Combinatorics of the dispersionless Toda hierarchy

Yuji Kodama
Ohio State University

Joint work with
Virgil U. Pierce (UTPA)

International Workshop on
Nonlinear and Modern Mathematical Physics
Beijing Xiedao Group, Beijing, China, July 15-21, 2009

Contents (key words)

- Catalan numbers
- Set an enumeration problem
- Gaussian unitary ensemble (GUE)
- The Toda lattice hierarchy
- Large N limit of GUE
- The dispersionless Toda hierarchy
- Give the solution

Catalan numbers

Consider a genus 0 curve (sphere with two marked points):

$$
\lambda=p+\frac{1}{p} \quad\left(\text { or } \quad \lambda p=p^{2}+1\right)
$$

Expand p in terms of a large λ with $p \rightarrow \lambda$ as $\lambda \rightarrow \infty$, i.e.

$$
p=\lambda-\sum_{n=0}^{\infty} \frac{C_{n}}{\lambda^{2 n+1}}
$$

The coefficients C_{n} are the Catalan numbers:

$$
C_{n}=-\oint_{\lambda=\infty} \frac{d \lambda}{2 \pi i} p(\lambda) \lambda^{2 n}=-\oint_{p=\infty} \frac{d p}{2 \pi i}\left(p-\frac{1}{p}\right)\left(p+\frac{1}{p}\right)^{2 n}
$$

Catalan numbers

Explicitly the n-th Catalan number is given by

$$
C_{n}=\binom{2 n}{n}-\binom{2 n}{n+1}=\frac{1}{n+1}\binom{2 n}{n} \quad n \geq 0 .
$$

The Catalan numbers satisfy the recurrence relation (from the curve, i.e. the generating function of C_{n}),

$$
C_{0}=1, \quad C_{n+1}=\sum_{i+j=n} C_{i} C_{j} .
$$

Examples:

$$
C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, \ldots
$$

(Note that $C_{n}=$ odd, iff $n=2^{k}-1$.)

Catalan numbers

"Enumerative Combinatorics" (Stanley) contains 66 different interpretations of the Catalan number. The most relevant one to our study is:
" C_{n} gives the number of ways to make n non-crossing chords joining pairs of $2 n$ points on a circle."
Example: $n=3, C_{3}=5$,

Proof: Recall that C_{n} satisfy the recurrence relation,

$$
C_{n+1}=\sum_{i+j=n} C_{i} C_{j} .
$$

Catalan numbers

This also gives the number of ways to make n non-crossing ordered ribbons for one-vertex of degree $2 n$ on a sphere.

Example: $n=3, C_{3}=5$,

Note that if the degree is odd, then the number of ribbon graphs is zero (we do not count incomplete graph). This problem is called one-vertex problem, and we here consider two-vertex problem:
"Find the number of ways to make connected ribbon graph with two vertices of degrees n and m; the number is denoted by $F_{m n}$."

Catalan numbers

One- and Two-vertex problems on a sphere:

(1). C_{n} gives the solution of the one-vertex problem with a vertex of degree $2 n$.
(2). $F_{m n}$ gives the solution of the two-vertwx problem with vertices of degrees m and n. (We give an explicit form of $F_{m n}$.)

Gaussian unitary ensemble (GUE)

The partition function of the GUE is defined by
$Z_{n}\left(V_{0} ; \mathbf{t}\right)=\int_{\mathbb{R}^{n}} d \vec{\lambda} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} \exp \left[-\sum_{j=1}^{n} V_{0}\left(\lambda_{j}\right)+\sum_{k=1}^{\infty} t_{k} \lambda_{j}^{k}\right]$
Introduce the slow scales $\mathbf{T}=\mathbf{t} / N=\left(T_{1}, T_{2}, \ldots\right)$ and $T_{0}=n / N$, and consider the limit $N \rightarrow \infty$. Then we have:

Theorem [Bessis et al. (1986)] With $V_{0}(\lambda)=\frac{N}{2} \lambda^{2}$, the logarithm of the partition function has an asymptotic expansion of the form,

$$
\log \left[Z_{N}\left(\frac{N}{2} \lambda^{2} ; N \mathbf{T}\right) / Z_{N}\left(\frac{N}{2} \lambda^{2} ; \mathbf{0}\right)\right]=\sum_{g \geq 0} e_{g}(\mathbf{T}) N^{2-2 g} .
$$

Gaussian unitary ensemble (GUE)

Here the coefficients $e_{g}(\mathbf{T})$ are given by

$$
e_{g}(\mathbf{T})=\sum_{0 \leq j_{1}, j_{2}, \ldots} \kappa_{g}\left(j_{1}, j_{2}, \ldots\right) \frac{T_{1}^{j_{1}} T_{2}^{j_{2}} \cdots}{j_{1}!j_{2}!\cdots}=\sum_{\mathbf{j}} \kappa_{g}(\mathbf{j}) \frac{\mathbf{T}^{\mathbf{j}}}{\mathbf{j}!}
$$

The coefficient $\kappa_{g}(\mathbf{j})$ gives the number of the connected ribbon graphs with j_{k} labeled vertices of degree k for $k=1,2, \ldots$ on a compact surface of genus g.
In particular, we have

$$
e_{0}(\mathbf{T})=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log \left[Z_{N}\left(\frac{N}{2} \lambda^{2} ; N \mathbf{T}\right) / Z_{N}\left(\frac{N}{2} \lambda^{2} ; \mathbf{0}\right)\right] .
$$

Gaussian unitary ensemble (GUE)

Example: In this limit, we have

$$
\left.\frac{\partial e_{0}}{\partial T_{n}}(\mathbf{T})\right|_{\mathbf{T}=0}=\kappa_{0}\left(0, \ldots, 0,1_{1,0, \ldots)}= \begin{cases}C_{k}, & \text { if } n=2 k \\ 0, & \text { otherwise }\end{cases}\right.
$$

Also the quantity with $m n \neq 0$,

$$
\left.\frac{\partial^{2} e_{0}}{\partial T_{m} \partial T_{n}}(\mathbf{T})\right|_{\mathbf{T}=0}=\kappa_{0}(0, \ldots, \stackrel{m}{1}, \ldots, \stackrel{n}{1}, \ldots)
$$

gives the number of connected ribbon graphs with two vertices of degrees m and n (i.e. Two-vertex problem).

Find an explicit formula for this quantity, i.e. $F_{m n}!!!$

The Toda lattice hierarchy

The Toda lattice hierarchy is defined by

$$
\frac{\partial L}{\partial t_{n}}=\left[L, A_{n}\right], \quad \text { with } \quad L:=\left(\begin{array}{ccccc}
b_{1} & 1 & & & \\
a_{1} & b_{2} & 1 & & \\
& a_{2} & b_{3} & 1 & \\
& & \ddots & \ddots & \ddots
\end{array}\right) \text {, }
$$

where $A_{n}:=\left[L^{n}\right]_{<0}$ is the lower triangular part of L^{n}. In terms of the τ-functions, $\left(a_{k}, b_{k}\right)$ are given by

$$
a_{k}=\frac{\partial^{2}}{\partial t_{1}^{2}} \ln \tau_{k}=\frac{\tau_{k+1} \tau_{k-1}}{\tau_{k}^{2}}, \quad b_{k}=\frac{\partial}{\partial t_{1}} \ln \frac{\tau_{k}}{\tau_{k-1}},
$$

with $\tau_{0}=1$.

The Toda lattice hierarchy

The Toda hierarchy in Hirota bilinear form:

$$
\begin{aligned}
& D_{1}^{2} \tau_{n} \cdot \tau_{n}=2 \tau_{n+1} \tau_{n-1} \\
& \left(D_{k}-h_{k}(\tilde{\mathbf{D}})\right) \tau_{n+1} \cdot \tau_{n}=0
\end{aligned}
$$

where $\tilde{\mathbf{D}}=\left(D_{1}, \frac{1}{2} D_{2}, \ldots\right)$ with the usual Hirota derivative,

$$
D_{k} f \cdot g=\lim _{s \rightarrow 0} \frac{d}{d s} f\left(t_{k}+s\right) g\left(t_{k}-s\right)
$$

and $h_{k}(\mathbf{x})$ is the elementary symmetric polynomial,

$$
\exp \left(\sum_{n=1}^{\infty} x_{k} z^{k}\right)=\sum_{k=0}^{\infty} h_{k}(\mathbf{x}) z^{k}
$$

The Toda lattice hierarchy

The first equation of the Toda hierarchy implies that τ_{n} can be written in the Hankel determinant form,

$$
\tau_{n}=\left|\begin{array}{cccc}
\tau_{1} & \tau_{1}^{\prime} & \cdots & \tau_{1}^{(n-1)} \\
\tau_{1}^{\prime} & \tau_{1}^{\prime \prime} & \cdots & \tau_{1}^{(n)} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{1}^{(n-1)} & \tau_{1}^{(n)} & \cdots & \tau_{1}^{(2 n-2)}
\end{array}\right| .
$$

The second equation for $n=0$ implies that τ_{1} is a solution of the linear PDE's,

$$
\frac{\partial \tau_{1}}{\partial t_{k}}=h_{k}(\tilde{\mathbf{D}}) \tau_{1}=\frac{\partial^{k} \tau_{1}}{\partial t_{1}^{k}} .
$$

The Toda lattice hierarchy

Writing the solution of this PDE in the form,

$$
\tau_{1}=\int_{\mathbb{R}} e^{\theta(\mathbf{t} ; \lambda)} \rho(\lambda) d \lambda, \quad \text { with } \theta(\mathbf{t} ; \lambda)=\sum_{k=1}^{\infty} \lambda^{k} t_{k},
$$

one can show that the partition functions $Z_{n}\left(V_{0} ; \mathbf{t}\right)$ are related to the τ-functions with $\rho(\lambda)=e^{-V_{0}(\lambda)}$,

$$
\tau_{n}(\mathrm{t})=\frac{1}{n!} Z_{n}\left(V_{0} ; \mathbf{t}\right) .
$$

In particular, we consider the case with $V_{0}=\frac{N}{2} \lambda^{2}$, i.e.

$$
\tau_{n}(\mathbf{t} ; N):=\frac{1}{n!} Z_{n}\left(\frac{N}{2} \lambda^{2} ; \mathbf{t}\right) .
$$

Large N limit of GUE

With the slow variables $T_{0}=n / N$ and $\mathbf{T}=\mathbf{t} / N$, we compute the limit

$$
F\left(T_{0}, \mathbf{T}\right):=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log \left[\frac{1}{n!} Z_{n}\left(\frac{N}{2} \lambda^{2} ; N \mathbf{T}\right)\right] .
$$

The $F\left(T_{0}, \mathbf{T}\right)$ is called the free energy for a topological field theory (TFT) related to $\mathbb{C} P^{1} \sigma$-model. Using Mehta's formula $Z_{n}\left(\lambda^{2} ; 0\right)=(2 \pi)^{n / 2} 2^{-n^{2} / 2} \prod_{j=1}^{n} j$! with Stirlings' approximation $\log (n!)=\mathcal{O}(n \log n)$, we have

$$
F\left(T_{0}, \mathbf{T}\right)=T_{0}^{2} e_{0}(\hat{\mathbf{T}})+\frac{T_{0}^{2}}{2}\left(\log T_{0}-\frac{3}{2}\right),
$$

where $\hat{\mathbf{T}}=\left(\hat{T}_{1}, \hat{T}_{2}, \ldots\right)$ with $\hat{T}_{j}:=T_{0}^{j / 2-1} T_{j}$ (Penner scaling).

Large N limit of GUE

In the TFT, the second derivatives of the free energy play the essential role, and those are called two-point functions:

$$
F_{m n}:=\frac{\partial^{2} F}{\partial T_{m} \partial T_{n}} .
$$

In particular, Theorem [BIZ] implies that $F_{m n}(1, \mathbf{0})$ for $m n \neq 0$ represents the number of connected ribbon graphs with two vertices of degrees m and n on a sphere, that is, the solution of the two-vertex problem,

$$
F_{m n}(1, \mathbf{0}):=\frac{\partial^{2} F}{\partial T_{m} \partial T_{n}}(1, \mathbf{0})=\kappa_{0}(0, \ldots, \stackrel{m}{1}, \ldots, \stackrel{n}{1}, \ldots), \quad n m \neq 0 .
$$

Large N limit of GUE

In the case of $m=0$ and $n=2 k \neq 0$, we have

$$
F_{0,2 k}(1, \mathbf{0})=(k+1) \kappa_{0}(0, \ldots, \stackrel{2 k}{1}, \ldots)
$$

This corresponds to counting the number of connected ribbon graphs with a vertex of degree $2 k$ and a marked face on a sphere, which is actually given by

$$
F_{0,2 k}(1, \mathbf{0})=(k+1) C_{k} .
$$

Here $k+1$ represents the number of connected regions bounded by the ribbons.

The dispersionless Toda hierarchy

The free energy $F\left(T_{0}, \mathbf{T}\right)$ is now defined in terms of the τ-function,

$$
F\left(T_{0}, \mathbf{T}\right)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log \tau_{n}(N \mathbf{T} ; N) .
$$

The Toda lattice has the limits,

$$
\begin{array}{rll}
\frac{\partial^{2}}{\partial t_{1}^{2}} \log \tau_{n}=\frac{\tau_{n+1} \tau_{n-1}}{\tau_{n}^{2}} & \rightarrow & F_{11}=e^{F_{00}} \\
\left(D_{k}-h_{k}(\tilde{\mathbf{D}})\right) \tau_{n+1} \cdot \tau_{n}=0 & \rightarrow & F_{0 k}=h_{k}(\mathbf{Z})
\end{array}
$$

where $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots\right)$ is defined by

$$
Z_{1}=F_{01} . \quad Z_{n}=\frac{F_{0 n}}{n}+\sum_{k+l=n} \frac{F_{k l}}{k l} .
$$

The dispersionless Toda hierarchy

The spectral problem $L \phi=\lambda \phi$ gives a plane curve: That is, for $a_{n-1} \phi_{n-1}+b_{n} \phi_{n}+\phi_{n+1}=\lambda \phi_{n}$, we write

$$
\phi_{n}=e^{N S_{n}} \quad(\text { WKB form }) .
$$

which represents a fast oscillation in the phase. Then writing

$$
\frac{\phi_{n+1}}{\phi_{n}}=e^{\ln \phi_{n+1}-\ln \phi_{n}}=e^{N\left(S_{n+1}-S_{n}\right)}
$$

we define

$$
p:=\lim _{N \rightarrow \infty} e^{N\left(S_{n+1}-S_{n}\right)}=\exp \left(\frac{\partial S}{\partial T_{0}}\right) .
$$

This is a quasi-momentum in the semi-classical limit.

The dispersionless Toda hierarchy

Then in the limit $N \rightarrow \infty$, the spectral problem then gives the curve,

$$
\lambda=p+F_{01}+\frac{F_{11}}{p} .
$$

Here note that $a_{n} \rightarrow F_{11}=e^{F_{00}}, b_{n} \rightarrow F_{01}$.
Remark: The S in the momentum p is given by

$$
S=\sum_{k=1}^{\infty} \lambda^{k} T_{k}+T_{0} \ln \lambda-D(\lambda) F_{0},
$$

with $D(\lambda)$ defined by

$$
D(\lambda)=\sum_{n=1}^{\infty} \frac{1}{n \lambda^{n}} \frac{\partial}{\partial T_{n}} .
$$

The dispersionless Toda hierarchy

The dispersionless Toda (dToda) hierarchy can be defined in the form,

$$
\left\{\begin{array}{l}
1-\frac{e^{F_{00}}}{p(\lambda) p(\mu)}=e^{-D(\lambda) D(\mu) F} \\
\lambda=p(\lambda)+F_{01}+\frac{e^{F_{00}}}{p(\lambda)} \quad \text { with } \quad p(\lambda)=\lambda e^{-D(\lambda) F_{0}}
\end{array}\right.
$$

The second equation defines a plane curve (dToda curve), and the first equation gives its integrable deformation. We can also derive the equation without F_{00} term,

$$
\frac{p(\lambda)-p(\mu)}{\lambda-\mu}=e^{D(\lambda) D(\mu) F} .
$$

This is the dispersionless KP hierarchy, i.e. dToda $\subset d K P$.

The dispersionless Toda hierarchy

Remark that the dToda hierarchy expressed by $F_{m n}$ is completely determined by F_{01} and F_{00}. For example,

$$
D(\lambda) F_{0}=\log \frac{\lambda}{p(\lambda)}=\log \frac{2 \lambda}{\lambda-F_{01}+\sqrt{\left(\lambda-F_{01}\right)^{2}-4 F_{11}}} .
$$

To find the formula $F_{m n}$, we use the Faber polynomials for the dToda curve:
Proposition: The Faber polynomial $\Phi_{n}(p)$ is expressed by

$$
\Phi_{n}(p):=\left[\lambda(p)^{n}\right]_{+}=\lambda^{n}-D(\lambda) F_{n}=\lambda^{n}-\sum_{m=1}^{\infty} \frac{F_{m n}}{m \lambda^{m}} .
$$

where $\left[\lambda(p)^{n}\right]_{+}$is the polynomial part of $\lambda(p)^{n}$ in p.

The dispersionless Toda hierarchy

With those equations for $F_{m n}$, one can find the explicit formula for $F_{m n}$ at $T_{0}=1, \mathbf{T}=\mathbf{0}$:
Theorem [K-Pierce (2009)]: With $F_{01}=F_{00}=0$ (i.e. $F_{11}=1$), we have

$$
\left\{\begin{aligned}
F_{0,2 k} & =(k+1) C_{k}, \\
F_{2 j+1,2 k+1} & =(2 j+1)(2 k+1) \frac{(j+1)(k+1)}{j+k+1} C_{j} C_{k}, \\
F_{2 j, 2 k} & =j k \frac{(j+1)(k+1)}{j+k} C_{j} C_{k}, \\
F_{m n} & =0, \quad \text { otherwise },
\end{aligned}\right.
$$

The $F_{m n}$ gives the solution of the two-vertex problem.

