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In this talk, we are talking about nets, roughly 
as defined by Coxeter (and a growing crowd of 
crystallographers): 
 
Definition.  Fix a nice space X.  A net on X is a 
graph N  = (V, E), where V is a subset of X.  
Today, X is 3-dimensional real space. 
 
Let's start with the basic idea, following up on 
Ms. D'Andrea's examples of polyhedra and 
transversals.  Recall what a transversal of a net 
is: 
 
Definition.  The Symmetry Group of a net is the 
group of symmetries (isometries) of the 
underlying space that preserve the net.  A 
transversal is a minimal connected subnet that 
intersects each orbit of vertices and edges under 
the symmetry group. 
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The basic idea is: you can start with a 
transversal first, and get a net from that.   
(This is different from Treacy & Rivin et al, in 
which they find a fundamental region first, and 
get a net from that.)  Let's start with some finite 
examples. 
 
Example.  Something flat and Treacy & Rivin-
ish.  Let's use the dihedral group of five mirrors 
to generate a 5-sided figure in space.  We start 
with a transversal and two generating mirrors: 
 

 
 
Generating the symmetry group isomorphic to 
the dihedral group D5 with these mirrors, we get 
the above shape in space. 
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We can also get polyhedral nets.  For example, 
suppose that our symmetry group was generated 
by the reflection across the xy-plane and the 60-
degree rotation (counterclockwise, but it doesn't 
matter, really) about the z-axis.  We could start 
with a transversal: 
 

 
 
The symmetry group generated by these two 
isometries is also a dihedral group, isomorphic 
to D6, but with compositions of reflection & 
rotation instead as actions, we apply this 
symmetry group to our transversal and get the 
above shape. 
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Before moving on to infinite structures, let's 
exhibit the primary result of Generating Graphs 
Using Automorphisms (submitted for 
publication), which is: every net can be 
generated this way, which is: 
     (a) actually sort of obvious yet 
     (b) entangled with technicalities when you 
actually go out to prove it with all the bells and 
whistles you need to make it go. 
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The direct icosahedral group, which has no 
reflections, generated by two rotations (vertical 
by 180 degrees, slanted by 120 digrees), applied 
to a single (half-) edge... 
 

 
 
...produces a dodecahedron, while a different 
choice of edge (connecting a different pair of 
axes of rotation) produces an icosahedron. 
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All these examples involved selecting a finite 
transversal and then applying a finite symmetry 
group -- a group of isometries fixing the origin -
- to get a finite net. 
 
But if instead we applied an infinite symmetry 
group, we might get an infinite net.  We are 
interested only in infinite symmetry groups 
appropriate for converting finite transversals 
into something that could be physical objects: 
 
• There are finitely many orbits of vertices of 

finite degree, and hence finitely many orbits 
of edges. 

• The net should fill space, i.e., for any plane, 
there should be vertices of the net on both 
sides of the plane. 

• The net should be discrete, i.e., there should 
be a minimal distance between vertices. 
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By the Federov-Shoenflies Theorem 
(generalized via Hilbert's 18th Problem to the 
Bieberbach Theorem), the only symmetry 
groups that will do this are the periodic ones, 
i.e., those that exhibit periodicity along three 
axes, with the result that the resulting nets also 
exhibit periodicity along three axes. 
 
These well-behaved symmetry groups are called 
crystallographic.  You can find a good 
introduction to this sort of thing in Yale's 
Geometry & Symmetry or in Schwarzenberger's 
N-dimensional crystallography. 
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So the idea is to start with a transversal 
consisting of a very tiny net, and applying a 
crystallographic group to it to get a net.  Since 
the net is periodic, it makes more sense to 
exhibit a picture consisting of a unit cell (or 
several unit cells), the unit cell being the 
repeating unit, as originally proposed by Rene-
Just Hauy (web image ultimately from his 
book): 
 

 
 
With that methodology in mind, and observing 
that according to Generating Crystal Nets in 
Euclidean Space (also submitted for 
publication), we can get every crystal net (up to 
affine conjugate) this way, let's look at a few 
nets that we actually have obtained using a 
computer implementation of this heuristic. 
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Let's start with diamond.  Each carbon atom 
(blue tetrahedron) is "bonded" two four 
neighbors, and each vertex is in the same orbit, 
and each edge is in the same orbit. 
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There are hundreds of thousands of such nets 
known from crystals found in nature or 
synthesized in the lab, and millions of nets that 
no one has realized in crystal form.  One reason 
is that some nets are a bit...improbable, like this 
one... 
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There are very few atoms or molecular building 
blocks that bond in a pyramidal pattern like the 
one above, and even if you find such block, 
getting them to bond like this would be quite 
difficult.  Part of the problem we face is cooking 
up designs of nets of crystals that we can 
actually synthesize. 
 
You might have noticed that caption on the 
second crystal net, "584 is rather sparse."  One 
of the favorite statistics of crystal nets is the 
topological density of the net:  for a crystal net 
of one orbit of vertices, 
 
• For each orbit of vertices, the coordination 

sequence of that orbit is the sequence of 
cardinalities #vertices(dist d + 1) - 
#vertices(dist d). 

 
• The cumulative sums are the topological 

densities, so that the number of vertices 
within, say, distance 10 is td10 = 581, the 
topological density of diamond's crystal net. 



13 
 

If there are several orbits of vertices, we use a 
weighted sum to get, say, td10 = 584 for the 
second net above. 
 
Topological density does provide a measure of 
how densely packed vertices are with respect to 
edge-length.  We can see this by looking at the 
following sequence of nets... 
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We conclude with a pair of basic open questions 
crystallographers would like to know... 
 

1. Are there two non-isomorphic crystal 
nets with the same coordination sequences? 

 
2. Is it true that for any n, there exist two 

non-isomorphic crystal nets whose 
coordination sequences agree up to distance 
n? 

 
3. For what crystal net is it true that for 

some n, that net is the only one with that 
coordination sequence up to distance n? 

 
Inquiring chemists would like to know the 
answers to these and other questions. 
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...we're a little hopeful about this one... 

 
 


