Trace identities, variational identities and Hamiltonian structures

Wen-Xiu Ma
Department of Mathematics and Statistics
University of South Florida

Outline

1 Introduction

2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings

- The perturbation equations
a Super-variational identities
- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

5 Further questions

Outline

1 Introduction
2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings - The perturbation equations

4 Super-variational identities - Variational identities on Lie superalgebras - Application to the super-AKNS hierarchy

Outline

1 Introduction
2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings
■ The perturbation equations
4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

5 Further questions

Outline

1 Introduction
2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings
■ The perturbation equations
4 Super-variational identities
■ Variational identities on Lie superalgebras

- Application to the super-AKNS hierarchy

5 Further questions

Outline

1 Introduction
2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings
■ The perturbation equations
4 Super-variational identities
■ Variational identities on Lie superalgebras

- Application to the super-AKNS hierarchy

5 Further questions

1 Introduction

2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings

- The perturbation equations

4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

5 Further questions

Integrability problem

Given an initial value problem

$$
K\left(u, u^{\prime}, \cdots\right)=0,\left.u\right|_{t=0}=u_{0}
$$

how can one determine the solution?
ODEs: Liouville-Arnold theory:
Sufficiently many conserved quantities \Rightarrow Integrability

PDEs: Integrability requires infinitely many conservation laws:

$$
F_{x}+H_{t}=0 \Rightarrow \tilde{H}=\int H d x-\text { conserved }
$$

Spectral problem and recursion operator

$$
\phi_{x}=U(u, \lambda) \phi \text { or } E \phi=U(u, \lambda) \phi \quad \Leftrightarrow \quad u_{t}=\phi^{n} K_{0}[u]
$$

$$
\Uparrow \quad u_{t}=K_{0}[u] \Leftrightarrow U_{t}-V_{x}+[U, V]=0
$$

spectral matrix $U \quad \Leftrightarrow \quad$ recursion operator Φ

Integrable theories

■ Inverse scattering transform
Hirota's bilinear forms
Sato's KP theory
Wronskian and Casorati determinant techniques
Bäcklund, Darboux and Frobenius transformations
Singularity analysis and Painlevé property
Symmetry and Lie group method
etc.

- Infinitely many symmetries

Infinitely many conservation laws
Virasoro algebras and loop groups
Hamiltonian structures and bi-Hamiltonian structures etc.

Hamiltonian structures

Continuous Hamiltonian equation:

$$
u_{t}=K\left(u, u_{x}, \cdots\right)=J \frac{\delta \mathcal{H}}{\delta u}
$$

where J - Hamiltonian, $\mathcal{H}=\int H[u] d x$.
Discrete Hamiltonian equation:
where J - Hamiltonian, $\mathcal{H}=\sum_{n \in \mathbb{Z}} H[u]$

Hamiltonian structures

Continuous Hamiltonian equation:

$$
u_{t}=K\left(u, u_{x}, \cdots\right)=J \frac{\delta \mathcal{H}}{\delta u}
$$

where J - Hamiltonian, $\mathcal{H}=\int H[u] d x$.
Discrete Hamiltonian equation:

$$
\left.u_{t}=K\left(u, E u, E^{-1} u, \cdots\right)\right]=J \frac{\delta \mathcal{H}}{\delta u}
$$

where J - Hamiltonian, $\mathcal{H}=\sum_{n \in \mathbb{Z}} H[u]$.

Hamiltonian properties

Relations with symmetries:

Conserved functional \rightarrow adjoint symmetry \rightarrow symmetry :

$$
\mathcal{I} \quad \rightarrow \frac{\delta \mathcal{I}}{\delta u} \rightarrow J \frac{\delta \mathcal{I}}{\delta u} .
$$

Lie homomorphism : $J \frac{\delta}{\delta u}\left\{\mathcal{I}_{1}, \mathcal{I}_{2}\right\}=\left[J \frac{\delta \mathcal{I}_{1}}{\delta u}, J \frac{\delta \mathcal{I}_{2}}{\delta u}\right]$.

Hamiltonian structures

The question:

Given a soliton equation

$$
u_{t}=K(u) \quad \Leftrightarrow \quad U_{t}-V_{x}+[U, V]=0
$$

how to generate its Hamiltonian structure?

$$
u_{t}=K(u)=J \frac{\delta \mathcal{H}}{\delta u}
$$

In particular, how to determine a Hamiltonian operator J?

1 Introduction
2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings

- The perturbation equations

4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

5 Further questions

Variational identities under bilinear forms

■ Variational identities:

$$
\frac{\delta}{\delta u} \int\left\langle V, U_{\lambda}\right\rangle d x\left[\text { or } \frac{\delta}{\delta u} \sum_{n \in \mathbb{Z}}\left\langle V, U_{\lambda}\right\rangle\right]=\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma}\left\langle V, \frac{\partial U}{\partial u}\right\rangle,
$$

where γ - a constant, $\langle\cdot, \cdot\rangle$ - non-degenerate symmetric invariant bilinear form, and $U, V \in g$ (a Lie algebra, either semisimple or non-semisimple) satisfy

$$
V_{x}=[U, V][\operatorname{or}(E V)(E U)=U V] .
$$

Trace identities under the Killing forms

■ Trace identities:

- G.Z. Tu, J. Phys. A 22(1989) 2375; 23(1990) 3903

If G is a semi-simple Lie algebra, then the variational identities becomes the so-called trace identities:

$$
\frac{\delta}{\delta u} \int \operatorname{tr}\left(V U_{\lambda}\right) d x\left[\text { or } \sum_{n \in \mathbb{Z}} \operatorname{tr}\left(V U_{\lambda}\right)\right]=\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} \operatorname{tr}\left(V \frac{\partial U}{\partial u}\right)
$$

where γ - constant, $U, V \in g$ satisfy

$$
V_{x}=[U, V][\operatorname{or}(E V)(E U)=U V]
$$

- Applications:

KdV, AKNS, Toda lattice, Volterra lattice, etc.

Properties of bilinear forms

■ Non-degenerate property:
If $\langle A, B\rangle=0$ for all $A($ or $B)$, then $B=0($ or $A=0)$.

- The symmetric property:

$$
\langle A, B\rangle=\langle B, A\rangle, A, B \in g .
$$

■ Invariance property under the multiplication:

$$
\langle A, B C\rangle=\langle A B, C\rangle, A, B, C \in g .
$$

Properties of bilinear forms

■ Invariance property under the Lie bracket:
If g is associative, then g forms a Lie algebra under

$$
[A, B]=A B-B A
$$

The invariance property under the Lie bracket reads

$$
\langle A,[B, C]\rangle=\langle[A, B], C\rangle, A, B, C \in g .
$$

- Invariance property under isomorphisms:

$$
\langle\rho(A), \rho(B)\rangle=\langle A, B\rangle, A, B \in g
$$

where ρ - isomorphism of g.

Two observations

- The Killing form:

If g is simesimple, then all bilinear forms satisfy the above properties is equivalent to the Killing form.

- Integrable couplings:

An arbitrary Lie algebra \bar{g} :
where g - semisimple, g_{c} - solvable.
This correspond to integrable couplings.

Two observations

- The Killing form:

If g is simesimple, then all bilinear forms satisfy the above properties is equivalent to the Killing form.
■ Integrable couplings:
An arbitrary Lie algebra \bar{g} :

$$
\bar{g}=g \oplus g_{c},
$$

where g - semisimple, g_{c} - solvable.
This correspond to integrable couplings.

Variational identities on general Lie algebras

Formulas for the constant γ

■ The continuous case:
Let $V_{x}=[U, V]$. If $|\langle V, V\rangle| \neq 0$, then

$$
\gamma=-\frac{\lambda}{2} \frac{d}{d \lambda} \ln |\langle V, V\rangle|
$$

- The discrete case:

$$
\begin{aligned}
& \text { Let }(E V)(E U)= U V \text { and } \Gamma=V U . \text { If }|\langle\Gamma, \Gamma\rangle| \neq 0 \text {, then } \\
& \gamma=-\frac{\lambda}{2} \frac{d}{d \lambda} \ln |\langle\Gamma, \Gamma\rangle| .
\end{aligned}
$$

Variational identities on general Lie algebras

Non-semisimple Lie algebras

As an example, take a semi-direct sum of Lie algebras $\bar{g}=g \oplus g_{c}$:

$$
\begin{gathered}
g=\left\{\operatorname{diag}\left(A_{0}, A_{0}\right) \left\lvert\, A_{0}=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\right.\right\}, \\
g_{c}=\left\{\left[\begin{array}{cc}
0 & A_{1} \\
0 & 0
\end{array}\right] \left\lvert\, A_{1}=\left[\begin{array}{ll}
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right]\right.\right\} .
\end{gathered}
$$

Introduce

This mapping δ induces a Lie bracket on \mathbb{R}^{8}

Variational identities on general Lie algebras

Non-semisimple Lie algebras

As an example, take a semi-direct sum of Lie algebras $\bar{g}=g \oplus g_{c}$:

$$
\begin{aligned}
& g=\left\{\operatorname{diag}\left(A_{0}, A_{0}\right) \left\lvert\, A_{0}=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\right.\right\}, \\
& g_{c}=\left\{\left[\begin{array}{cc}
0 & A_{1} \\
0 & 0
\end{array}\right] \left\lvert\, A_{1}=\left[\begin{array}{ll}
a_{5} & a_{6} \\
a_{7} & a_{8}
\end{array}\right]\right.\right\} .
\end{aligned}
$$

Introduce

$$
\delta: \bar{g} \rightarrow R^{8}, A \mapsto\left(a_{1}, \cdots, a_{8}\right)^{T}, A=\left[\begin{array}{cc}
A_{0} & A_{1} \\
0 & A_{0}
\end{array}\right] \in \bar{g}
$$

This mapping δ induces a Lie bracket on \mathbb{R}^{8} :

$$
[a, b]^{T}=a^{T} R(b)
$$

Transforming basic properties of bilinear forms

An arbitrary bilinear form is given by

$$
\langle a, b\rangle=a^{T} F b, a, b \in \mathbb{R}^{8},
$$

where F - constant matrix.
The symmetric property $\langle a, b\rangle=\langle b, a\rangle \Leftrightarrow F^{\top}=F$
The invariance property $\langle a,[b, c]\rangle=\langle[a, b], c\rangle \Leftrightarrow$

$$
F^{\prime}\left(R^{\prime}(b)\right)^{T}=-R(b) F, b \in \mathbb{R}^{8} .
$$

Transforming basic properties of bilinear forms

An arbitrary bilinear form is given by

$$
\langle a, b\rangle=a^{T} F b, a, b \in \mathbb{R}^{8},
$$

where F - constant matrix.
The symmetric property $\langle a, b\rangle=\langle b, a\rangle \Leftrightarrow F^{T}=F$.
The invariance property $\langle a,[b, c]\rangle=\langle[a, b], c\rangle \Leftrightarrow$

$$
F(R(b))^{T}=-R(b) F, b \in \mathbb{R}^{8}
$$

Transforming basic properties of bilinear forms

An arbitrary bilinear form is given by

$$
\langle a, b\rangle=a^{T} F b, a, b \in \mathbb{R}^{8},
$$

where F - constant matrix.
The symmetric property $\langle a, b\rangle=\langle b, a\rangle \Leftrightarrow F^{T}=F$.
The invariance property $\langle a,[b, c]\rangle=\langle[a, b], c\rangle \Leftrightarrow$

$$
F(R(b))^{T}=-R(b) F, b \in \mathbb{R}^{8}
$$

Variational identities on general Lie algebras

The matrix F

Solving the resulting system yields

$$
F=\left[\begin{array}{cccccccc}
\eta_{1} & 0 & 0 & \eta_{2} & \eta_{3} & 0 & 0 & \eta_{4} \\
0 & 0 & \eta_{1}-\eta_{2} & 0 & 0 & 0 & \eta_{3}-\eta_{4} & 0 \\
0 & \eta_{1}-\eta_{2} & 0 & 0 & 0 & \eta_{3}-\eta_{4} & 0 & 0 \\
\eta_{2} & 0 & 0 & \eta_{1} & \eta_{4} & 0 & 0 & \eta_{3} \\
\eta_{3} & 0 & 0 & \eta_{4} & \eta_{5} & 0 & 0 & \eta_{5} \\
0 & 0 & \eta_{3}-\eta_{4} & 0 & 0 & 0 & 0 & 0 \\
0 & \eta_{3}-\eta_{4} & 0 & 0 & 0 & 0 & 0 & 0 \\
\eta_{4} & 0 & 0 & \eta_{3} & \eta_{5} & 0 & 0 & \eta_{5}
\end{array}\right]
$$

where η_{i} - arbitrary constants.

Matrix Lie algebras

Let $\bar{g}=g \oplus g_{c}$ be a Lie algebra of

$$
A=\operatorname{diag}\left(A_{0}, A_{1}, \cdots, A_{N}\right)=\left[\begin{array}{ccccc}
A_{0} & A_{1} & \cdots & \cdots & A_{N} \\
& A_{0} & A_{1} & & \vdots \\
& & \ddots & \ddots & \vdots \\
& & & A_{0} & A_{1} \\
0 & & & & A_{0}
\end{array}\right]
$$

where

$$
g=\operatorname{diag}\left(A_{0}, 0, \cdots, 0\right), g_{c}=\operatorname{diag}\left(0, A_{1}, \cdots, A_{N}\right)
$$

and A_{i} - square matrices of the same order.

Matrix Lie algebras

For

$$
A=\left(A_{0}, A_{1}, \cdots, A_{N}\right), B=\left(B_{0}, B_{1}, \cdots, B_{N}\right) \in \bar{g},
$$

the matrix product $A B$:

$$
A B=\left(C_{0}, C_{1}, \cdots, C_{N}\right), \quad C_{k}=\sum_{i+j=k} A_{i} B_{j}, 0 \leq k \leq N
$$

and the matrix commutator:

$$
[A, B]=A B-B A=\left(\cdots, \sum_{i+j=k}\left[A_{i}, B_{j}\right], \cdots\right)
$$

Component-trace identities and dark equations

For given $U=U(u, \lambda)=\left(U_{0}, U_{1}, \cdots, U_{N}\right) \in \bar{g}$, we have

$$
\frac{\delta}{\delta u} \int \operatorname{tr}\left(\sum_{i+j=N} V_{i} \frac{\partial U_{j}}{\partial \lambda}\right) d x=\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} \operatorname{tr}\left(\sum_{i+j=N} V_{i} \frac{\partial U_{j}}{\partial u}\right)
$$

where $V=V(u, \lambda)=\left(V_{0}, V_{1}, \cdots, V_{N}\right) \in \bar{g}$ solves $V_{x}=[U, V]$.
The case $N=1 \Rightarrow$ Hamiltonian structures for "dark equations":

$$
u_{t}=K(u), \psi_{t}=A\left(u, \partial_{x}\right) \psi
$$

where $A\left(u, \partial_{x}\right)$ - a linear differential operator.

3 Hamiltonian structures of integrable couplings
■ The perturbation equations

4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

5 Further questions

The continuous case

Symmetry equation:

$$
\rho_{t}=K^{\prime}(u)[\rho] .
$$

The first-order perturbation equation:

$$
u_{t}=K(u), \rho_{t}=K^{\prime}(u)[\rho] .
$$

The component-trace identity with $N=1 \Rightarrow$ a bi-trace identity:

$$
\begin{aligned}
& \frac{\delta}{\delta u} \int\left[\operatorname{tr}\left(V_{0} \frac{\partial U_{1}}{\partial \lambda}\right)+\operatorname{tr}\left(V_{1} \frac{\partial U_{0}}{\partial \lambda}\right)\right] d x \\
& =\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma}\left[\operatorname{tr}\left(V_{0} \frac{\partial U_{1}}{\partial u}\right)+\operatorname{tr}\left(V_{1} \frac{\partial U_{0}}{\partial u}\right)\right]
\end{aligned}
$$

The discrete case

Similar results hold for the discrete case: the component-trace identity with $N=1$
\Rightarrow a bi-trace identity:

$$
\begin{aligned}
& \frac{\delta}{\delta u} \sum_{n \in \mathbb{Z}}\left[\operatorname{tr}\left(V_{0} \frac{\partial U_{1}}{\partial \lambda}\right)+\operatorname{tr}\left(V_{1} \frac{\partial U_{0}}{\partial \lambda}\right)\right] \\
& =\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma}\left[\operatorname{tr}\left(V_{0} \frac{\partial U_{1}}{\partial u}\right)+\operatorname{tr}\left(V_{1} \frac{\partial U_{0}}{\partial u}\right)\right]
\end{aligned}
$$

Hamiltonian structure

The first-order perturbation equation:

$$
u_{t}=K(u), \rho_{t}=K_{1}=K^{\prime}(u)[\rho]
$$

has a Hamiltonian structure:

$$
\bar{u}_{t}=\bar{J} \frac{\delta \overline{\mathcal{H}}}{\delta \bar{u}}, \bar{\jmath}=\left[\begin{array}{ll}
0 & J \\
J & J_{1}
\end{array}\right], J_{1}=J^{\prime}(u)[\rho],
$$

with $\overline{\mathcal{H}}=\int \operatorname{tr}\left(V \frac{\partial U_{1}}{\partial \lambda}+V_{1} \frac{\partial U}{\partial \lambda}\right) d x\left[\right.$ or $\left.\sum_{n \in \mathbb{Z}} \operatorname{tr}\left(V \frac{\partial U_{1}}{\partial \lambda}+V_{1} \frac{\partial U}{\partial \lambda}\right)\right]$,
where $U_{1}=U^{\prime}(u)[\rho]$ and $V_{1}=V^{\prime}(u)[\rho]$.

3 Hamiltonian structures of integrable couplings - The perturbation equations

4 Super-variational identities

- Variational identities on Lie superalgebras
- Application to the super-AKNS hierarchy

5 Further questions

Variational identities on Lie superalgebras

■ Variational identities:

Let g be a Lie superalgebra over a supercommutative ring. Then variational identities on g holds:

$$
\begin{aligned}
& \frac{\delta}{\delta u} \int \operatorname{str}\left(\operatorname{ad}_{\left.V \operatorname{ad}_{\partial U / \partial \lambda}\right) d x\left(\text { or } \frac{\delta}{\delta u} \sum_{n \in \mathbb{Z}} \operatorname{str}\left(\operatorname{ad}_{\left.V \operatorname{ad}_{\partial U / \partial \lambda}\right)}\right)\right.}^{=\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma}\left(\operatorname{ad}_{V \operatorname{ad}_{\partial U / \partial u}}\right)}\right.
\end{aligned}
$$

where $U, V \in g, V_{x}=[U, V]($ or $(E V)(E U)=U V)$, $\operatorname{ad}_{a} b=[a, b]$, and str is the supertrace.

Super-Hamiltonian structures

■ The super-soliton hierarchy:

$$
U=U(p, q)+\alpha E_{3}+\beta E_{4}=\left[\begin{array}{cc}
U(p, q) & \alpha \\
\beta-\alpha & 0
\end{array}\right]
$$

where E_{3}, E_{4} - odd generators of the super $\operatorname{sl}(2), p, q$ commuting variables and α, β - anticommuting variables.

■ Super-Hamiltonian structures:
Applications of super-variational identities to super-integrable systems

The super-AKNS hierarchy

- The super-AKNS spectral problem:

The super AKNS spectral problem associated with $\tilde{B}(0,1)$:

$$
\phi_{x}=U \phi=U(u, \lambda) \phi, U=\left[\begin{array}{ccc}
\lambda & p & \alpha \\
q & -\lambda & \beta \\
\beta & -\alpha & 0
\end{array}\right], u=\left[\begin{array}{c}
p \\
q \\
\alpha \\
\beta
\end{array}\right]
$$

where p, q-commuting fields, α, β - anticommuting fields, and λ - the spectral parameter.

The super-AKNS hierarchy

- The solution V to $V_{x}=[U, V]$:

Take a solution V as follows:

$$
V=\left[\begin{array}{ccc}
A & B & \rho \\
C & -A & \sigma \\
\sigma & -\rho & 0
\end{array}\right]=\sum_{i \geq 0} V_{i} \lambda^{-i}=\sum_{i \geq 0}\left[\begin{array}{ccc}
A_{i} & B_{i} & \rho_{i} \\
C_{i} & -A_{i} & \sigma_{i} \\
\sigma_{i} & -\rho_{i} & 0
\end{array}\right] \lambda^{-i},
$$

where A_{i}, B_{i}, C_{i} are commuting fields, and ρ_{i}, σ_{i} are anticommuting fields.

■ The super-AKNS hierarchy:

$$
u_{t_{m}}=K_{m}=\left(-B_{m+1}, 2 C_{m+1},-\rho_{m+1}, \sigma_{m+1}\right)^{T}, m \geq 0
$$

Application of the super-variational identity

■ Super-Hamiltonian structures:
The super-variational identity where $\gamma=0$ leads to

$$
\frac{\delta}{\delta u} \int \frac{2 A_{m+1}}{m} d x=\left(-C_{m},-B_{m}, 2 \sigma_{m},-2 \rho_{m}\right)^{T}, m \geq 1
$$

So, the super-Hamiltonian structures read

$$
u_{t_{m}}=K_{m}=J \frac{\delta \mathcal{H}_{m}}{\delta u}, m \geq 0
$$

where J and \mathcal{H}_{m} are

$$
J=\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & 0
\end{array}\right], \mathcal{H}_{m}=\int \frac{2 A_{m+2}}{m+1} d x, m \geq 0
$$

2 Variational identities
■ Variational identities on general Lie algebras

- Component-trace identities and dark equations

3 Hamiltonian structures of integrable couplings

- The perturbation equations

4 Super-variational identities
■ Variational identities on Lie superalgebras

- Application to the super-AKNS hierarchy

5 Further questions

Super-symmetric integrable systems:

$D=1$ and $N=1$ case:

How to solve

$$
D_{x} V=[U, V], \quad D_{x}=\partial_{\theta}+\theta \partial_{x}
$$

to realize

$$
U_{t}-D_{x} V+[U, V]=0 ?
$$

Coupled equations:

The coupled perturbation system:

$$
\left\{\begin{array}{l}
u_{t}=K(u), \\
v_{t}=K^{\prime}(u)[v] \\
w_{t}=K^{\prime}(u)[w]
\end{array}\right.
$$

Does this possess any Hamiltonian structure?

Super-integrable couplings:

Semi-direct sums of Lie superalgebras:

For example, $\bar{g}=g \oplus g_{c}$ with Lie product:

$$
\begin{aligned}
& \bar{W}=W+W_{c}=[\bar{U}, \bar{V}]=\left[U+U_{c}, V+V_{c}\right] \\
& W=[U, V], W_{c}=\left[U, V_{c}\right]+\left[U_{c}, V\right] .
\end{aligned}
$$

Super-integrable couplings:

Bilinear forms on semi-direct sums:

Anti-commuting variables in \bar{g} bring difficulties.

Applications to super-integrable couplings:

How to determine useful super-variational identities on \bar{g} ?
Applications to dark equations.

Super-integrable couplings:

Bilinear forms on semi-direct sums:
Anti-commuting variables in \bar{g} bring difficulties.

Applications to super-integrable couplings:

How to determine useful super-variational identities on \bar{g} ?
Applications to dark equations.

Open question on linear DEs

- W.X. Ma and B. Shekhtman, Linear Multilinear Algebra, to appear (2009)

Consider a Cauchy problem

$$
\begin{gathered}
\dot{x}(t)=A(t) x(t), x(0)=x_{0} \in \mathbb{R}^{n} . \\
{[A(t), B(t)]=0 \Rightarrow x(t)=e^{B(t)} x_{0}, \text { where } B(t)=\int_{0}^{t} A(s) d s .}
\end{gathered}
$$

The question:

Is $[A(t), B(t)]=0$ necessary to guarantee $x(t)=e^{B(t)} x_{0}$?

Open question on linear DEs

- W.X. Ma and B. Shekhtman, Linear Multilinear Algebra, to appear (2009)

Consider a Cauchy problem

$$
\begin{gathered}
\dot{x}(t)=A(t) x(t), x(0)=x_{0} \in \mathbb{R}^{n} . \\
{[A(t), B(t)]=0 \Rightarrow x(t)=e^{B(t)} x_{0}, \text { where } B(t)=\int_{0}^{t} A(s) d s .}
\end{gathered}
$$

The question:

Is $[A(t), B(t)]=0$ necessary to guarantee $x(t)=e^{B(t)} x_{0}$?

Thank you!

