Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

Trace identities, variational identities and Hamiltonian structures

Wen-Xiu Ma

Department of Mathematics and Statistics University of South Florida

University of South Florida

Hamiltonian structures

Wen-Xiu Ma

Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

1 Introduction

- 2 Variational identities
 - Variational identities on general Lie algebras
 - Component-trace identities and dark equations
- 3 Hamiltonian structures of integrable couplingsThe perturbation equations
- 4 Super-variational identities
 - Variational identities on Lie superalgebras
 - Application to the super-AKNS hierarchy

Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

1 Introduction

- 2 Variational identities
 - Variational identities on general Lie algebras
 - Component-trace identities and dark equations
- Hamiltonian structures of integrable couplings
 The perturbation equations
- 4 Super-variational identities
 - Variational identities on Lie superalgebras
 - Application to the super-AKNS hierarchy

Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

1 Introduction

- 2 Variational identities
 - Variational identities on general Lie algebras
 - Component-trace identities and dark equations
- 3 Hamiltonian structures of integrable couplings
 - The perturbation equations

4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

1 Introduction

- 2 Variational identities
 - Variational identities on general Lie algebras
 - Component-trace identities and dark equations
- 3 Hamiltonian structures of integrable couplings
 - The perturbation equations
- 4 Super-variational identities
 - Variational identities on Lie superalgebras
 - Application to the super-AKNS hierarchy

Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

1 Introduction

- 2 Variational identities
 - Variational identities on general Lie algebras
 - Component-trace identities and dark equations
- 3 Hamiltonian structures of integrable couplings
 - The perturbation equations
- 4 Super-variational identities
 - Variational identities on Lie superalgebras
 - Application to the super-AKNS hierarchy

Introduction	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
1 In	troduction			

2 Variational identities

Variational identities on general Lie algebras

- Component-trace identities and dark equations
- Hamiltonian structures of integrable couplings
 The perturbation equations

4 Super-variational identities

Variational identities on Lie superalgebras

Application to the super-AKNS hierarchy

5 Further questions

Wen-Xiu Ma

Introduction	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

Integrability problem

Given an initial value problem

$$K(u, u', \cdots) = 0, \ u|_{t=0} = u_0,$$

how can one determine the solution?

ODEs: Liouville-Arnold theory:

Sufficiently many conserved quantities \Rightarrow Integrability

PDEs: Integrability requires infinitely many conservation laws:

$$F_x + H_t = 0 \Rightarrow \tilde{H} = \int H \, dx - \text{conserved}$$

< 17 >

Introduction		Super-variational identities	Further questions
	00000000 000	00 000	

Spectral problem and recursion operator

$$\phi_{\mathsf{x}} = U(u,\lambda)\phi \text{ or } E\phi = U(u,\lambda)\phi \quad \Leftrightarrow \quad u_t = \Phi^n \mathcal{K}_0[u]$$

spectral matrix $U \quad \Leftrightarrow \quad \text{recursion operator } \Phi$

University of South Florida

Wen-Xiu Ma

Introduction	Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

Integrable theories

- Inverse scattering transform
 Hirota's bilinear forms
 Sato's KP theory
 Wronskian and Casorati determinant techniques
 Bäcklund, Darboux and Frobenius transformations
 Singularity analysis and Painlevé property
 Symmetry and Lie group method
 etc.
- Infinitely many symmetries
 Infinitely many conservation laws
 Virasoro algebras and loop groups
 Hamiltonian structures and bi-Hamiltonian structures
 etc.

Wen-Xiu Ma

Introduction	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

Hamiltonian structures

Continuous Hamiltonian equation:

$$u_t = K(u, u_x, \cdots) = J \frac{\delta \mathcal{H}}{\delta u}$$

where J - Hamiltonian, $\mathcal{H} = \int H[u] dx$.

Discrete Hamiltonian equation:

$$u_t = K(u, Eu, E^{-1}u, \cdots)] = J \frac{\delta \mathcal{H}}{\delta u}$$

where J - Hamiltonian, $\mathcal{H} = \sum_{n \in \mathbb{Z}} H[u]$.

* ロ > * 部 > * 注 >

Wen-Xiu Ma

Introduction	Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

Hamiltonian structures

Continuous Hamiltonian equation:

$$u_t = K(u, u_x, \cdots) = J \frac{\delta \mathcal{H}}{\delta u}$$

where J - Hamiltonian, $\mathcal{H} = \int H[u] dx$.

Discrete Hamiltonian equation:

$$u_t = K(u, Eu, E^{-1}u, \cdots)] = J \frac{\delta \mathcal{H}}{\delta u}$$

where J - Hamiltonian, $\mathcal{H} = \sum_{n \in \mathbb{Z}} H[u]$.

University of South Florida

* ロ > * 部 > * 注 >

Wen-Xiu Ma

Introduction	Variational identities 00000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

Hamiltonian properties

Relations with symmetries:

Conserved functional \rightarrow adjoint symmetry \rightarrow symmetry :

$$\begin{split} \mathcal{I} & \to & \frac{\delta \mathcal{I}}{\delta u} & \to & J \frac{\delta \mathcal{I}}{\delta u} \,. \end{split}$$
 Lie homomorphism : $J \frac{\delta}{\delta u} \{\mathcal{I}_1, \mathcal{I}_2\} = [J \frac{\delta \mathcal{I}_1}{\delta u}, J \frac{\delta \mathcal{I}_2}{\delta u}] \,. \end{split}$

University of South Florida

Image: Image:

Wen-Xiu Ma

Introduction	Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

Hamiltonian structures

The question: Given a soliton equation

$$u_t = K(u) \quad \Leftrightarrow \quad U_t - V_x + [U, V] = 0,$$

how to generate its Hamiltonian structure?

$$u_t = K(u) = J \frac{\delta \mathcal{H}}{\delta u}$$

In particular, how to determine a Hamiltonian operator J?

University of South Florida

Hamiltonian structures

Wen-Xiu Ma

Variational identities	Hamiltonian structures	Super-variational identities 00 000	Further questions

1 Introduction

2 Variational identities

- Variational identities on general Lie algebras
- Component-trace identities and dark equations
- Hamiltonian structures of integrable couplings
 The perturbation equations

4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

	Variational identities •0000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	tities on general Lie algebras			

Variational identities under bilinear forms

Variational identities:

$$\frac{\delta}{\delta u} \int \langle V, U_{\lambda} \rangle \, dx \, \left[\text{or } \frac{\delta}{\delta u} \sum_{n \in \mathbb{Z}} \langle V, U_{\lambda} \rangle \right] = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} \langle V, \frac{\partial U}{\partial u} \rangle,$$

where γ - a constant, $\langle \cdot, \cdot \rangle$ - non-degenerate symmetric invariant bilinear form, and $U, V \in g$ (a Lie algebra, either semisimple or non-semisimple) satisfy

$$V_{x} = [U, V] \text{ [or } (EV)(EU) = UV].$$

Hamiltonian structures

Wen-Xiu Ma

	Variational identities 0●0000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	tities on general Lie algebras			

Trace identities under the Killing forms

Trace identities:

- G.Z. Tu, J. Phys. A 22(1989) 2375; 23(1990) 3903

If G is a semi-simple Lie algebra, then the variational identities becomes the so-called trace identities:

$$\frac{\delta}{\delta u}\int \operatorname{tr}(VU_{\lambda})\,dx \,\left[\operatorname{or} \,\sum_{n\in\mathbb{Z}}\operatorname{tr}(VU_{\lambda})\right] = \lambda^{-\gamma}\frac{\partial}{\partial\lambda}\lambda^{\gamma}\operatorname{tr}(V\frac{\partial U}{\partial u}),$$

where γ - constant, $\textit{U},\textit{V} \in \textit{g}$ satisfy

$$V_x = [U, V]$$
 [or $(EV)(EU) = UV$].

Applications:

KdV, AKNS, Toda lattice, Volterra lattice, etc.

Wen-Xiu Ma

	Variational identities 00000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	ities on general Lie algebras			

Properties of bilinear forms

Non-degenerate property:

If $\langle A, B \rangle = 0$ for all A (or B), then B = 0 (or A = 0).

• The symmetric property:

$$\langle A,B\rangle = \langle B,A\rangle, \ A,B\in g.$$

Invariance property under the multiplication:

$$\langle A, BC \rangle = \langle AB, C \rangle, \ A, B, C \in g.$$

University of South Florida

Wen-Xiu Ma

	Variational identities	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	ities on general Lie algebras			

Properties of bilinear forms

Invariance property under the Lie bracket:

If g is associative, then g forms a Lie algebra under

[A,B] = AB - BA.

The invariance property under the Lie bracket reads

$$\langle A, [B, C] \rangle = \langle [A, B], C \rangle, \ A, B, C \in g.$$

Invariance property under isomorphisms:

$$\langle \rho(A), \rho(B) \rangle = \langle A, B \rangle, \ A, B \in g,$$

Image: A mathematical states and a mathem

University of South Florida

where ρ - isomorphism of g.

Wen-Xiu Ma

	Variational identities	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	ities on general Lie algebras			

Two observations

The Killing form:

If g is simesimple, then all bilinear forms satisfy the above properties is equivalent to the Killing form.

Integrable couplings:

An arbitrary Lie algebra \overline{g} :

$$\overline{g} = g \in g_c,$$

< ⊡ > < ∃ >

University of South Florida

where *g* - semisimple, *g_c* - solvable. This correspond to integrable couplings.

Wen-Xiu Ma Hamiltonian structures

	Variational identities	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	ities on general Lie algebras			

Two observations

The Killing form:

If g is simesimple, then all bilinear forms satisfy the above properties is equivalent to the Killing form.

Integrable couplings:

An arbitrary Lie algebra \bar{g} :

$$\bar{g} = g \in g_c,$$

University of South Florida

where g - semisimple, g_c - solvable. This correspond to integrable couplings.

Wen-Xiu Ma Hamiltonian structures

	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	ities on general Lie algebras			

Formulas for the constant γ

The continuous case:

Let $V_x = [U, V]$. If $|\langle V, V \rangle| \neq 0$, then

$$\gamma = -rac{\lambda}{2}rac{d}{d\lambda}\ln|\langle V,V
angle|.$$

• The discrete case:

Let
$$(EV)(EU) = UV$$
 and $\Gamma = VU$. If $|\langle \Gamma, \Gamma \rangle| \neq 0$, then

$$\gamma = -\frac{\lambda}{2} \frac{d}{d\lambda} \ln |\langle \Gamma, \Gamma \rangle|.$$

University of South Florida

A B > 4
 B > 4
 B

Wen-Xiu Ma

	Variational identities 000000€00 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	tities on general Lie algebras			

Non-semisimple Lie algebras

As an example, take a semi-direct sum of Lie algebras $\bar{g} = g \in g_c$:

$$g = \left\{ \operatorname{diag}(A_0, A_0) \middle| A_0 = \left[\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right] \right\},$$
$$g_c = \left\{ \left[\begin{array}{cc} 0 & A_1 \\ 0 & 0 \end{array} \right] \middle| A_1 = \left[\begin{array}{cc} a_5 & a_6 \\ a_7 & a_8 \end{array} \right] \right\}.$$

Introduce

$$\delta: \bar{g} \to R^8, \ A \mapsto (a_1, \cdots, a_8)^T, \ A = \left[\begin{array}{cc} A_0 & A_1 \\ 0 & A_0 \end{array} \right] \in \bar{g}.$$

This mapping δ induces a Lie bracket on \mathbb{R}^8 :

$$[a,b]^T = a^T R(b).$$

< A

Wen-Xiu Ma

	Variational identities 000000●00 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	tities on general Lie algebras			

Non-semisimple Lie algebras

As an example, take a semi-direct sum of Lie algebras $\bar{g} = g \in g_c$:

$$g = \left\{ \operatorname{diag}(A_0, A_0) \middle| A_0 = \left[\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right] \right\},$$
$$g_c = \left\{ \left[\begin{array}{cc} 0 & A_1 \\ 0 & 0 \end{array} \right] \middle| A_1 = \left[\begin{array}{cc} a_5 & a_6 \\ a_7 & a_8 \end{array} \right] \right\}.$$

Introduce

$$\delta: \bar{g} \to R^8, \ A \mapsto (a_1, \cdots, a_8)^T, \ A = \left[egin{array}{cc} A_0 & A_1 \ 0 & A_0 \end{array}
ight] \in ar{g}.$$

This mapping δ induces a Lie bracket on \mathbb{R}^8 :

$$[a,b]^{T}=a^{T}R(b).$$

Wen-Xiu Ma

	Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions
Variational ident	tities on general Lie algebras			

Transforming basic properties of bilinear forms

An arbitrary bilinear form is given by

$$\langle a,b\rangle = a^T F b, \ a,b \in \mathbb{R}^8,$$

where F - constant matrix.

The symmetric property $\langle a, b \rangle = \langle b, a \rangle \Leftrightarrow F^T = F$.

The invariance property $\langle a, [b, c] \rangle = \langle [a, b], c \rangle \Leftrightarrow$

 $F(R(b))^T = -R(b)F, \ b \in \mathbb{R}^8.$

University of South Florida

Wen-Xiu Ma

	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	tities on general Lie algebras			

Transforming basic properties of bilinear forms

An arbitrary bilinear form is given by

$$\langle a,b\rangle = a^T F b, \ a,b \in \mathbb{R}^8,$$

where F - constant matrix.

The symmetric property $\langle a, b \rangle = \langle b, a \rangle \Leftrightarrow F^T = F$.

The invariance property $\langle a, [b, c] \rangle = \langle [a, b], c \rangle \Leftrightarrow$

 $F(R(b))^T = -R(b)F, \ b \in \mathbb{R}^8.$

University of South Florida

Image: A math a math

Wen-Xiu Ma

	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	tities on general Lie algebras			

Transforming basic properties of bilinear forms

An arbitrary bilinear form is given by

$$\langle a,b\rangle = a^T F b, \ a,b \in \mathbb{R}^8,$$

where F - constant matrix.

The symmetric property $\langle a, b \rangle = \langle b, a \rangle \Leftrightarrow F^T = F$.

The invariance property $\langle a, [b, c] \rangle = \langle [a, b], c \rangle \Leftrightarrow$

$$F(R(b))^T = -R(b)F, \ b \in \mathbb{R}^8.$$

Wen-Xiu Ma

	Variational identities 00000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Variational ident	ities on general Lie algebras			

The matrix F

Solving the resulting system yields

$$F = \begin{bmatrix} \eta_1 & 0 & 0 & \eta_2 & \eta_3 & 0 & 0 & \eta_4 \\ 0 & 0 & \eta_1 - \eta_2 & 0 & 0 & 0 & \eta_3 - \eta_4 & 0 \\ 0 & \eta_1 - \eta_2 & 0 & 0 & 0 & \eta_3 - \eta_4 & 0 & 0 \\ \eta_2 & 0 & 0 & \eta_1 & \eta_4 & 0 & 0 & \eta_3 \\ \eta_3 & 0 & 0 & \eta_4 & \eta_5 & 0 & 0 & \eta_5 \\ 0 & 0 & \eta_3 - \eta_4 & 0 & 0 & 0 & 0 \\ 0 & \eta_3 - \eta_4 & 0 & 0 & 0 & 0 & 0 \\ \eta_4 & 0 & 0 & \eta_3 & \eta_5 & 0 & 0 & \eta_5 \end{bmatrix}$$

where η_i - arbitrary constants.

Image: Image:

	Variational identities ○○○○○○○○ ●○○	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Component-trace	e identities and dark equatior	าร		

Matrix Lie algebras

Let $ar{g} = g \in g_c$ be a Lie algebra of

$$A = \operatorname{diag}(A_0, A_1, \cdots, A_N) = \begin{bmatrix} A_0 & A_1 & \cdots & \cdots & A_N \\ & A_0 & A_1 & & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & A_0 & A_1 \\ 0 & & & & A_0 \end{bmatrix},$$

where

$$g = \operatorname{diag}(A_0, 0, \cdots, 0), \ g_c = \operatorname{diag}(0, A_1, \cdots, A_N),$$

and A_i - square matrices of the same order.

Wen-Xiu Ma

	Variational identities ○○○○○○○○ ○●○	Hamiltonian structures 000	Super-variational identities 00 000	Further questions		
Component-trace identities and dark equations						

Matrix Lie algebras

For

$$A=(A_0,A_1,\cdots,A_N),\ B=(B_0,B_1,\cdots,B_N)\in \bar{g},$$

the matrix product AB:

$$AB = (C_0, C_1, \cdots, C_N), \ C_k = \sum_{i+j=k} A_i B_j, \ 0 \le k \le N,$$

and the matrix commutator:

$$[A,B] = AB - BA = (\cdots, \sum_{i+j=k} [A_i, B_j], \cdots).$$

Wen-Xiu Ma

	Variational identities	Hamiltonian structures	Super-variational identities	Further questions	
	000				
Component trace identities and dark equations					

Component-trace identities and dark equations

For given
$$U = U(u, \lambda) = (U_0, U_1, \cdots, U_N) \in \overline{g}$$
, we have

$$\frac{\delta}{\delta u}\int \operatorname{tr}\big(\sum_{i+j=N}V_i\frac{\partial U_j}{\partial \lambda}\big)\,dx=\lambda^{-\gamma}\frac{\partial}{\partial \lambda}\lambda^{\gamma}\operatorname{tr}\big(\sum_{i+j=N}V_i\frac{\partial U_j}{\partial u}\big),$$

where
$$V = V(u, \lambda) = (V_0, V_1, \cdots, V_N) \in \overline{g}$$
 solves $V_x = [U, V]$.

The case $N = 1 \Rightarrow$ Hamiltonian structures for "dark equations":

$$u_t = K(u), \ \psi_t = A(u, \partial_x)\psi,$$

University of South Florida

where $A(u,\partial_x)$ - a linear differential operator.

Wen-Xiu Ma

Variational identities 000000000 000	Hamiltonian structures	Super-variational identities 00 000	Further questions

1 Introduction

2 Variational identities

Variational identities on general Lie algebras

- Component-trace identities and dark equations
- 3 Hamiltonian structures of integrable couplingsThe perturbation equations

4 Super-variational identities

Variational identities on Lie superalgebras

Application to the super-AKNS hierarchy

5 Further questions

Wen-Xiu Ma

	Variational identities 000000000 000	Hamiltonian structures ●00	Super-variational identities 00 000	Further questions	
The perturbation equations					

The continuous case

Symmetry equation:

 $\rho_t = K'(u)[\rho].$

The first-order perturbation equation:

$$u_t = K(u), \ \rho_t = K'(u)[\rho].$$

The component-trace identity with $N = 1 \Rightarrow$ a bi-trace identity:

$$\begin{split} &\frac{\delta}{\delta u} \int \left[\operatorname{tr} \left(V_0 \frac{\partial U_1}{\partial \lambda} \right) + \operatorname{tr} \left(V_1 \frac{\partial U_0}{\partial \lambda} \right) \right] dx \\ &= \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} \left[\operatorname{tr} \left(V_0 \frac{\partial U_1}{\partial u} \right) + \operatorname{tr} \left(V_1 \frac{\partial U_0}{\partial u} \right) \right], \end{split}$$

University of South Florida

Wen-Xiu Ma

	Variational identities 00000000 000	Hamiltonian structures ○●○	Super-variational identities 00 000	Further questions
The perturbation	n equations			

The discrete case

Similar results hold for the discrete case:

the component-trace identity with N = 1 \Rightarrow a bi-trace identity:

$$\begin{split} & \frac{\delta}{\delta u} \sum_{n \in \mathbb{Z}} \left[\operatorname{tr} \left(V_0 \frac{\partial U_1}{\partial \lambda} \right) + \operatorname{tr} \left(V_1 \frac{\partial U_0}{\partial \lambda} \right) \right] \\ &= \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} \left[\operatorname{tr} \left(V_0 \frac{\partial U_1}{\partial u} \right) + \operatorname{tr} \left(V_1 \frac{\partial U_0}{\partial u} \right) \right], \end{split}$$

University of South Florida

Wen-Xiu Ma

	Variational identities 000000000 000	Hamiltonian structures 00●	Super-variational identities 00 000	Further questions
The perturbation	1 equations			

Hamiltonian structure

The first-order perturbation equation:

$$u_t = K(u), \ \rho_t = K_1 = K'(u)[\rho]$$

has a Hamiltonian structure:

$$\bar{u}_{t} = \bar{J} \frac{\delta \bar{\mathcal{H}}}{\delta \bar{u}}, \ \bar{J} = \begin{bmatrix} 0 & J \\ J & J_{1} \end{bmatrix}, \ J_{1} = J'(u)[\rho],$$

with $\bar{\mathcal{H}} = \int \operatorname{tr}(V \frac{\partial U_{1}}{\partial \lambda} + V_{1} \frac{\partial U}{\partial \lambda}) \, dx \ [\text{or} \ \sum_{\rho \in \mathbb{Z}} \operatorname{tr}(V \frac{\partial U_{1}}{\partial \lambda} + V_{1} \frac{\partial U}{\partial \lambda})],$

where $U_1 = U'(u)[\rho]$ and $V_1 = V'(u)[\rho]$.

University of South Florida

Image: A matrix

Wen-Xiu Ma

Variational identities 00000000 000	Hamiltonian structures	Super-variational identities	Further questions

1 Introduction

2 Variational identities

- Variational identities on general Lie algebras
- Component-trace identities and dark equations
- 3 Hamiltonian structures of integrable couplingsThe perturbation equations

4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

	Variational identities 000000000 000	Hamiltonian structures	Super-variational identities •0 •00	Further questions
Variational iden	tities on Lie superalgebras			

Variational identities on Lie superalgebras

Variational identities:

Let g be a Lie superalgebra over a supercommutative ring. Then variational identities on g holds:

$$\begin{split} &\frac{\delta}{\delta u} \int \operatorname{str}(\operatorname{ad}_{V} \operatorname{ad}_{\partial U/\partial \lambda}) dx \text{ (or } \frac{\delta}{\delta u} \sum_{n \in \mathbb{Z}} \operatorname{str}(\operatorname{ad}_{V} \operatorname{ad}_{\partial U/\partial \lambda})) \\ &= \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} (\operatorname{ad}_{V} \operatorname{ad}_{\partial U/\partial u}), \end{split}$$

University of South Florida

where
$$U, V \in g$$
, $V_x = [U, V]$ (or $(EV)(EU) = UV$),
ad_a $b = [a, b]$, and str is the supertrace.

Wen-Xiu Ma

	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities	Further questions
Variational ident	ities on Lie superalgebras			

Super-Hamiltonian structures

• The super-soliton hierarchy:

$$U = U(p,q) + \alpha E_3 + \beta E_4 = \left[egin{array}{ccc} U(p,q) & lpha \ & eta \ & eta$$

where E_3 , E_4 - odd generators of the super sl(2), p, q - commuting variables and α , β - anticommuting variables.

Super-Hamiltonian structures: Applications of super-variational identities to super-integrable systems

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Variational identities 000000000 000	Hamiltonian structures	Super-variational identities ○○ ●○○	Further questions
Application to th	ne super-AKNS hierarchy			

The super-AKNS hierarchy

• The super-AKNS spectral problem:

The super AKNS spectral problem associated with $\tilde{B}(0,1)$:

$$\phi_{\mathbf{x}} = U\phi = U(u,\lambda)\phi, \ U = \begin{bmatrix} \lambda & p & \alpha \\ q & -\lambda & \beta \\ \beta & -\alpha & 0 \end{bmatrix}, \ u = \begin{bmatrix} p \\ q \\ \alpha \\ \beta \end{bmatrix},$$

where p, q - commuting fields, α, β - anticommuting fields, and λ - the spectral parameter.

University of South Florida

< 17 >

Wen-Xiu Ma Hamiltonian structures

	Variational identities 000000000 000	Hamiltonian structures	Super-variational identities ○ ○●○	Further questions
Application to the	he super-AKNS hierarchy			

The super-AKNS hierarchy

• The solution V to $V_x = [U, V]$:

Take a solution V as follows:

$$V = \begin{bmatrix} A & B & \rho \\ C & -A & \sigma \\ \sigma & -\rho & 0 \end{bmatrix} = \sum_{i \ge 0} V_i \lambda^{-i} = \sum_{i \ge 0} \begin{bmatrix} A_i & B_i & \rho_i \\ C_i & -A_i & \sigma_i \\ \sigma_i & -\rho_i & 0 \end{bmatrix} \lambda^{-i},$$

where A_i, B_i, C_i are commuting fields, and ρ_i, σ_i are anticommuting fields.

The super-AKNS hierarchy:

$$u_{t_m} = K_m = (-B_{m+1}, 2C_{m+1}, -\rho_{m+1}, \sigma_{m+1})^T, \ m \ge 0.$$

Hamiltonian structures

Wen-Xiu Ma

University of South Florida

< 17 >

	Variational identities 00000000 000	Hamiltonian structures	Super-variational identities	Further questions
Application to the	he super-AKNS hierarchy			

Application of the super-variational identity

Super-Hamiltonian structures:

The super-variational identity where $\gamma = 0$ leads to

$$\frac{\delta}{\delta u}\int \frac{2A_{m+1}}{m}\,dx=(-C_m,-B_m,2\sigma_m,-2\rho_m)^T,\ m\geq 1.$$

So, the super-Hamiltonian structures read

l

$$u_{t_m} = K_m = J \frac{\delta \mathcal{H}_m}{\delta u}, \ m \ge 0,$$

where J and \mathcal{H}_m are

$$J = \begin{bmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix}, \ \mathcal{H}_m = \int \frac{2A_{m+2}}{m+1} \, dx, \ m \ge 0.$$

Wen-Xiu Ma

Hamiltonian structures

University of South Florida

Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

1 Introduction

2 Variational identities

- Variational identities on general Lie algebras
- Component-trace identities and dark equations
- Hamiltonian structures of integrable couplings
 The perturbation equations
- 4 Super-variational identities
 - Variational identities on Lie superalgebras
 - Application to the super-AKNS hierarchy

5 Further questions

	luc	

Variational identitie 000000000 000 Hamiltonian structures

Super-variational identities

• • • • • • • •

Further questions

Super-symmetric integrable systems:

D = 1 and N = 1 case:

How to solve

$$D_x V = [U, V], \ D_x = \partial_\theta + \theta \partial_x,$$

to realize

$$U_t - D_x V + [U, V] = 0?$$

Wen-Xiu Ma

Hamiltonian structures

University of South Florida

Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

Coupled equations:

The coupled perturbation system:

$$\begin{cases} u_t = K(u), \\ v_t = K'(u)[v], \\ w_t = K'(u)[w]. \end{cases}$$

Does this possess any Hamiltonian structure?

Wen-Xiu Ma <u>Hami</u>ltonian structures University of South Florida

Image: A mathematical states and a mathem

	Super-variational identities	Further questions
00000000 000	00 000	

Super-integrable couplings:

Semi-direct sums of Lie superalgebras:

For example, $\bar{g} = g \in g_c$ with Lie product:

$$\bar{W} = W + W_c = \left[\bar{U}, \bar{V}\right] = \left[U + U_c, V + V_c\right],$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of South Florida

$$W = [U, V], W_c = [U, V_c] + [U_c, V].$$

Wen-Xiu Ma

	Super-variational identities	Further questions
00000000 000	00 000	

Super-integrable couplings:

Bilinear forms on semi-direct sums:

Anti-commuting variables in \bar{g} bring difficulties.

Applications to super-integrable couplings:

How to determine useful super-variational identities on \bar{g} ?

Applications to dark equations.

University of South Florida

・ロト ・回ト ・ ヨト ・

Hamiltonian structures

	Super-variational identities	Further questions
000000000	00	

Super-integrable couplings:

Bilinear forms on semi-direct sums:

Anti-commuting variables in \bar{g} bring difficulties.

Applications to super-integrable couplings:

How to determine useful super-variational identities on \bar{g} ?

Applications to dark equations.

University of South Florida

Image: A math a math

Hamiltonian structures

	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions
Open q	uestion on lir	near DEs		

- W.X. Ma and B. Shekhtman, *Linear Multilinear Algebra*, to appear (2009)

Consider a Cauchy problem

$$\dot{x}(t) = A(t)x(t), \ x(0) = x_0 \in \mathbb{R}^n.$$

 $[A(t), B(t)] = 0 \Rightarrow x(t) = e^{B(t)}x_0$, where $B(t) = \int_0^t A(s) ds$.

The question:

Is [A(t), B(t)] = 0 necessary to guarantee $x(t) = e^{B(t)}x_0$?

University of South Florida

Image: A math a math

Wen-Xiu Ma

	Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions			
Open question on linear DEs							

- W.X. Ma and B. Shekhtman, *Linear Multilinear Algebra*, to appear (2009)

Consider a Cauchy problem

$$\dot{x}(t) = A(t)x(t), \ x(0) = x_0 \in \mathbb{R}^n.$$

 $[A(t), B(t)] = 0 \Rightarrow x(t) = e^{B(t)}x_0$, where $B(t) = \int_0^t A(s) ds$.

The question:

Is [A(t), B(t)] = 0 necessary to guarantee $x(t) = e^{B(t)}x_0$?

Variational identities 000000000 000	Hamiltonian structures 000	Super-variational identities 00 000	Further questions

Thank you!

University of South Florida

Wen-Xiu Ma