Quasideterminant solutions to the Manin-Radul super KdV equation

Chunxia Li \& Jon Nimmo

School of Mathematical Sciences, Capital Normal University

$$
\text { July 20, } 2009
$$

Outline

- Motivation

Quasideterminants and superdeterminants
Darboux transformations in terms of a deformed derivation - A deformed derivation

Outline

- Motivation
- Quasideterminants and superdeterminants

Outline

- Motivation
- Quasideterminants and superdeterminants
- Darboux transformations in terms of a deformed derivation
- A deformed derivation
- Darboux transformations

Outline

- Motivation
- Quasideterminants and superdeterminants
- Darboux transformations in terms of a deformed derivation
- A deformed derivation
- Darboux transformations
- The Manin-Radul super KdV equation
- Quasideterminant solutions by Darboux transformations
- Direct Approach
- From quasideterminants to superdeterminants

Outline

- Motivation
- Quasideterminants and superdeterminants
- Darboux transformations in terms of a deformed derivation
- A deformed derivation
- Darboux transformations
- The Manin-Radul super KdV equation
- Quasideterminant solutions by Darboux transformations
- Direct Approach
- From quasideterminants to superdeterminants
- Conclusions

Motivation

- Recent interest in noncommutative version of integrable systems (Paniak, Hamanaka \& Toda, Wang \& Wadati, Nimmo \& Gilson etc.)
- Different reasons for noncommutativity - matrix, quaternion version etc. or due to quantization (Moyal product).
- Supersymmetric equations are a particular type of noncommutativity and often have superdeterminant solutions.
- In commutative case, Darboux transformations give determinant solutions to soliton equations.
- Quasideterminants are the natural replacement when entries in a matrix do not commute.
- For matrix with supersymmetric entries, quasideterminants are related to superdeterminants.

Quasideterminants - Definition

Developed since early 1990s by Gelfand and Retakh; recent review article Gelfand et al (2005) Advances in Mathematics, 193, 56-141.

Definition

An $n \times n$ matrix $A=\left(a_{i, j}\right)$ over a ring (non-commutative, in general) has n^{2} quasideterminants written as $|A|_{i, j}$. Defined recursively by

$$
|A|_{i, j}=a_{i, j}-r_{i}^{j}\left(A^{i, j}\right)^{-1} c_{j}^{i}, \quad A^{-1}=\left(|A|_{j, i}^{-1}\right)_{i, j=1, \ldots, n}
$$

Notation: $A=\left[\begin{array}{ccc}A^{i, j} & c_{j}^{i} & \\ r_{i}^{j} & a_{i, j} & \\ & & \end{array}\right]$

Quasideterminants - Noncommutative Jacobi Identity

Noncommutative Jacobi identity

$$
\left|\begin{array}{lll}
A & B & C \\
D & f & g \\
E & h & \boxed{i}
\end{array}\right|=\left|\begin{array}{cc}
A & C \\
E & \boxed{i}
\end{array}\right|-\left|\begin{array}{cc}
A & B \\
E & \boxed{h}
\end{array}\right|\left|\begin{array}{cc}
A & B \\
D & \boxed{f}
\end{array}\right|^{-1}\left|\begin{array}{cc}
A & C \\
D & \boxed{g}
\end{array}\right|
$$

C.f. Jacobi identity

$$
\left|\begin{array}{lll}
A & B & C \\
D & f & g \\
E & h & i
\end{array}\right|=\left|\begin{array}{cc}
A & C \\
E & i
\end{array}\right|\left|\begin{array}{cc}
A & B \\
D & f
\end{array}\right|-\left|\begin{array}{cc}
A & B \\
E & h
\end{array}\right|\left|\begin{array}{cc}
A & C \\
D & g
\end{array}\right|
$$

Quasideterminants - Invariance

The following formula can be used to understand the effect on a quasideterminant of certain elementary row operations involving addition and multiplication on the left

$$
\left|\left(\begin{array}{cc}
E & 0 \\
F & g
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & d
\end{array}\right)\right|_{n, n}=\left|\begin{array}{cc}
E A & E B \\
F A+g C & \boxed{F B+g d}
\end{array}\right|=g\left|\begin{array}{cc}
A & B \\
C & \boxed{d}
\end{array}\right| .
$$

There is analogous invariance under column operations involving addition and multiplication on the right.

Remark. This property is very important for re-ordering a quasideterminant to get an even super matrix and determining the parity of a quasideterminant.

Quasideterminants - Applications to linear systems

Solutions of systems of linear systems over an arbitrary ring can be expressed in terms of quasideterminants.

Theorem 1. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix over a ring \mathcal{R}. Assume that all the quasideterminants $|A|_{i j}$ are defined and invertible. Then the system of equations

$$
\begin{equation*}
x_{1} a_{1 i}+x_{2} a_{2 i}+\cdots+x_{n} a_{n i}=b_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

has the unique solution

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} b_{j}|A|_{i j}^{-1}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

Let $A_{l}(b)$ be the $n \times n$ matrix obtained by replacing the l-th row of the matrix A with the row $\left(b_{1}, \ldots, b_{n}\right)$. Then we have the following Cramer's rule.

Theorem 2. In notation of Theorem 1, if the quasideterminants $|A|_{i j}$ and $\left|A_{i}(b)\right|_{i j}$ are well defined, then

$$
x_{i}|A|_{i j}=\left|A_{i}(b)\right|_{i j}
$$

Superdeterminants - Definition

In the context of superalgebra, a (block) supermatrix $\mathcal{M}=\left(\begin{array}{cc}X & Y \\ Z & T\end{array}\right)$ is said to be even if X and T are even square matrices and Y, Z are (not necessarily square) odd matrices. If X is $m \times m$ and T is $n \times n$ then \mathcal{M} is called an (m, n)-supermatrix.

The superdeterminant, or Berezinian, of \mathcal{M} is defined to be

$$
\operatorname{Ber}(\mathcal{M})=\operatorname{sdet}(\mathcal{M})=\frac{\operatorname{det}\left(X-Y T^{-1} Z\right)}{\operatorname{det}(T)}=\frac{\operatorname{det}(X)}{\operatorname{det}\left(T-Z X^{-1} Y\right)}
$$

- Berezin F.A., Introduction to superanalysis (D. Reidel Publishing Company, Dordrecht, 1987).
- DeWitt B., Supermanifolds (Cambridge University Press, 1984).

Superdeterminants vs. Quasideterminants

Lemma 1. Let \mathcal{M} be an (m, n)-supermatrix. Then

$$
|\mathcal{M}|_{i, j}= \begin{cases}(-1)^{i+j} \frac{\operatorname{Ber}(\mathcal{M})}{\operatorname{Ber}\left(\mathcal{M}^{i, j}\right)}, & 1 \leq i, j \leq m \tag{3}\\ (-1)^{i+j} \frac{\operatorname{Ber}\left(\mathcal{M}^{i, j}\right)}{\operatorname{Ber}(\mathcal{M})}, & m+1 \leq i, j \leq m+n\end{cases}
$$

where $\mathcal{M}^{i, j}$ is the submatrix obtained by deleting row i and column j in \mathcal{M}. C.f. In commutative case,

$$
|A|_{i, j}=(-1)^{i+j} \frac{\operatorname{det}(A)}{\operatorname{det}\left(A^{i, j}\right)}
$$

- Bergvelt M.J. and Rabin J.M., Super curves, their Jacobians and super KP equations. arXiv: alg-geom/9601012v1.

A deformed derivation - Definition

Definition

Let \mathcal{A} be an associative, unital algebra over ring K. An operator $D: \mathcal{A} \rightarrow \mathcal{A}$ satisfying $D(K)=0$ and $D(a b)=D(a) b+h(a) D(b)$ is called a deformed derivation, where $h: \mathcal{A} \rightarrow \mathcal{A}$ is a homomorphism, i.e. for all $\alpha \in K, a, b \in \mathcal{A}, h(\alpha a)=\alpha h(a), h(a+b)=h(a)+h(b)$ and $h(a b)=h(a) h(b)$.

Examples: We assume that elements in \mathcal{A} depend on a variable x.
(1) Normal derivative $D=\partial / \partial x$ satisfying $D(a b)=D(a) b+a D(b)$ with $h=i d_{\mathcal{A}}$.
(2) Forward difference $D(a)=\alpha^{-1} \Delta(a)=(a(x+1)-a(x)) / \alpha$ satisfying $D(a(x) b(x))=D(a(x)) b(x)+a(x+1) D(b(x))$ with $h=T$ (the shift map).
(3) q-derivative $D(a)=D_{q}(a)=\frac{a(q x)-a(x)}{(q-1) x}$ with $h(a(x))=S_{q}(a)=a(q x)$.
(4) Superderivative $D=\partial_{\theta}+\theta \partial_{x}$ satisfying $D(a b)=D(a) b+\hat{a} D(b)$ where $h={ }^{\wedge}$ is the grade involution: let a be even, b odd, then $\widehat{a+b}=a-b$.

A deformed derivation - Continued

Lemma 2.
(1) Let A, B be matrices over \mathcal{A}. Whenever $A B$ is defined, $h(A B)=h(A) h(B)$ and $D(A B)=D(A) B+h(A) D(B)$,
(2) Let A be an invertible matrix over \mathcal{A}. Then $h(A)^{-1}=h\left(A^{-1}\right)$ and $D\left(A^{-1}\right)=-h(A)^{-1} D(A) A^{-1}$,

3 Let A, B, C be matrices over \mathcal{A} such that $A B^{-1} C$ is well-defined. Then $D\left(A B^{-1} C\right)=D(A) B^{-1} C+h(A) h(B)^{-1}\left(D(C)-D(B) B^{-1} C\right)$.

A deformed derivation - Darboux transformations

Define $G_{a}: \mathcal{A} \rightarrow \mathcal{A}$ by $G_{a}(b)=h(a) D\left(a^{-1} b\right)=D(b)-D(a) a^{-1} b$ for any $a \in \mathcal{A}$, then we have Darboux transformations

Theorem 3. Given $\phi, \theta_{0}, \theta_{1}, \theta_{2}, \cdots \in \mathcal{A}$ where θ_{i} are invertible, the sequence of Darboux transformations of $\phi[k] \in \mathcal{A}$ is defined recursively by $\phi[k+1]=G_{\theta[k]}(\phi[k])$, where $\phi[0]=\phi, \theta[0]=\theta_{0}$ and $\theta[k]=\left.\phi[k]\right|_{\phi \rightarrow \theta_{k}}$.

For example, the Darboux transformation for $k=0$ is given by

$$
\phi[1]=D(\phi)-D\left(\theta_{0}\right) \theta_{0}^{-1} \phi .
$$

Remark. The formulae for the iteration of Darboux transformations are identical with those in the standard case of a regular derivation.

A deformed derivation - Darboux transformations

Theorem 4. For integers $n \geq 0$,

$$
\phi[n]=\left|\begin{array}{cccc}
\theta_{0} & \cdots & \theta_{n-1} & \phi \\
D\left(\theta_{0}\right) & \cdots & D\left(\theta_{n-1}\right) & D(\phi) \\
\vdots & & \vdots & \vdots \\
D^{n-1}\left(\theta_{0}\right) & \cdots & D^{n-1}\left(\theta_{n-1}\right) & D^{n-1}(\phi) \\
D^{n}\left(\theta_{0}\right) & \cdots & D^{n}\left(\theta_{n-1}\right) & D^{n}(\phi)
\end{array}\right| .
$$

Remark. The form of this iteration formula for Darboux transformations is the same as the standard one in which $D=\partial$.

The Manin-Radul super KdV equation

As a particular example, we consider the Manin-Radul super KdV equation

$$
\begin{aligned}
\partial_{t} \alpha & =\frac{1}{4} \partial\left(\partial^{2} \alpha+3 \alpha D \alpha+6 \alpha u\right), \\
\partial_{t} u & =\frac{1}{4} \partial\left(\partial^{2} u+3 u^{2}+3 \alpha D u\right)
\end{aligned}
$$

Lax pair

$$
\begin{aligned}
& \partial^{2} \phi+\alpha D \phi+u \phi-\lambda \phi=0 \\
& \partial_{t} \phi-\frac{1}{2} \alpha \partial D \phi-\lambda \partial \phi-\frac{1}{2} u \partial \phi+\frac{1}{4}(\partial a) D \phi+\frac{1}{4}(\partial u) \phi=0
\end{aligned}
$$

- Y.I. Manin and A. O. Radul, Comm. Math. Phys. 98(1985) 65-77.

Quasideterminant solutions by Darboux transformations

Let $\theta_{i}, i=0, \ldots, n-1$ be a particular set of eigenfunctions of the Lax pair. To make sense, we choose θ_{i} to be even if its index is even, otherwise, θ_{i} is odd. The Darboux transformation is then defined recursively by

$$
\begin{aligned}
\phi[k+1] & =D(\phi[k])-D(\theta[k]) \theta[k]^{-1} \phi[k] \\
\alpha[k+1] & =-\alpha[k]+2 \partial\left(D(\theta[k]) \theta[k]^{-1}\right) \\
u[k+1] & =u[k]+D(\alpha[k])-2 D(\theta[k]) \theta[k]^{-1}\left(\alpha[k]-\partial\left(D(\theta[k]) \theta[k]^{-1}\right)\right)
\end{aligned}
$$

where $\phi[0]=\phi, \theta[0]=\theta_{0}, \alpha[0]=\alpha, u[0]=u$ and

$$
\theta[k]=\left.\phi[k]\right|_{\phi \rightarrow \theta_{k}} .
$$

- Q.P. Liu and M. Mañas, Physics Letters B 396(1997) 133-140.

Quasideterminant solutions by Darboux transformations

We introduce the quasideterminants

$$
Q_{n}(i, j)=\left|\begin{array}{cccc}
\theta_{0} & \cdots & \theta_{n-1} & 0 \\
D \theta_{0} & \cdots & D \theta_{n-1} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
D^{n-j-1} \theta_{0} & \cdots & D^{n-j-1} \theta_{n-1} & 1 \\
D^{n-j} \theta_{0} & \cdots & D^{n-j} \theta_{n-1} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
D^{n-1} \theta_{0} & \cdots & D^{n-1} \theta_{n-1} & 0 \\
D^{n+i} \theta_{0} & \cdots & D^{n+i} \theta_{n-1} & 0
\end{array}\right| .
$$

Observation 1. $h\left(Q_{n}(i, j)\right)=(-1)^{i+j+1} Q_{n}(i, j)$, that is, $Q_{n}(i, j)$ has the parity $(-1)^{i+j+1}$.

Observation 2. $\partial Q_{n}(i, j)=D^{2} Q_{n}(i, j)$ and $D Q_{n}(i, j)=Q_{n}(i+1, j)+(-1)^{i+j+1} Q_{n}(i, j+1)+(-1)^{i+1} Q_{n}(i, 0) Q_{n}(0, j)$.

Quasideterminant solutions by Darboux transformations

Lemma 3. $D\left(\theta_{0}\right) \theta_{0}^{-1}=-Q_{1}(0,0)$,

$$
D(\theta[k]) \theta[k]^{-1}=-Q_{k}(0,0)-Q_{k+1}(0,0), \quad k \geq 1
$$

Theorem 4. After n repeated Darboux transformations, the Manin-Radul super KdV equation has new solutions $\alpha[n]$ and $u[n]$ expressed in terms of quasideterminants

$$
\begin{aligned}
& \alpha[n]=(-1)^{n} \alpha-2 \partial Q_{n}(0,0) \\
& u[n]=u-2 \partial Q_{n}(0,1)-2 Q_{n}(0,0)\left((-1)^{n} \alpha-\partial Q_{n}(0,0)\right)+\frac{1-(-1)^{n}}{2} D \alpha
\end{aligned}
$$

Proof. By induction.

Direct Approach

Under the assumptions $\alpha=0$ and $u=0$, we can prove $\alpha[n]=-2 \partial Q_{n}(0,0)$ and $u[n]=-2 \partial Q_{n}(0,1)+2 Q_{n}(0,0) \partial Q_{n}(0,0)$ with $\partial_{t} \theta_{i}=\partial^{3} \theta_{i}$ $(i=0, \ldots, n-1)$ satisfy the super KdV equation by a direct approach. To achieve this, we introduce an auxiliary variable y such that $\partial_{y} \theta_{i}=\partial^{2} \theta_{i}$. By doing this, we can find hidden identities by letting $\partial_{y} \Omega_{n}(i, j)=0$.

Observation 3. Through detailed calculations, we have

$$
\begin{aligned}
\partial_{y} Q_{n}(i, j)= & Q_{n}(i+4, j)-Q_{n}(i, j+4)+Q_{n}(i, 0) Q_{n}(3, j) \\
& +Q_{n}(i, 1) Q_{n}(2, j)+Q_{n}(i, 2) Q_{n}(1, j)+Q_{n}(i, 3) Q_{n}(0, j) \\
\partial_{t} Q_{n}(i, j)= & Q_{n}(i+6, j)-Q_{n}(i, j+6)+Q_{n}(i, 0) Q_{n}(5, j)+Q_{n}(i, 1) Q_{n}(4, j) \\
& +Q_{n}(i, 2) Q_{n}(3, j)+Q_{n}(i, 3) Q_{n}(2, j)+Q_{n}(i, 4) Q_{n}(1, j)+Q_{n}(i, 5) Q_{n}(0, j) .
\end{aligned}
$$

By substitution and letting $\partial_{y} Q_{n}(i, j)=0$ for all $i+j \leq 5, i \geq 0, j \geq 0$, all terms in the super KdV equation cancel identically.

- C.R. Gilson and J.J.C. Nimmo, On a direct approach to quasideterminant solutions of a noncommutative KP equation, J. Phys. A: Math. Theor. 40(2007) 3839-3850.

From quasideterminants to superdeterminants

In Liu and Mañas' paper we mentioned before, the solutions to the super KdV system were given as

$$
\begin{aligned}
& \alpha[n]=(-1)^{n} \alpha-2 \partial a_{n, n-1} \\
& u[n]=u-2 \partial a_{n, n-2}-a_{n, n-1}\left((-1)^{n} \alpha+\alpha[n]\right)+\frac{1-(-1)^{n}}{2} D \alpha
\end{aligned}
$$

where $a_{n, n-1}, a_{n, n-2}, \ldots, a_{n, 0}$ satisfy the linear system

$$
T_{n} \theta_{j}=\left(D^{n}+a_{n, n-1} D^{n-1}+\cdots+a_{n, 0}\right) \theta_{j}=0, \quad i=0, \ldots, n-1 .
$$

By solving the above linear system using Theorem 2, we managed to obtain a unified formula for all $a_{n, n-i}$, that is,

$$
a_{n, n-i}=Q_{n}(0, i-1), \quad i=1, \ldots, n,
$$

which coincide with the solutions shown before when $i=1$.

From quasideterminants to superdeterminants

To identify quasideterminant solutions with superdeterminant solutions given by Liu and Mañas, we will split (??) into two cases.

Case I. For $n=2 k$, denote $\mathbf{b}=\left(D^{2 k} \theta_{0}, \cdots, D^{2 k} \theta_{2 k-2}, D^{2 k} \theta_{1}, \cdots, D^{2 k} \theta_{2 k-1}\right)$,

$$
\mathcal{W}=\left(\begin{array}{cccccc}
\theta_{0} & \cdots & \theta_{2 k-2} & \theta_{1} & \cdots & \theta_{2 k-1} \\
\vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
D^{2 k-2} \theta_{0} & \cdots & D^{2 k-2} \theta_{2 k-2} & D^{2 k-2} \theta_{1} & \cdots & D^{2 k-2} \theta_{2 k-1} \\
D \theta_{0} & \cdots & D \theta_{2 k-2} & D \theta_{1} & \cdots & D \theta_{2 k-1} \\
\vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
D^{2 k-1} \theta_{0} & \cdots & D^{2 k-1} \theta_{2 k-2} & D^{2 k-1} \theta_{1} & \cdots & D^{2 k-1} \theta_{2 k-1}
\end{array}\right)
$$

and $\hat{\mathcal{W}}$ is obtained from \mathcal{W} by replacing the k-th row with \mathbf{b}, then we have

$$
a_{2 k, 2 k-1}=Q_{2 k}(0,0)=D \ln (\operatorname{Ber}(\mathcal{W})), a_{2 k, 2 k-2}=Q_{2 k}(0,1)=-\frac{\operatorname{Ber}(\hat{\mathcal{W}})}{\operatorname{Ber}(\mathcal{W})}
$$

From quasideterminants to superdeterminants

Case II. For $n=2 k+1$, denote

$$
\begin{aligned}
& \mathbf{c}=\left(D^{2 k+1} \theta_{0}, \cdots, D^{2 k+1} \theta_{2 k}, D^{2 k+1} \theta_{1}, \cdots, D^{2 k+1} \theta_{2 k-1}\right), \\
& \mathcal{W}=\left(\begin{array}{cccccc}
\\
\theta_{0} & \cdots & \theta_{2 k} & \theta_{1} & \cdots & \theta_{2 k-1} \\
\vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
D^{2 k} \theta_{0} & \cdots & D^{2 k} \theta_{2 k} & D^{2 k} \theta_{1} & \cdots & D^{2 k} \theta_{2 k-1} \\
D \theta_{0} & \cdots & D \theta_{2 k} & D \theta_{1} & \cdots & D \theta_{2 k-1} \\
\vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
D^{2 k-1} \theta_{0} & \cdots & D^{2 k-1} \theta_{2 k} & D^{2 k-1} \theta_{1} & \cdots & D^{2 k-1} \theta_{2 k-1}
\end{array}\right),
\end{aligned}
$$

and $\hat{\mathcal{W}}$ is obtained from \mathcal{W} by replacing the $(2 k+1)$-th row with \mathbf{c}.

From quasideterminants to superdeterminants

Liu and Mañas gave an expression for $a_{2 k+1,2 k}$ as the ratio of determinants rather than superdeterminants. Here we obtain an expression as the logarithmic superderivative of a superdeterminant.

$$
\left.\begin{array}{rl}
a_{2 k+1,2 k-1} & =Q_{2 k+1}(0,1)
\end{array}\right)=-\frac{\operatorname{Ber}(\mathcal{W})}{\operatorname{Ber}(\hat{\mathcal{W}})}
$$

In contrast with the expression

$$
a_{2 k+1,2 k}=-\frac{\operatorname{det}\left(\hat{W}^{(0)}-\hat{W}^{(1)}\left(D \widetilde{W}^{(1)}\right)^{-1}\left(D \widetilde{W}^{(0)}\right)\right)}{\operatorname{det}\left(W^{(0)}-W^{(1)}\left(D \widetilde{W}^{(1)}\right)^{-1}\left(D \widetilde{W}^{(0)}\right)\right)}
$$

found by Liu and Mañas.

Conclusions

(1) A deformed derivation is defined and its Darboux transformation in terms of quasideterminants is constructed.
(2) As an application, quasideterminant solutions for the Manin-Radul super KdV system are obtained and proved both by induction and by direct approach.
(3) By using quasideterminants, we obtain a unified expression for the solutions constructed by Darboux transformations. This also allows us to obtain solutions in terms of superdeterminants for all cases.

