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Integrability problem

Given an initial value problem

K (u, u′, · · · ) = 0, u|t=0 = u0,

how can one determine the solution?

ODEs: Liouville-Arnold theory:

Sufficiently many conserved quantities ⇒ Integrability

PDEs: Integrability requires infinitely many conservation laws:

Fx + Ht = 0⇒ H̃ =

∫
H dx − conserved
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Spectral problem and recursion operator

φx = U(u, λ)φ or Eφ = U(u, λ)φ ⇔ ut = ΦnK0[u]

m
�



�
	ut = K0[u] ⇔ Ut − Vx + [U,V ] = 0 m

spectral matrix U ⇔ recursion operator Φ
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Integrable theories

Inverse scattering transform
Hirota’s bilinear forms
Sato’s KP theory
Wronskian and Casorati determinant techniques
Bäcklund, Darboux and Frobenius transformations
Singularity analysis and Painlevé property
Symmetry and Lie group method
etc.

Infinitely many symmetries
Infinitely many conservation laws
Virasoro algebras and loop groups
Hamiltonian structures and bi-Hamiltonian structures
etc.
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Hamiltonian structures

Continuous Hamiltonian equation:

ut = K (u, ux , · · · ) = J
δH
δu

where J - Hamiltonian, H =
∫

H[u] dx .

Discrete Hamiltonian equation:

ut = K (u,Eu,E−1u, · · · )] = J
δH
δu

where J - Hamiltonian, H =
∑

n∈Z H[u].
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Hamiltonian properties

Relations with symmetries:

Conserved functional → adjoint symmetry → symmetry :

I → δI
δu

→ J
δI
δu

.

Lie homomorphism : J
δ

δu
{I1, I2} = [J

δI1
δu

, J
δI2
δu

] .
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Hamiltonian structures

The question:
Given a soliton equation

ut = K (u) ⇔ Ut − Vx + [U,V ] = 0,

how to generate its Hamiltonian structure?

ut = K (u) = J
δH
δu

In particular, how to determine a Hamiltonian operator J?
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Variational identities on general Lie algebras

Variational identities under bilinear forms

Variational identities:

δ

δu

∫
〈V ,Uλ〉 dx [or

δ

δu

∑
n∈Z
〈V ,Uλ〉] = λ−γ

∂

∂λ
λγ〈V , ∂U

∂u
〉,

where γ - a constant, 〈·, ·〉 - non-degenerate symmetric
invariant bilinear form, and U,V ∈ g (a Lie algebra, either
semisimple or non-semisimple) satisfy

Vx = [U,V ] [or (EV )(EU) = UV ].
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Variational identities on general Lie algebras

Trace identities under the Killing forms

Trace identities:
- G.Z. Tu, J. Phys. A 22(1989) 2375; 23(1990) 3903

If G is a semi-simple Lie algebra, then the variational
identities becomes the so-called trace identities:

δ

δu

∫
tr(VUλ) dx [or

∑
n∈Z

tr(VUλ)] = λ−γ
∂

∂λ
λγtr(V

∂U

∂u
),

where γ - constant, U,V ∈ g satisfy

Vx = [U,V ] [or (EV )(EU) = UV ].

Applications:

KdV, AKNS, Toda lattice, Volterra lattice, etc.
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Variational identities on general Lie algebras

Properties of bilinear forms

Non-degenerate property:

If 〈A,B〉 = 0 for all A (or B), then B = 0 (or A = 0).

The symmetric property:

〈A,B〉 = 〈B,A〉, A,B ∈ g .

Invariance property under the multiplication:

〈A,BC 〉 = 〈AB,C 〉, A,B,C ∈ g .
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Variational identities on general Lie algebras

Properties of bilinear forms

Invariance property under the Lie bracket:

If g is associative, then g forms a Lie algebra under

[A,B] = AB − BA.

The invariance property under the Lie bracket reads

〈A, [B,C ]〉 = 〈[A,B],C 〉, A,B,C ∈ g .

Invariance property under isomorphisms:

〈ρ(A), ρ(B)〉 = 〈A,B〉, A,B ∈ g ,

where ρ - isomorphism of g .
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Variational identities on general Lie algebras

Two observations

The Killing form:

If g is simesimple, then all bilinear forms satisfy the above
properties is equivalent to the Killing form.

Integrable couplings:

An arbitrary Lie algebra ḡ :

ḡ = g A gc ,

where g - semisimple, gc - solvable.
This correspond to integrable couplings.
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Variational identities on general Lie algebras

Formulas for the constant γ

The continuous case:

Let Vx = [U,V ]. If |〈V ,V 〉| 6= 0, then

γ = −λ
2

d

dλ
ln |〈V ,V 〉|.

The discrete case:

Let (EV )(EU) = UV and Γ = VU. If |〈Γ, Γ〉| 6= 0, then

γ = −λ
2

d

dλ
ln |〈Γ, Γ〉|.
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Variational identities on general Lie algebras

Non-semisimple Lie algebras

As an example, take a semi-direct sum of Lie algebras ḡ = g A gc :

g =

{
diag(A0,A0)

∣∣∣∣A0 =

[
a1 a2

a3 a4

]}
,

gc =

{[
0 A1

0 0

]∣∣∣∣A1 =

[
a5 a6

a7 a8

]}
.

Introduce

δ : ḡ → R8, A 7→ (a1, · · · , a8)T , A =

[
A0 A1

0 A0

]
∈ ḡ .

This mapping δ induces a Lie bracket on R8:

[a, b]T = aTR(b).
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Variational identities on general Lie algebras

Transforming basic properties of bilinear forms

An arbitrary bilinear form is given by

〈a, b〉 = aTFb, a, b ∈ R8,

where F - constant matrix.

The symmetric property 〈a, b〉 = 〈b, a〉 ⇔ FT = F .

The invariance property 〈a, [b, c]〉 = 〈[a, b], c〉 ⇔

F (R(b))T = −R(b)F , b ∈ R8.
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Variational identities on general Lie algebras

The matrix F

Solving the resulting system yields

F =



η1 0 0 η2 η3 0 0 η4

0 0 η1 − η2 0 0 0 η3 − η4 0

0 η1 − η2 0 0 0 η3 − η4 0 0

η2 0 0 η1 η4 0 0 η3

η3 0 0 η4 η5 0 0 η5

0 0 η3 − η4 0 0 0 0 0

0 η3 − η4 0 0 0 0 0 0

η4 0 0 η3 η5 0 0 η5


,

where ηi - arbitrary constants.
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Component-trace identities and dark equations

Matrix Lie algebras

Let ḡ = g A gc be a Lie algebra of

A = diag(A0,A1, · · · ,AN) =



A0 A1 · · · · · · AN

A0 A1
...

. . .
. . .

...

A0 A1

0 A0


,

where

g = diag(A0, 0, · · · , 0), gc = diag(0,A1, · · · ,AN),

and Ai - square matrices of the same order.
Wen-Xiu Ma University of South Florida
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Component-trace identities and dark equations

Matrix Lie algebras

For
A = (A0,A1, · · · ,AN), B = (B0,B1, · · · ,BN) ∈ ḡ ,

the matrix product AB:

AB = (C0,C1, · · · ,CN), Ck =
∑

i+j=k

AiBj , 0 ≤ k ≤ N,

and the matrix commutator:

[A,B] = AB − BA = (· · · ,
∑

i+j=k

[Ai ,Bj ], · · · ).
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Component-trace identities and dark equations

Component-trace identities and dark equations

For given U = U(u, λ) = (U0,U1, · · · ,UN) ∈ ḡ , we have

δ

δu

∫
tr
( ∑
i+j=N

Vi
∂Uj

∂λ

)
dx = λ−γ

∂

∂λ
λγtr

( ∑
i+j=N

Vi
∂Uj

∂u

)
,

where V = V (u, λ) = (V0,V1, · · · ,VN) ∈ ḡ solves Vx = [U,V ].

The case N = 1 ⇒ Hamiltonian structures for “dark equations”:

ut = K (u), ψt = A(u, ∂x)ψ,

where A(u, ∂x) - a linear differential operator.
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The perturbation equations

The continuous case

Symmetry equation:
ρt = K ′(u)[ρ].

The first-order perturbation equation:

ut = K (u), ρt = K ′(u)[ρ].

The component-trace identity with N = 1 ⇒ a bi-trace identity:

δ

δu

∫ [
tr
(
V0
∂U1

∂λ

)
+ tr

(
V1
∂U0

∂λ

)]
dx

= λ−γ
∂

∂λ
λγ
[
tr
(
V0
∂U1

∂u

)
+ tr

(
V1
∂U0

∂u

)]
,
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The perturbation equations

The discrete case

Similar results hold for the discrete case:

the component-trace identity with N = 1
⇒ a bi-trace identity:

δ

δu

∑
n∈Z

[
tr
(
V0
∂U1

∂λ

)
+ tr

(
V1
∂U0

∂λ

)]
= λ−γ

∂

∂λ
λγ
[
tr
(
V0
∂U1

∂u

)
+ tr

(
V1
∂U0

∂u

)]
,
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The perturbation equations

Hamiltonian structure

The first-order perturbation equation:

ut = K (u), ρt = K1 = K ′(u)[ρ]

has a Hamiltonian structure:

ūt = J̄
δH̄
δū
, J̄ =

[
0 J

J J1

]
, J1 = J ′(u)[ρ],

with H̄ =

∫
tr(V

∂U1

∂λ
+V1

∂U

∂λ
) dx [or

∑
n∈Z

tr(V
∂U1

∂λ
+V1

∂U

∂λ
)],

where U1 = U ′(u)[ρ] and V1 = V ′(u)[ρ].
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Variational identities on Lie superalgebras

Variational identities on Lie superalgebras

Variational identities:

Let g be a Lie superalgebra over a supercommutative ring.
Then variational identities on g holds:

δ

δu

∫
str(adV ad∂U/∂λ) dx (or

δ

δu

∑
n∈Z

str(adV ad∂U/∂λ))

= λ−γ ∂
∂λλ

γ(adV ad∂U/∂u),

where U,V ∈ g , Vx = [U,V ] (or (EV )(EU) = UV ),
adab = [a, b], and str is the supertrace.
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Variational identities on Lie superalgebras

Super-Hamiltonian structures

The super-soliton hierarchy:

U = U(p, q) + αE3 + βE4 =

 U(p, q)
α

β

β −α 0

 ,
where E3,E4 - odd generators of the super sl(2), p, q -
commuting variables and α, β - anticommuting variables.

Super-Hamiltonian structures:
Applications of super-variational identities to super-integrable
systems
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Application to the super-AKNS hierarchy

The super-AKNS hierarchy

The super-AKNS spectral problem:

The super AKNS spectral problem associated with B̃(0, 1):

φx = Uφ = U(u, λ)φ, U =

 λ p α

q −λ β

β −α 0

 , u =


p
q
α
β

 ,
where p, q - commuting fields, α, β - anticommuting fields,
and λ - the spectral parameter.
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Application to the super-AKNS hierarchy

The super-AKNS hierarchy

The solution V to Vx = [U,V ]:

Take a solution V as follows:

V =

A B ρ

C −A σ

σ −ρ 0

 =
∑
i≥0

Viλ
−i =

∑
i≥0

Ai Bi ρi

Ci −Ai σi

σi −ρi 0

λ−i ,

where Ai ,Bi ,Ci are commuting fields, and ρi , σi are
anticommuting fields.

The super-AKNS hierarchy:

utm = Km = (−Bm+1, 2Cm+1,−ρm+1, σm+1)T , m ≥ 0.
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Application to the super-AKNS hierarchy

Application of the super-variational identity

Super-Hamiltonian structures:
The super-variational identity where γ = 0 leads to

δ

δu

∫
2Am+1

m
dx = (−Cm,−Bm, 2σm,−2ρm)T , m ≥ 1.

So, the super-Hamiltonian structures read

utm = Km = J
δHm

δu
, m ≥ 0,

where J and Hm are

J =


0 2 0 0

−2 0 0 0

0 0 0 1
2

0 0 1
2 0

 , Hm =

∫
2Am+2

m + 1
dx , m ≥ 0.
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Super-symmetric integrable systems:

D = 1 and N = 1 case:

How to solve

DxV = [U,V ], Dx = ∂θ + θ∂x ,

to realize
Ut − DxV + [U,V ] = 0?
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Coupled equations:

The coupled perturbation system:
ut = K (u),

vt = K ′(u)[v ],

wt = K ′(u)[w ].

Does this possess any Hamiltonian structure?
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Super-integrable couplings:

Semi-direct sums of Lie superalgebras:

For example, ḡ = g A gc with Lie product:

W̄ = W + Wc =
[
Ū, V̄

]
= [U + Uc ,V + Vc ] ,

W = [U,V ] , Wc = [U,Vc ] + [Uc ,V ] .
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Super-integrable couplings:

Bilinear forms on semi-direct sums:

Anti-commuting variables in ḡ bring difficulties.

Applications to super-integrable couplings:

How to determine useful super-variational identities on ḡ?

Applications to dark equations.
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Applications to dark equations.

Wen-Xiu Ma University of South Florida

Hamiltonian structures



Introduction Variational identities Hamiltonian structures Super-variational identities Further questions

Open question on linear DEs

- W.X. Ma and B. Shekhtman, Linear Multilinear Algebra, to appear

(2009)

Consider a Cauchy problem

ẋ(t) = A(t)x(t), x(0) = x0 ∈ Rn.

[A(t),B(t)] = 0 ⇒ x(t) = eB(t)x0, where B(t) =
∫ t
0 A(s) ds.

The question:

Is [A(t),B(t)] = 0 necessary to guarantee x(t) = eB(t)x0?
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Thank you!
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