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• This talk is based on the recently published papers

– Xu-Gang He, Dun Zhao, Lin Li and Hong-Gang Luo, Engineering inte-
grable nonautonomous nonlinear Schrodinger equations, Phys. Rev. E
79, 056610 (2009).

– Hong-Gang Luo, Dun Zhao and Xu-Gang He, Exactly controllable trans-
mission of nonautonomous optical solitons, Phys. Rev. A 79, 063802
(2009).

– Dun Zhao, Xu-Gang He and Hong-Gang Luo, Transformation from the
nonautonomous to standard NLS equations, Eur. Phys. J. D, 53, 213-
216(2009).

– Dun Zhao, Hong-Gang Luo and Hua-Yue Chai, Integrability of
the Gross-Pitaevskii equation with Feshbach resonance management,
Physics Letters A 372, 5644-5650 (2008).
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1 Background

• Soliton management, such as dispersion and nonlinearity manage-

ment in optics, Feshbach-resonance management and dispersion

management in atomic and condensed-matter physics, is a new con-

cept in nonlinear dynamical systems described by nonautonomous

nonlinear Schrödinger equations (NNLSEs) with varying disper-

sion, nonlinearity and gain or loss. Due to their great importance,

the study on NNLSEs has attracted extensive attention in recent

years.

• Reference

– B. A, Malomed, Soliton Management in Periodic Systems, Springer,

(2006).

http://www.lzu.edu.cn
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Our study is motivated by the soliton management in Bose-Einstein

condensation and in optical soliton transmission.

• When a gas of bosonic particles is cooled below a critical tempera-

ture, it condenses into a Bose-Einstein condensate. The condensate

consists of a macroscopic number of particles, which are all in the

same ground state of the system.

• Bose-Einstein condensation was predicted by Einstein in 1925 and

was produced in the laboratory for the first time in 1995. The re-

alization of Bose-Einstein condensates of dilute gases allows for

the direct observation of wave packet dynamics in real space on a

macroscopic scale, usually called matter-wave solitons.

http://www.lzu.edu.cn
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Experiments observations

• N. H . Anderson and J. R. Ensher, Matthews M R, et al., Observa-

tion of Bose-Einstein condensation in a dilute atomic vapor. Sci-

ence, 269: 198-201(1995).

• J. Denschlag, J.E. Simsarian, D.L. Feder, et al. Generating Solitons

by Phase Engineering of a Bose-Einstein Condensate, Science 287,

97-101(2000).

• Kevin E. Strecker, Guthrie B. Partridge, Andrew G. Truscott, and

Randall G. Hulet, Formation and propagation of matter-wave soli-

ton trains, Nature 417, 150-153 (2002).

• L. Khaykovich, F. Schreck, G. Ferrari, et al., Formation of a Matter-

Wave Bright Soliton, Science 296, 1290-1293 (2002).

http://www.lzu.edu.cn
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• Hasegawa and Tappert found that a soliton can also be formed in fiber sys-

tems, i.e., the optical soliton. Due to the particlelike property of the soliton,

they proposed that the optical soliton could be an ideal subject to transmit

optical signals. The realization of the optical soliton transmission was first

reported by Mollenauer et al.. Since then the fundamental properties of opti-

cal solitons and their applications in optical communication have been exten-

sively investigated.

• Reference

– A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

– A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, Berlin, 1990).

– A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Ox-

ford, New York, 1995).

– L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45,

1095 (1980).

http://www.lzu.edu.cn
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Soliton management

• A soliton can be well defined by its four basic parameters namely

(i) amplitude (or width); (ii) frequency (or velocity); (iii) phase and

(iv) time position. So it is possible to control the soliton dynamics

by defining the parameter functions. This is the meaning of soliton

management.

• Dispersion and nonlinearity (Feshbach-resonance) management

have been found to be a robust method for creating solitonlike wave

packet, in another word, solitary pulses can exist as robust solutions

to nonautonomous NLS equations.

http://www.lzu.edu.cn
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• Some references on soliton management

– P.G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and Boris A. Mal-

omed, Feshbach Resonance Management for Bose-Einstein Condensates,

Phys. Rev. Lett. 90, 230401 (2003).

– B. Eiermann, P. Treutlein, Th. Anker, M. Albiez, M. Taglieber, K.-P.

Marzlin, and M. K. Oberthaler, Dispersion management for atomic matter

waves, Phys. Rev. Lett. 91, 060402 (2003).

– K. Porsezian et al., Dispersion and nonlinear management for femtosec-

ond optical solitons, Phys. Lett. A, 361, 504õ508 (2007).

– M. Centurion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, Nonlinearity

management in optics: experiment, theory, and simulation, Phys. Rev.

Lett. 97, 033903 (2006).

– B. A, Malomed, Soliton Management in Periodic Systems, Springer,

(2006).

http://www.lzu.edu.cn
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Model equations
• Manipulation of matter waves and matter wave solitons

i
∂u(x, t)

∂t
+f(t)

∂2u(x, t)

∂x2 +g(t)|u(x, t)|2u(x, t)+Vext(x, t)u(x, t)+iγ(t) = 0.

– Usually, Vext(x, t) = V0x
2 or V (x) = V0sin

2x. When f(t) =

constant and g(t) = constant, it is the classical Gross-Pitaevskii equa-
tion.

– f , g, Vext and γ(t) denote the dispersion management, Feshbach-

resonance, the external potential and loss/gain respectively.

• Optical soliton transmission

i
∂u(z, t)

∂z
+ f(z)

∂2u(z, t)

∂t2
+ g(z)|u(z, t)|2u(z, t) + iγ(z) = 0,

– f and g denote the dispersion management and nonlinearity
management respectively, and γ(z) = γloss + γR, where γloss
means the fiber loss (γloss > 0) and γR the Raman gain (γR < 0).

http://www.lzu.edu.cn
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Two questions:

• What happens with a classical soliton beyond the auton-
omy when the external fields are functions of time?

• How to manipulate the above-mentioned managements
more efficiently?

http://www.lzu.edu.cn
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Nonautonomous soliton

• Zabusky and Kruskal introduced for the first time the soli-
ton concept to characterize nonlinear solitary waves that
do not disperse and preserve their identity during propa-
gation and after a collision. The classical soliton concept
was developed for nonlinear and dispersive systems that
have been autonomous, modeling uniform media.

• Reference

– N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

http://www.lzu.edu.cn
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• Chen and Liu give the first extension of the classical soliton con-

cept in 1976, they found that the soliton can be accelerated in a lin-

early inhomogeneous plasma, the model NLS equation possesses

the time-varying eigenvalue, and the Inverse Scattering Transfor-

mation method was generalized. At the same time the analytical

solitonlike solutions for the Korteweg-de Vries equation with vary-

ing nonlinearity and dispersion were also found by Calogero and

Degasperis. It was shown that the basic property of classical soli-

tons, such as interact elastically, was preserved.

• Reference

– H.-H. Chen and C.-S. Liu, Phys. Rev. Lett. 37, 693 (1976).

– F. Calogero and A. Degasperis, Lett. Nuovo Cimento Soc. Ital. Fis. 16,

425 (1976); 16, 434 (1976).

http://www.lzu.edu.cn
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• More recently, the solitonlike interaction among nonautonomous

systems have been studied systematically by Serkin et al..

• Reference

– V. N. Serkin and A. Hasegawa, Phys. Rev. Lett. 85, 4502 (2000); JETP

Lett. 72, 89 (2000).

– V. N. Serkin and T. L. Belyaeva, ibid. 74, 573 (2001).

– V. N. Serkin and A. Hasegawa, IEEE J. Sel. Top. Quantum Electron. 8,

418 (2002).

– V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, Phys. Rev. Lett. 92,

199401 (2004).

– V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, Phys. Rev. Lett. 98,

074102 (2007).

http://www.lzu.edu.cn


Background

On the . . .

Main results

Discussions

Summary

Home Page

Title Page

JJ II

J I

Page 15 of 31

Go Back

Full Screen

Close

Quit

• The concept of nonautonomous soliton was introduced by Serkin

et al. in 2007. Simply speaking, a nonautonomous soliton is a

solitonlike solution of a nonautonomous system generally moves

with varying amplitudes and speeds.

• The nonautonomous soliton concept deals with nonlinear and dis-

persive systems that have been nonautonomous.

• Reference

– Serkin, Hasegawa, and Belyaevain, Phys. Rev. Lett. 98, 074102 (2007).

http://www.lzu.edu.cn
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2 On the Nonautonomous NLSEs

We study the following (1+1)-dimensional nonautonomous nonlinear

Schrödinger equation (NLSE), which is also called the nonautonomous

Gross-Pitaevskii (GP) equation:

i
∂u(x, t)

∂t
+ f(x, t)

∂2u(x, t)

∂x2 + g(x, t)|u(x, t)|2u(x, t)

+V (x, t)u(x, t) + iγ(x, t)u(x, t) = 0. (1)

where f (x, t) and g(x, t) are the dispersion and nonlinearity manage-

ment parameters, respectively. V (x, t) denotes the external potential

and γ(x, t) the dissipation (loss)(γ > 0) or gain (γ < 0). These coeffi-

cients are usually assumed to be real.

http://www.lzu.edu.cn


Background

On the . . .

Main results

Discussions

Summary

Home Page

Title Page

JJ II

J I

Page 17 of 31

Go Back

Full Screen

Close

Quit

Some known results

• Vladimir N. Serkin and Akira Hasegawa, Novel Soliton Solutions

of the Nonlinear Schrödinger Equation Model, Phys. Rev. Lett., 85,

4502-4505(2000).

– Model equation

i
∂Ψ

∂Z
± 1

2
D(Z)

∂2Ψ

∂2T
+R(Z)|Ψ|2Ψ = iΓ(Z)Ψ.

– Found solitary wave solutions with the form

Ψ =

√
D

R
PQ(S)exp(i

T 2

2
+ i

∫ Z

0

K(ζ)dζ).

where the real function Q(S) describes a canonical form of

bright or dark solitons.

http://www.lzu.edu.cn
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• V. I. Kruglov, A.C. Peacock, and J. D. Harvey, Exact Self-Similar

Solutions of the Generalized Nonlinear Schrödinger Equation with

Distributed Coefficients, Phys. Rev. Lett., 90, 113902(2003).

– Model equation

iψz =
β(z)

2
ψττ − γ(z)|ψ|2ψ + i

g(z)

2
ψ.

– Found solitary wave solutions with the form

ψ(z, τ ) = U(z, τ ) exp i(a(z) + c(z)(τ − τc)
2).

where U(z, τ ) =
Λ
√
|ρ(z)|

1−c0D(z), D(z) = 2
∫ z

0 β(s)ds.

http://www.lzu.edu.cn
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• H. Sakaguchi and B. A. Malomed, Resonant nonlinearity manage-

ment for nonlinear Schrödinger solitons, Phys. Rev. E, 70, 066613

(2004).

– Model equation

iφt = −1

2
φxx + U(x)φ + (g0 + g1 sin(ωt)|φ|2φ.

– Found solitary wave solutions with the form

ψ(x, t) = Asech[A(x− x0)]exp(i
A2t

2
).

– Investigated the effects of the periodic modulation of the non-

linearity coefficient on fundamental and higher-order solitons,

found resonant splitting of higher-order solitons.

http://www.lzu.edu.cn
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• Z. X. Liang, Z. D. Zhang, and W. M. Liu, Dynamics of a

Bright Soliton in Bose-Einstein Condensates with Time-Dependent

Atomic Scattering Length in an Expulsive Parabolic Potential,

Phys. Rev. Lett. 94, 050402 (2005).

– Model equation

iφt + φxx + 2g0e
λt|φ|2φ +

1

4
λ2x2φ = 0.

– Found a family of exact solutions by Bäcklund transformation,

described the phenomenon of soliton compression in BEC and

the dynamic stability of the number of atoms in the bright soli-

ton.

http://www.lzu.edu.cn
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• Serkin, Hasegawa, and Belyaevain, Nonautonomous solitons in ex-

ternal potentials, Phys. Rev. Lett. 98, 074102 (2007).

– Model equation

i
∂Q

∂t
+
D(t)

2

∂2Q

∂2x
+ σR(t)|Q|2Q− 2α(t)xQ− Ω(t)2

2
x2Q.

– Found integrability condition and Lax pairs

−Ω(t)2D(t) =
d2

dt2
lnD(t) +R(t)

d2

dt2
1

R(t)
− d

dt
lnD(t)

d

dt
lnR(t).

– Introduced the conception of nonautonomous soliton.

http://www.lzu.edu.cn
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3 Main Results
Based on the well-known Painlevé test for partial differential equations,

i.e., the well-known WTC test (J. Weiss, M. Tabor, and G. Carnevale,

J. Math. Phys. 24 (1983)), we get

Theorem 1 The GP equation (1) can pass the Painlevé test for PDE if

and only if f (x, t) = f (t), g(x, t) = g(t), γ(x, t) = γ(t), V (x, t) =

V0(t) + V1(t)x + V2(t)x
2, where V0(t) and V1(t) are arbitrary, and f (t),

g(t), γ(t), V2(t) satisfy the relation

(4f 2ggt − 2fftg
2)γ − 4 f 2g2γ2 − 2 f 2g2γt − g2fftt

+f 2ggtt − 2 f 2g2
t + f 2

t g
2 + ftgfgt + 4V2 f

3g2 = 0. (2)

http://www.lzu.edu.cn
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• Theorem 1 suggests that Eq. (1) which is Painlevé integrable should be of
the form

i
∂u(x, t)

∂t
+ f(t)

∂2u(x, t)

∂x2 + g(t)|u(x, t)|2u(x, t)

+
(
V0(t) + V1(t)x+ V2(t)x

2)u(x, t) + iγ(t)u(x, t) = 0, (3)

where f(t), g(t), γ(t) and V2(t) satisfy relation (2).

• Setting
gt(t)

g(t)
− ft(t)

f(t)
− 2γ(t) = θ(t),

Eq. (2) can be rewritten as the following Riccati equation of θ(t)

θt − θ2 − ft

f
θ + 4fV2 = 0,

thus all functions satisfying Eq. (2) can be presented as

g(t) = f(t)e
∫

(θ(t)+2γ(t))dt, V2(t) = −fθt − fθ2 − ftθ

4f 2 .

with θ(t) and f(t) given arbitrarily.

http://www.lzu.edu.cn
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Setting Γ(t) =
∫ t

0 2γ(t)dt and z(t) = C1 +
∫ t

0
f V1(t)
g eΓ(t)dt, we have

Theorem 2 Under condition (2), Eq.(3) can be converted into the

standard NLS equation

i
∂

∂T
Q(X,T ) + ε

∂2

∂X2Q(X,T ) + δ |Q(X,T )|2Q(X,T ) = 0 (4)

by the transformation u(x, t) = Q(X(x, t), T (t))eia(x,t)+c(t), where

a(x, t) =
1

4f(t)

((
ln
f(t)

g(t)

)
t

− 2γ(t)

)
x2 +

g(t)

f(t)
e−Γ(t)z(t)x

−
∫ t

0

(
g(t)2

f(t)
e−2Γ(t)z(t)2 − V0(t)

)
d t+ C2,

X(x, t) =
εg(t)

δf(t)
e−Γ(t)x− 2 ε

δ

∫ t

0

g(t)2

f(t)
z(t)d t.

T (t) =
ε

δ2

∫ t

0

g2(t)

f(t)
e−2Γ(t)z(t)d t+ C3, c(t) =

1

2
ln
εg(t)

δf(t)
− Γ(t).

http://www.lzu.edu.cn
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Obviously, only when

sign(εδ) = sign(f (t)g(t)),

the transformation in Theorem 2 is well-defined. This means that the

type of solitonlike solution is determined by the sign of f (t)g(t).

By Theorem 2, we have

Corollary 1 Under condition (2), each solution Q(X,T ) of Eq.(4)

presents a solution of Eq.(3) by

u(x, t) = Q(X(x, t), T (t))eia(x,t)+c(t). (5)

http://www.lzu.edu.cn
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Remark

Under condition (2), the Lax pairs of Eq.(1) can also be
constructed.

Some special cases of Eq.(1) have been studied by other au-
thors in other situations, for examples

• Joshi, N., Painlevé property of general variable-coefficient
versions of the Korteweg-De Vries and non-linear
Schrödinger equations, Phys. Le tt. A, 125(9) (1987),
456-460.

• M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear
Evolution Equations and Inverse Scattering (Cambridge
University, Press,1991).

http://www.lzu.edu.cn
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4 Discussions

We have known that under condition (2), a canonical soliton Q(x, t) of

Eq.(4) can give a solitonlike solution u(x, t) of Eq.(1). It is easy to see

from Eq.(5) that

|u(x, t)| = |Q(X(x, t), T (t))|ec(t) = |Q(X(x, t), T (t))|e−Γ(t)

√
εg(t)

δf(t)
. (6)

http://www.lzu.edu.cn
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Equation (6) provides an explicit way to control the amplitude of the

nonautonomous soliton on the basis of the canonical soliton.

• c(t) = 0 means that the amplitude of the corresponding nonau-

tonomous soliton remains unchanged.

• c(t) > 0 (or < 0) means that the amplitude of the corresponding

nonautonomous soliton increases (or decreases) exponentially.

• When c(t) changes periodically its sign during the propagation, as a

result, the the amplitude of the corresponding nonautonomous soli-

ton oscillates with the same period.

http://www.lzu.edu.cn
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An immediate result is

Corollary 2 Let R(t) = e−
∫ t

0

− d
dt

γ(t)+2 (γ(t))2

γ(t) dt. If

f (t) = − R (t)

2
∫ t

0
R(t)V2(t)
γ(t) dt− C

,

g(t) = −δ
ε

R(t) + e2Γ(t)

2
∫ t

0
R(t)V2(t)
γ(t) − C

, (7)

then we have

|u(x, t)| = |Q(X(x, t), T (t))|.

Corollary 2 tells us how to rectify the decrease of the amplitude caused

by the dissipation through tuning the real functions for dispersion and

nonlinearity. Some further discussions and examples can be found in

our papers listed previously.

http://www.lzu.edu.cn
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5 Summary
We obtain a condition to ensure a class of NNLSEs with loss/gain to be

Painlevé integrable, and we also provide a correspondence from the so-

lutions of the standard NLS equation to the solutions of the Painlevé

integrable NLS equation with time-varying dispersion, nonlinearity,

loss/gain and time-dependent confining parabolic external potential,

and thus give a further understanding to the relation between classical

solitons and nonautonomous solitons, this would be helpful for under-

standing the dynamical behavior of the BECs by using the Feshbach

resonance management and dispersion management, also for the trans-

mission of optical solitons by using the dispersion management and

nonlinearity management.

http://www.lzu.edu.cn
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Thanks for your attention!
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