Combinatorics of the dispersionless Toda hierarchy

Yuji Kodama Ohio State University

Joint work with Virgil U. Pierce (UTPA)

International Workshop on

Nonlinear and Modern Mathematical Physics

Beijing Xiedao Group, Beijing, China, July 15-21, 2009

Combinatorics of the dispersionless Toda hierarchy – p. 1/7

Contents (key words)

- Catalan numbers
 - Set an enumeration problem
- Gaussian unitary ensemble (GUE)
- The Toda lattice hierarchy
- Large N limit of GUE
- The dispersionless Toda hierarchy
 - Give the solution

Consider a genus 0 curve (sphere with two marked points):

$$\lambda = p + \frac{1}{p}$$
 (or $\lambda p = p^2 + 1$)

Expand p in terms of a large λ with $p \rightarrow \lambda$ as $\lambda \rightarrow \infty$, i.e.

$$p = \lambda - \sum_{n=0}^{\infty} \frac{C_n}{\lambda^{2n+1}}$$

The coefficients C_n are the Catalan numbers:

$$C_n = -\oint_{\lambda=\infty} \frac{d\lambda}{2\pi i} p(\lambda)\lambda^{2n} = -\oint_{p=\infty} \frac{dp}{2\pi i} \left(p - \frac{1}{p}\right) \left(p + \frac{1}{p}\right)^{2n}$$

Explicitly the n-th Catalan number is given by

$$C_n = \binom{2n}{n} - \binom{2n}{n+1} = \frac{1}{n+1} \binom{2n}{n} \quad n \ge 0.$$

The Catalan numbers satisfy the recurrence relation (from the curve, i.e. the generating function of C_n),

$$C_0 = 1, \quad C_{n+1} = \sum_{i+j=n} C_i C_j.$$

Examples:

$$C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, C_5 = 42, \dots$$

(Note that $C_n = \text{odd}$, iff $n = 2^k - 1$.)

"Enumerative Combinatorics" (*Stanley*) contains 66 different interpretations of the Catalan number. The most relevant one to our study is:

" C_n gives the number of ways to make n non-crossing chords joining pairs of 2n points on a circle."

Proof: Recall that C_n satisfy the recurrence relation,

$$C_{n+1} = \sum_{i+j=n} C_i C_j.$$

This also gives the number of ways to make n non-crossing *ordered* ribbons for one-vertex of degree 2n on a sphere.

Example: $n = 3, C_3 = 5$,

Note that if the degree is odd, then the number of ribbon graphs is zero (we do not count incomplete graph). This problem is called one-vertex problem, and we here consider two-vertex problem:

"Find the number of ways to make connected ribbon graph with two vertices of degrees n and m; the number is denoted by F_{mn} ."

One- and Two-vertex problems on a sphere:

(1). C_n gives the solution of the one-vertex problem with a vertex of degree 2n.

(2). F_{mn} gives the solution of the two-vertwx problem with vertices of degrees m and n. (We give an explicit form of F_{mn} .)

Gaussian unitary ensemble (GUE)

The partition function of the GUE is defined by

$$Z_n(V_0; \mathbf{t}) = \int_{\mathbb{R}^n} d\vec{\lambda} \prod_{i < j} (\lambda_i - \lambda_j)^2 \exp\left[-\sum_{j=1}^n V_0(\lambda_j) + \sum_{k=1}^\infty t_k \lambda_j^k\right]$$

Introduce the slow scales $T = t/N = (T_1, T_2, ...)$ and $T_0 = n/N$, and consider the limit $N \to \infty$. Then we have:

Theorem [Bessis et al. (1986)] With $V_0(\lambda) = \frac{N}{2}\lambda^2$, the logarithm of the partition function has an asymptotic expansion of the form,

$$\log\left[Z_N\left(\frac{N}{2}\lambda^2; N\mathbf{T}\right) \middle/ Z_N\left(\frac{N}{2}\lambda^2; \mathbf{0}\right)\right] = \sum_{g \ge 0} e_g(\mathbf{T}) N^{2-2g}$$

Gaussian unitary ensemble (GUE)

Here the coefficients $e_g(\mathbf{T})$ are given by

$$e_g(\mathbf{T}) = \sum_{0 \le j_1, j_2, \dots} \kappa_g(j_1, j_2, \dots) \frac{T_1^{j_1} T_2^{j_2} \cdots}{j_1! j_2! \cdots} = \sum_{\mathbf{j}} \kappa_g(\mathbf{j}) \frac{\mathbf{T}^{\mathbf{j}}}{\mathbf{j}!}$$

The coefficient $\kappa_g(\mathbf{j})$ gives the number of the connected ribbon graphs with j_k labeled vertices of degree k for k = 1, 2, ... on a compact surface of genus g.

In particular, we have

$$e_0(\mathbf{T}) = \lim_{N \to \infty} \frac{1}{N^2} \log \left[Z_N\left(\frac{N}{2}\lambda^2; N\mathbf{T}\right) / Z_N\left(\frac{N}{2}\lambda^2; \mathbf{0}\right) \right]$$

Gaussian unitary ensemble (GUE)

Example: In this limit, we have

$$\frac{\partial e_0}{\partial T_n}(\mathbf{T})\Big|_{\mathbf{T}=0} = \kappa_0(0, \dots, 0, \stackrel{\mathbf{n}}{1}, 0, \dots) = \begin{cases} \mathbf{C}_{\mathbf{k}}, & \text{if } n = 2k\\ 0, & \text{otherwise} \end{cases}$$

Also the quantity with $mn \neq 0$,

$$\frac{\partial^2 e_0}{\partial T_m \partial T_n} (\mathbf{T}) \Big|_{\mathbf{T}=0} = \kappa_0(0, \dots, \overset{\mathbf{m}}{1}, \dots, \overset{\mathbf{n}}{1}, \dots)$$

gives the number of connected ribbon graphs with two vertices of degrees m and n (i.e. *Two-vertex problem*).

Find an explicit formula for this quantity, i.e. F_{mn} !!!

The Toda lattice hierarchy is defined by

$$\frac{\partial L}{\partial t_n} = [L, A_n], \quad \text{with} \quad L := \begin{pmatrix} b_1 & 1 & & \\ a_1 & b_2 & 1 & \\ & a_2 & b_3 & 1 \\ & & \ddots & \ddots & \ddots \end{pmatrix},$$

where $A_n := [L^n]_{<0}$ is the lower triangular part of L^n . In terms of the τ -functions, (a_k, b_k) are given by

$$a_k = \frac{\partial^2}{\partial t_1^2} \ln \tau_k = \frac{\tau_{k+1}\tau_{k-1}}{\tau_k^2}, \qquad b_k = \frac{\partial}{\partial t_1} \ln \frac{\tau_k}{\tau_{k-1}},$$

with $\tau_0 = 1$.

The Toda hierarchy in Hirota bilinear form:

$$D_1^2 \tau_n \cdot \tau_n = 2\tau_{n+1}\tau_{n-1}$$
$$(D_k - h_k(\tilde{\mathbf{D}}))\tau_{n+1} \cdot \tau_n = 0.$$

where $\tilde{\mathbf{D}} = (D_1, \frac{1}{2}D_2, \ldots)$ with the usual Hirota derivative,

$$D_k f \cdot g = \lim_{s \to 0} \frac{d}{ds} f(t_k + s) g(t_k - s).$$

and $h_k(\mathbf{x})$ is the elementary symmetric polynomial,

$$\exp\left(\sum_{n=1}^{\infty} x_k z^k\right) = \sum_{k=0}^{\infty} h_k(\mathbf{x}) z^k.$$

The first equation of the Toda hierarchy implies that τ_n can be written in the Hankel determinant form,

$$\tau_n = \begin{vmatrix} \tau_1 & \tau_1' & \cdots & \tau_1^{(n-1)} \\ \tau_1' & \tau_1'' & \cdots & \tau_1^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ \tau_1^{(n-1)} & \tau_1^{(n)} & \cdots & \tau_1^{(2n-2)} \end{vmatrix}$$

The second equation for n = 0 implies that τ_1 is a solution of the linear PDE's,

$$\frac{\partial \tau_1}{\partial t_k} = h_k(\tilde{\mathbf{D}})\tau_1 = \frac{\partial^k \tau_1}{\partial t_1^k}.$$

Writing the solution of this PDE in the form,

$$\tau_1 = \int_{\mathbb{R}} e^{\theta(\mathbf{t};\lambda)} \rho(\lambda) \, d\lambda, \quad \text{with } \theta(\mathbf{t};\lambda) = \sum_{k=1}^{\infty} \lambda^k t_k,$$

one can show that the partition functions $Z_n(V_0; \mathbf{t})$ are related to the τ -functions with $\rho(\lambda) = e^{-V_0(\lambda)}$,

$$\tau_n(\mathbf{t}) = \frac{1}{n!} Z_n(V_0; \mathbf{t}).$$

In particular, we consider the case with $V_0 = \frac{N}{2}\lambda^2$, i.e.

$$\tau_n(\mathbf{t}; N) := \frac{1}{n!} Z_n\left(\frac{N}{2}\lambda^2; \mathbf{t}\right).$$

Large N **limit of GUE**

With the slow variables $T_0 = n/N$ and $\mathbf{T} = \mathbf{t}/N$, we compute the limit

$$F(T_0, \mathbf{T}) := \lim_{N \to \infty} \frac{1}{N^2} \log \left[\frac{1}{n!} Z_n \left(\frac{N}{2} \lambda^2; N \mathbf{T} \right) \right]$$

The $F(T_0, \mathbf{T})$ is called the free energy for a topological field theory (TFT) related to $\mathbb{C}P^1 \sigma$ -model. Using Mehta's formula $Z_n(\lambda^2; 0) = (2\pi)^{n/2} 2^{-n^2/2} \prod_{j=1}^n j!$ with Stirlings' approximation $\log(n!) = \mathcal{O}(n \log n)$, we have

$$F(T_0, \mathbf{T}) = T_0^2 e_0(\hat{\mathbf{T}}) + \frac{T_0^2}{2} \left(\log T_0 - \frac{3}{2} \right),$$

where $\hat{\mathbf{T}} = (\hat{T}_1, \hat{T}_2, \ldots)$ with $\hat{T}_j := T_0^{j/2-1}T_j$ (Penner scaling).

Large N **limit of GUE**

In the TFT, the second derivatives of the free energy play the essential role, and those are called two-point functions:

$$F_{mn} := \frac{\partial^2 F}{\partial T_m \partial T_n}.$$

In particular, Theorem [BIZ] implies that $F_{mn}(1, 0)$ for $mn \neq 0$ represents the number of connected ribbon graphs with two vertices of degrees m and n on a sphere, that is, the solution of the two-vertex problem,

$$F_{mn}(1,\mathbf{0}) := \frac{\partial^2 F}{\partial T_m \partial T_n}(1,\mathbf{0}) = \kappa_0(0,\ldots,\overset{\mathbf{m}}{1},\ldots,\overset{\mathbf{n}}{1},\ldots), \quad nm \neq 0.$$

Large N **limit of GUE**

In the case of m = 0 and $n = 2k \neq 0$, we have

$$F_{0,2k}(1,\mathbf{0}) = (k+1)\kappa_0(0,\ldots, \overset{2k}{1},\ldots),$$

This corresponds to counting the number of connected ribbon graphs with a vertex of degree 2k and a marked face on a sphere, which is actually given by

$$F_{0,2k}(1,\mathbf{0}) = (k+1) C_k.$$

Here k + 1 represents the number of connected regions bounded by the ribbons.

The free energy $F(T_0, \mathbf{T})$ is now defined in terms of the τ -function,

$$F(T_0, \mathbf{T}) = \lim_{N \to \infty} \frac{1}{N^2} \log \tau_n(N\mathbf{T}; N).$$

The Toda lattice has the limits,

$$\frac{\partial^2}{\partial t_1^2} \log \tau_n = \frac{\tau_{n+1}\tau_{n-1}}{\tau_n^2} \quad \to \quad F_{11} = e^{F_{00}}$$
$$(D_k - h_k(\tilde{\mathbf{D}}))\tau_{n+1} \cdot \tau_n = 0 \quad \to \quad F_{0k} = h_k(\mathbf{Z})$$

where $\mathbf{Z} = (Z_1, Z_2, \ldots)$ is defined by

$$Z_1 = F_{01}.$$
 $Z_n = \frac{F_{0n}}{n} + \sum_{k+l=n} \frac{F_{kl}}{kl}.$

Combinatorics of the dispersionless Toda hierarchy – p. 7/7

The spectral problem $L\phi = \lambda\phi$ gives a plane curve: That is, for $a_{n-1}\phi_{n-1} + b_n\phi_n + \phi_{n+1} = \lambda\phi_n$, we write

 $\phi_n = e^{NS_n} \qquad \text{(WKB form)}.$

which represents a fast oscillation in the phase. Then writing

$$\frac{\phi_{n+1}}{\phi_n} = e^{\ln \phi_{n+1} - \ln \phi_n} = e^{N(S_{n+1} - S_n)},$$

we define

$$\mathbf{p} := \lim_{N \to \infty} e^{N(S_{n+1} - S_n)} = \exp\left(\frac{\partial S}{\partial T_0}\right).$$

This is a quasi-momentum in the semi-classical limit.

Then in the limit $N \to \infty$, the spectral problem then gives the curve,

$$\lambda = p + F_{01} + \frac{F_{11}}{p}$$

Here note that $a_n \to F_{11} = e^{F_{00}}, b_n \to F_{01}$. Remark: The *S* in the momentum *p* is given by

$$S = \sum_{k=1}^{\infty} \lambda^k T_k + T_0 \ln \lambda - D(\lambda) F_0,$$

with $D(\lambda)$ defined by

$$D(\lambda) = \sum_{n=1}^{\infty} \frac{1}{n\lambda^n} \frac{\partial}{\partial T_n}$$

The dispersionless Toda (dToda) hierarchy can be defined in the form,

$$\begin{cases} 1 - \frac{e^{F_{00}}}{p(\lambda)p(\mu)} = e^{-D(\lambda)D(\mu)F} \\ \lambda = p(\lambda) + F_{01} + \frac{e^{F_{00}}}{p(\lambda)} \quad \text{with} \quad p(\lambda) = \lambda e^{-D(\lambda)F_{0}} \end{cases}$$

The second equation defines a plane curve (dToda curve), and the first equation gives its integrable deformation. We can also derive the equation without F_{00} term,

$$\frac{p(\lambda) - p(\mu)}{\lambda - \mu} = e^{D(\lambda)D(\mu)F}$$

This is the dispersionless KP hierarchy, i.e. dToda \subset dKP.

Remark that the dToda hierarchy expressed by F_{mn} is completely determined by F_{01} and F_{00} . For example,

$$D(\lambda)F_0 = \log \frac{\lambda}{p(\lambda)} = \log \frac{2\lambda}{\lambda - F_{01} + \sqrt{(\lambda - F_{01})^2 - 4F_{11}}}.$$

To find the formula F_{mn} , we use the Faber polynomials for the dToda curve:

Proposition: The Faber polynomial $\Phi_n(p)$ is expressed by

$$\Phi_n(p) := [\lambda(p)^n]_+ = \lambda^n - D(\lambda)F_n = \lambda^n - \sum_{m=1}^{\infty} \frac{F_{mn}}{m\lambda^m}.$$

where $[\lambda(p)^n]_+$ is the polynomial part of $\lambda(p)^n$ in p.

With those equations for F_{mn} , one can find the explicit formula for F_{mn} at $T_0 = 1$, $\mathbf{T} = \mathbf{0}$:

Theorem [K-Pierce (2009)]: With $F_{01} = F_{00} = 0$ (i.e. $F_{11} = 1$), we have

$$F_{0,2k} = (k+1)C_k,$$

$$F_{2j+1,2k+1} = (2j+1)(2k+1)\frac{(j+1)(k+1)}{j+k+1}C_jC_k,$$

$$F_{2j,2k} = jk\frac{(j+1)(k+1)}{j+k}C_jC_k,$$

$$F_{mn} = 0, \quad \text{otherwise},$$

The F_{mn} gives the solution of the two-vertex problem.