.9 in

⋃∞
l=k Il is

(nk

1

)( ∞∑
l=k

il

)(
1−

∞∑
l=k

il

)nk−1

= 22k
(
(1 + o(1))α2−2k

) (
1− α(1 + βk)n−1

k

)nk−1

which approaches αe−α as βk → 0.

5. Strong versus Weak Thresholds

We now turn to strong thresholds. In Subsection 5.1, we find a sequence of upwards closed

queries whose thresholds are not strong. In Subsection 5.2, we prove that if an upwards

closed property’s threshold is sufficiently high, then it’s threshold must be strong.

5.1. Weakness Amidst Sparsity

First, some upwards closed properties with low thresholds have strictly weak thresholds.

Theorem 5.1. Fix an integer k > 1. In Model RN, the threshold of

Θk ≡ there is a connected component of ≥ k vertices

is not strong.

Proof. We will prove that the probability of such a component is approximately Pois-

son, and the theorem will follow from an examination of the Poisson parameter. First,

we need a formula for the cutoffs: for any α > 0, and any integer k > 0, set δ = δk,α(n) =

αn−k/(k−1) for each n.

In model RN, let ξ1, . . . , ξn be the n vertices, selected independently, and given k, δ > 0

and i1, . . . , ik ∈ [n], where i1 < · · · < ik, let gk(ξi1 , . . . , ξik
;α) = 1 if the points ξi1 , . . . , ξik

are vertices of a connected component of a network of cutoff δ, and let gk(ξi1 , . . . , ξik
;α) =

0 otherwise.

We will use Silverman & Brown’s Theorem A of [26] (see also [23, Cor. 3.6]; there are a

number of similar results going back to, say, [17], and expanded on by, say, [2] and [19]).
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We will need: for any k, let β′k be the probability that if k − 1 points are independently

and uniformly chosen in [−(k − 1)δ, (k − 1)δ], then they will become the vertices of a

connected network of cutoff δ, with a vertex at a real within distance δ of 0; thus the

probability that k points independently and uniformly chosen in [0, 1] are the vertices of a

connected network of cutoff δ is approximately [(2k−2)δ]k−1β′k. Let βk = (2k−2)k−1β′k.

Now for the parameters for Silverman & Brown Theorem A. Let λ = λk,α = limn→∞
(

n
k

)
E[gk(ξ1, . . . , ξk;α)] = limn→∞

(
n
k

)
δk−1βk = αk−1βk/k!. Then observe that if 1 ≤ p ≤

k − 1, then for any i1 < · · · < i2k−p, gk(ξi1 , ξi2 , . . . , ξik
;α) · gk(ξik+1−p

, . . . , ξi2k−p
;α) ≤

g2k−p(ξi1 , . . . , ξi2k−p
;α). Let Tk,α =

∑
1≤i1<···<ik≤n gk(ξi1 , . . . , ξik

;α).

By the comment on [26, p. 819] after the proof of Theorem A, Tk,α is asymptotically

Poisson distributed (with parameter λk,α) if, for each p ∈ [k− 1] and each ξi1 , . . . , ξi2k−p
,

where i1 < · · · < i2k−p, the expected value of gk(ξi1 , . . . , ξik
;α) · gk(ξik−p+1 , . . . , ξi2k−p

;α)

is o(np−2k). But note that as 1 ≤ p ≤ k−1, gk(ξi1 , . . . , ξik
;α) ·gk(ξik−p+1 , . . . , ξi2k−p

;α) ≤

gk(ξi1 , . . . , ξi2k−p
;α), and the expected value of gk(ξi1 , . . . , ξi2k−p

;α) is δ2k−p−1β2k−p ≈

constant · n−2k+(p−1)k/(k−1) = o(np−2k), so that Tk is indeed approximately Poisson of

parameter λ.

Thus P[Θk|cutoff = δk,α] = P[Tk,α > 0] → (exp(λk,α)−1) exp(−λk,α) = 1−exp(−λk,α)

as n →∞, and similarly, P[Θk|cutoff = 2δk,α] = P[Θk|cutoff = δk,2α] → 1−exp(−λk,2α) =

1 − exp(−2k−1λk,α). Thus if the cutoff is near δk,α, the probabilities are bounded away

from both 0 and 1, and the threshold of Θk must be strictly weak.

5.2. Strength Amidst Density

We now get some sharp thresholds. Recall from Definition 2.1 that if G and H are linearly

ordered graphs of the same number of vertices, and if the order-preserving map from G

to H preserves all edges of G (but not vice versa), we write “G < H.”

Recall that by [22], δ(n) = (lnn)/n is the sharp threshold function for connectivity

in Model RN. We claim that any upwards closed property whose threshold much higher

than this has a strong threshold. Indeed, we claim something a bit stronger: if ε > 0

and δ(n) � (lnn)/n, then a.s. Gn,δ(n) < Gn,(1+ε)δ, which is not true in the Erdős-Rényi
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Model: if Gn,m(n) ranged over random n-vertex, m(n)-edge graphs, then by [4], there is

a strictly weak threshold (much above that of Connectivity) for “there is a 4-clique,”

and so if m(n) was a threshold for this property in the Erdős-Rényi Model, there exists

ε > 0 such that P [K4 < Gn,(1−ε)m(n)] is bounded from 0 while P [K4 < Gn,(1+ε)m(n)] is

bounded from 1, and hence it is not true that a.s.Gn,(1−ε)m(n) < Gn,(1+ε)m(n).

We will use the following graphs.

Definition 5.1. For each n, δ > 0, let Hn,δ be the following network. The vertices are

the real numbers {(2k − 1)/(2n): k ∈ [n]}. The edges are assigned as follows. For each

i, j ∈ [n], (2i − 1)/(2n) and (2j − 1)/(2n) are joined by an edge iff
∣∣ 2i−1

2n − 2j−1
2n

∣∣ < δ,

i.e., |i− j| < δn.

The main idea is captured by the following technical lemma on Model RN?.

Lemma 5.1. Fix ε > 0. If 1− ε > δ(n) � (lnn)/n, then a.s. G?
n,(1−ε)δ(n) < Hn,δ(n) <

G?
n,(1+ε)δ(n) as n →∞.

Proof. Let κ(n) = δ(n)n/ lnn, and note that κ(n) � 1 and that κ(n)(lnn)/n = δ(n).

We claim that it suffices to prove that if t = bκ(n) ln nc = bnδ(n)c, then the following is

a.s.true. If we used the exponential distribution of parameter n to independently generate

ζn,1, . . . , ζn,n (as in Model RN?), and we let ηn,t,k =
∑k+t

i=k+1 ζn,i for any k ∈ [n− t + 1],

then we get: for each k,

(1− ε)δ(n) < ηn,t,k < (1 + ε)δ(n). (1)

To see that this suffices, suppose that the Inequalities 1 hold and let ξn,k =
∑k

i=1 ζn,i

for each n, k. Then a.s. an edge of G?
n,(1−ε)δ(n) will connect a pair ξn,i, ξn,j , j > i, only

if j − i < t, for otherwise a.s., ξn,j − ξn,i = (ξn,j − ξn,i+t) + (ξn,i+t − ξn,i) ≥ 0 + ηn,t,i >

(1 − ε)δ(n). But every pair (2i − 1)/(2n), (2j − 1)/(2n), j > i, such that j − i < t is

connected by an edge in Hn,δ(n), so that any edge of G?
n,(1−ε)δ(n) corresponds to an edge

of Hn,δ(n). Thus a.s.G?
n,(1−ε)δ(n) < Hn,δ(n). The argument that a.s.Hn,δ(n) < G?

n,(1+ε)δ(n)

is similar.
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To prove that Inequalities 1 holds, it suffices to prove that for each k,

P[(1− ε)δ(n) < ηn,t,k < (1 + ε)δ(n)] > 1− o(n−1), (2)

for then

P[∀k ∈ [n− t + 1], (1− ε)δ(n) < ηn,t,k < (1 + ε)δ(n)] > 1− o(1).

Simplifying and recalling that ηn,t,k is gamma distributed with parameter n and t degrees

of freedom, we prove Inequality 2 as follows. By Remark 2.1, as κ(n) � 4/ε2, we have

P[(1− ε)δ(n) < ηn,t,k < (1 + ε)δ(n)] = P [|ηn,t,k − δ(n)| < εδ(n)]

≈ P
[∣∣∣∣ηn,t,k −

t

n

∣∣∣∣ < ε
t

n

]
> 1− 2 exp[−ε2t/4]

≈ 1− 2 exp[−ε2κ(n)(lnn)/4]

= 1− 2n−ε2κ(n)/4 = 1− o

(
1
n

)
,

and we are done.

And thus:

Theorem 5.2. Let Θ be an upwards closed property with a threshold function δΘ =

δΘ(n) such that δΘ(n) � (lnn)/n. Then Θ’s threshold is sharp in Model RN.

Proof. By Theorem 3.1, it suffices to prove this for Model RN?.

We claim that

δΘ(n) = sup
{

δ: P[G?
n,δ ∈ Θ] <

1
2

}
� lnn

n

is a sharp threshold function for Θ. Choose any ε > 0, and we claim that P[G?
n,(1−ε)δΘ(n) ∈

Θ] = o(1), and that P[G?
n,(1+ε)δΘ(n) ∈ Θ] = 1− o(1).

As (1 − ε/3)δΘ(n) < δΘ(n), P[G?
n,(1−ε/3)δΘ(n) ∈ Θ] < 1

2 . And by Lemma 5.1, for

any ε > 0, if n is sufficiently large, a.s. Hn,(1−2ε/3)δΘ(n) < G?
n,(1−ε/3)δΘ(n). As Θ is up-

wards closed, and as there is a good probability of choosing a graph G?
n,(1−ε/3)δΘ(n) >

Hn,(1−2ε/3)δΘ(n) where G?
n,(1−ε/3)δΘ(n) 6∈ Θ, Hn,(1−2ε/3)δΘ(n) 6∈ Θ. Again, by Lemma 5.1,
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if n is sufficiently large, a.s. G?
n,(1−ε)δΘ(n) < Hn,(1−2ε/3)δΘ(n), so again as Θ is upwards

closed, a.s.Gn,(1−ε)δΘ(n) 6∈ Θ. The argument that a.s.Gn,(1+ε)δΘ(n) ∈ Θ is similar.

And we conclude this subsection by coming full circle up our spiral stair: we started

with Lemma 5.1 for Model RN?, and we conclude with the corresponding result for Model

RN.

Theorem 5.3. Let ε > 0. If 1− ε > δ(n) � (lnn)/n, then a.s. Gn,δ(n) < Gn,(1+ε)δ(n).

Proof. Let Θ< be the property that, for a graph G of n vertices,

G ∈ Θ< ≡ Hn,(1+ε/2)δ(n) < G.

Then Θ< is upwards closed. Similarly, let Θ 6> be the property, for a graph G of n vertices,

G ∈ Θ6> ≡ Hn,(1+ε/2)δ(n) 6> G.

And Θ 6> is upwards closed.

By Lemma 5.1, Θ< and Θ6> share their strong threshold in Model RN?. Then by

Theorem 3.1, Θ< and Θ6> share their strong threshold (1 + ε/2)δ in Model RN. Thus

P[Gn,δ(n) < Hn,(1+ε/2)δ(n)] = 1 − o(1) while P[Hn,(1+ε/2)δ(n) < Gn,(1+ε)δ(n)] = 1 − o(1),

as n →∞, and the theorem follows.

6. The General Problem

We offer three conjectures, towards the goal of generalizing these results to higher di-

mensions, along the lines of [1].

Conjecture 6.1. Let I be a compact, convex subspace of Rn for some n. Then in Model

GRN, all upwards closed attributes have at least weak threshold functions.

Sometimes we are dropping points onto some manifold, like a torus. We expect weak

thresholds here, too. Unfortunately, spacing arrangements of the metric space may make

counterexamples resembling that of Proposition 4.2 possible. So we expect that something

like the following is true.
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Conjecture 6.2. Let I be a compact, convex subspace of Rn for some n, and let ϕ: I 7→

Rm (for some m) be diffeomorphic and whose derivative is bounded away from 0 on I.

Then in Model GRN on ϕ(I), all upwards closed attributes have at least weak threshold

functions.

And for strong thresholds:

Conjecture 6.3. Let I be a compact, convex subspace of Rn for some n, and let ϕ: I 7→

Rm (for some m) be diffeomorphic and whose derivative is bounded away from 0 on I.

Let Θ be any upwards closed property such that in Model RN on ϕ(I), the threshold of

Θ is much greater than the threshold for Connectivity. Then in Model GRN on ϕ(I), Θ

has a strong threshold.
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