Recent results on multiscale technique and integrability of partial difference equations

Decio Levi

(joint work with R. Hernandez Heredero, M. Petrera and C. Scimiterna)

Electronic Engineering Department, Roma Tre University and INFN, Sezione Roma Tre

International Workshop on Nonlinear and Modern Mathematical Physics Beijing, July 15-21, 2009

Outline

(1) Introduction

- Multiscale analysis and Integrability for PDEs
- Multiscale on the lattice
- from shifts to derivatives
- from derivative to shifts
(2) Integrability of discrete Nonlinear Schrödinger Equations
- Other examples
(9) Classification of lattice equations on the square
- Conclusions

Introduction

- Multiscale analysis: perturbation technique for constructing uniformly valid approximation to solutions of perturbation problems;
- Nonuniformity arises from secularity.
- Multiscale perturbation methods have been introduces by Poincaré to deal with secularity problems in the perturbative solution of differential equations.
- In the reductive perturbation method introduced by Taniuti et. al., the space and time coordinates are stretched in terms of a small expansion parameter and we look for the far field behaviour of the system.
- Multi-scale expansions can be applied to both integrable and non-integrable systems.

Multiscale analysis and integrability

- Multiscale analysis: perturbation technique for testing integrability of a given nonlinear system [Calogero];
- Integrability is preserved in the reduction process [Zakharov, Kuznetsov PDE].
- Partial differential equation example: $K d V$ equation for $u(x, t) \in \mathcal{R}$

$$
\frac{\partial u}{\partial t}+\frac{\partial^{3} u}{\partial x^{3}}=u \frac{\partial u}{\partial x}
$$

- Solution of the form

$$
u(x, t ; \varepsilon)=\sum_{n=1}^{+\infty} \sum_{\alpha=-n}^{n} \varepsilon^{n} u_{n}^{(\alpha)}\left(\xi, t_{1}, t_{2}, \ldots\right) e^{\mathrm{i} \alpha(\kappa x-\omega t)}
$$

$u_{n}^{(-\alpha)}=\bar{u}_{n}^{(\alpha)} . \xi \doteq \varepsilon x, t_{j} \doteq \varepsilon^{j} t, j \geq 1$ are the slow variables;

Multiscale analysis and integrability

- Space and time partial derivatives becomes:

$$
\begin{gathered}
\partial_{x} \rightarrow \partial_{x}+\varepsilon \partial_{\xi} \\
\partial_{t} \rightarrow \partial_{t}+\varepsilon \partial_{t_{1}}+\varepsilon^{2} \partial_{t_{2}}+\ldots,
\end{gathered}
$$

and all the variables are considered to be independent;

- Order ε :
$\alpha=1$: dispersion relation $\omega=-\kappa^{3}$;
- $\operatorname{Order} \varepsilon^{2}$:
$\alpha=0$:

$$
\partial_{t_{1}} u_{1}^{(0)}=0 .
$$

$\alpha=1:$

$$
\left[\partial_{t_{1}}+\mathrm{i} \kappa\left(3 \mathrm{i} \kappa \partial_{\xi}-u_{1}^{(0)}\right)\right] u_{1}^{(1)}=0 .
$$

Solution:

$$
u_{1}^{(1)}=g_{1}^{(1)}\left(\rho, t_{2}, t_{3}\right) e^{-\frac{i}{3 \kappa} \int_{\xi_{0}}^{\xi} u_{1}^{(0)}\left(\xi^{\prime}, t_{2}, t_{3}\right) d \xi^{\prime}}, \quad \rho \doteq \xi+3 \kappa^{2} t_{1} .
$$

Multiscale analysis and integrability

$$
\alpha=2: \quad u_{2}^{(2)}=-\frac{1}{6 \kappa^{2}}\left(u_{1}^{(1)}\right)^{2}
$$

- Order ε^{3} :
$\alpha=0$:

$$
\partial_{t_{1}} u_{2}^{(0)}=\partial_{\rho}\left(\left|u_{1}^{(1)}\right|^{2}\right)+\frac{1}{2} \partial_{\xi}\left[\left(u_{1}^{(0)}\right)^{2}\right]-\partial_{t_{2}} u_{1}^{(0)}
$$

No-secularity conditions

- The right-hand side solves the homogeneous equation: secularity!

$$
\begin{gathered}
\partial_{t_{1}} u_{2}^{(0)}=\partial_{\rho}\left(\left|u_{1}^{(1)}\right|^{2}\right) \\
\left(\partial_{t_{2}}-u_{1}^{(0)} \partial_{\xi}\right) u_{1}^{(0)}=0, \quad \text { Hopf equation: wave breaking! }
\end{gathered}
$$

Solutions:

$$
u_{2}^{(0)}=\frac{\left|u_{1}^{(1)}\right|^{2}}{3 \kappa^{2}}, \quad u_{1}^{(0)}=0
$$

Multiscale analysis and integrability

$\alpha=1:$

$$
\left(\partial_{t_{1}}-3 \kappa^{2} \partial_{\xi}\right) u_{2}^{(1)}=-\left(\partial_{t_{2}}+3 \mathrm{i} \kappa \partial_{\rho}^{2}-\frac{\mathrm{i}}{6 \kappa}\left|u_{1}^{(1)}\right|^{2}\right) u_{1}^{(1)}
$$

No-secularity condition

- The right-hand side solves the homogeneous equation: secularity!

$$
\begin{gathered}
\left(\partial_{t_{1}}-3 \kappa^{2} \partial_{\xi}\right) u_{2}^{(1)}=0 \\
\left(\partial_{t_{2}}+3 i \kappa \partial_{\rho}^{2}-\frac{\mathrm{i}}{6 \kappa}\left|u_{1}^{(1)}\right|^{2}\right) u_{1}^{(1)}=0: \quad \text { NLS equation. }
\end{gathered}
$$

- KdV equation and NLS equation are both integrable!

Multiscale analysis and integrability

- Higher orders beyond NLS equation [Degasperis, Manakov, Santini]: fundamental for an integrability test.

Proposition [Degasperis, Procesi]: If an equation is integrable, then under a multiscale expansion the functions $u_{m}^{(1)}, m \geq 1$ satisfy the equations

$$
\begin{gathered}
\partial_{t_{n}} u_{1}^{(1)}=K_{n}\left[u_{1}^{(1)}\right], \\
M_{n} u_{j}^{(1)}=g_{n}(j), \quad M_{n} \doteq \partial_{t_{n}}-K_{n}^{\prime}\left[u_{1}^{(1)}\right],
\end{gathered}
$$

$\forall j, n \geq 2$.
$K_{n}\left[u_{1}^{(1)}\right]: n$-th flow in a hierarchy of integrable equations;
$K_{n}^{\prime}\left[u_{j}^{(1)}\right] v$: Frechet derivative of $K_{n}\left[u_{j}^{(1)}\right]$ along v: linearization;
$g_{n}(j)$: nonhomogeneous forcing term in a well defined polynomial vector space or linear combination of basic monomials.

Multiscale analysis and integrability

- Compatibility conditions:

$$
M_{k} g_{n}(j)=M_{n} g_{k}(j), \quad \forall k, n \geq 2
$$

- Integrability conditions: set of relations among the coefficients of $g_{n}(j)$.
- Definition [Degasperis, Procesi]: If the compatibility conditions are satisfied up to the index $j \geq 2$, our equation is asymptotically integrable of degree j (A_{j} integr.).
- Known results for A_{3} integrability conditions:
weakly dispersive nonlinear systems: $K d V / p o t . K d V$ hierarchies,
strongly dispersive nonlinear systems: NLS hierarchy, their linearizable limits.

Multiscale on the lattice: from shifts to derivatives

Let us consider a function $u_{n}: \mathbb{Z} \rightarrow \mathbb{R}$ depending on a discrete index $n \in \mathbb{Z}$

- The dependence of u_{n} on n is realized through the slow variable $n_{1} \doteq \varepsilon n \in \mathbb{R}$, $\varepsilon \in \mathbb{R}, \varepsilon=1 / N, N \gg 0,0<\varepsilon \ll 1$, that is to say $u_{n} \doteq u\left(n_{1}\right)$;
- The variable n_{1} can vary in a region of the integer axis such that $u\left(n_{1}\right)$ is therein analytical (Taylor series expandible);
- The radius of convergence of the Taylor series in n_{1} is wide enough to include as inner points the points $n_{1} \pm k \varepsilon$.

$$
\begin{aligned}
& T_{n} u_{n} \doteq u_{n+1}=u\left(n_{1}+\varepsilon\right), \\
& T_{n} u\left(n_{1}\right)=u\left(n_{1}\right)+\varepsilon u^{(1)}\left(n_{1}\right)+\frac{\varepsilon^{2}}{2} u^{(2)}\left(n_{1}\right)+\ldots+\frac{\varepsilon^{i}}{i!} u^{(i)}\left(n_{1}\right)+\ldots=e^{\varepsilon d_{n_{1}}} u\left(n_{1}\right),
\end{aligned}
$$

$$
\begin{equation*}
u_{n} \doteq u\left(n, n_{1}\right), \quad T_{n}=\mathcal{T}_{n} \mathcal{T}_{n_{1}}^{\left(\varepsilon_{n_{1}}\right)}=\mathcal{T}_{n} \sum_{j=0}^{+\infty} \varepsilon^{j} \mathcal{A}_{n}^{(j)}, \quad \mathcal{A}_{n}^{(j)} \doteq \frac{N_{1}^{j}}{j!} \partial_{n_{1}}^{j}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u\left(n, m, n_{1},\left\{m_{j}\right\}_{j=1}^{K}, \varepsilon\right)=\sum_{\gamma=1}^{+\infty} \sum_{\alpha=-\gamma}^{\gamma} \varepsilon^{\gamma} u_{\gamma}^{(\alpha)}\left(n_{1},\left\{m_{j}\right\}_{j=1}^{K}\right) E_{n, m}^{\alpha}, \tag{2}
\end{equation*}
$$

$$
E_{n, m} \doteq e^{i[\kappa n-\omega(\kappa) m]}, \quad u_{\gamma}^{(-\alpha)}=\bar{u}_{\gamma}^{(\alpha)}
$$

Multiscale on the lattice: from derivatives to shifts

Our multiscale approach produces from a given partial difference equation a partial differential equation for one of the amplitudes $u_{\gamma}^{(\alpha)}$. From the PDE we get a $P \Delta E$ inverting the shift operator.

$$
\begin{equation*}
\partial_{n_{1}}=\ln \mathcal{T}_{n_{1}}=\ln \left(1+h_{1} \Delta_{n_{1}}^{(+)}\right) \doteq \sum_{i=1}^{+\infty} \frac{(-1)^{i-1} h_{1}^{i}}{i} \Delta_{n_{1}}^{(+) i} \tag{3}
\end{equation*}
$$

where $\Delta_{n_{1}}^{(+)} \doteq \frac{\tau_{n_{1}}-1}{h_{1}}$ is forward difference operator in n_{1}.

$$
\begin{gather*}
\Delta_{n_{1}}^{j} u_{n_{1}} \doteq \sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} u_{n_{1}+i}=\sum_{i=j}^{\infty} \frac{j!}{i!} P_{i, j} \Delta_{n}^{i} u_{n} . \tag{4}\\
P_{i, j} \doteq \sum_{k=j}^{i} \Omega^{k} \mathcal{S}_{i}^{k} \mathbb{S}_{k}^{j}
\end{gather*}
$$

Ω is the ratio of the increment in the lattice of variable n with respect to that of variable n_{1}. The coefficients \mathcal{S}_{i}^{k} and \mathfrak{S}_{k}^{j} are the Stirling numbers of the first and second kind respectively.

Multiscale on the lattice: from derivatives to shifts

This is one of the possible inversion formulae for $\mathcal{T}_{n_{1}}$. Ex. for symmetric difference operator $\Delta_{n_{1}}^{(s)} \doteq\left(\mathcal{T}_{n_{1}}-\mathcal{T}_{n_{1}}^{-1}\right) / 2 h_{1}$ we get

$$
\begin{equation*}
\partial_{n_{1}}=\sinh ^{-1} h_{1} \Delta_{n_{1}}^{(s)} \doteq \sum_{i=1}^{+\infty} \frac{P_{i-1}(0) h_{1}^{i}}{i} \Delta_{n_{1}}^{(s) i}, \tag{5}
\end{equation*}
$$

where $P_{i}(0)$ is the i-th Legendre polynomial evaluated in $x=0$.
Difference equations of ∞ order. Only if u_{n} is a slow-varying function of order l, i.e.

$$
\Delta^{I+1} u_{n} \approx 0
$$

$\partial_{n_{1}}$ operator reduces to polynomials in the $\Delta_{n_{1}}$ of order at most I.

Integrability of discrete NLS equations (dNLS)

- The nonintegrable standard $d N L S E$

$$
\begin{equation*}
\mathrm{i} \dot{u}_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right)=\varepsilon\left|u_{n}\right|^{2} u_{n}, \quad \varepsilon \doteq \pm 1 \tag{6}
\end{equation*}
$$

- The integrable Ablowitz-Ladik dNLSE

$$
\begin{equation*}
\mathrm{i} \dot{u}_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right)=\varepsilon\left|u_{n}\right|^{2}\left(u_{n+1}+u_{n-1}\right), \quad \varepsilon \doteq \pm 1 \tag{7}
\end{equation*}
$$

- The saturable $d N L S E$

$$
\begin{equation*}
\mathrm{i} \dot{u}_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right)=\frac{\left|u_{n}\right|^{2}}{\varepsilon+\left|u_{n}\right|^{2}} u_{n}, \quad \varepsilon \doteq \pm 1 \tag{8}
\end{equation*}
$$

- The Salerno dNLSE

$$
\begin{equation*}
\mathrm{i} u_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right)\left(1-s \varepsilon \sigma^{2}\left|u_{n}\right|^{2}\right)=\varepsilon\left|u_{n}\right|^{2} u_{n}, \quad \varepsilon \doteq \pm 1, \quad s \in \mathcal{R} \tag{9}
\end{equation*}
$$

interpolates between Eq. (6) when $s=0$ and Eq. (7) when $s=1$.

Integrability of discrete NLS equations (dNLS)

- Differential-difference equation example:

$$
\begin{aligned}
\mathrm{i} u_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right) & =\left|u_{n}\right|^{2}\left(\beta_{1} u_{n}+\beta_{2} u_{n+1}+\beta_{3} u_{n-1}\right)+ \\
& +\left|u_{n}\right|^{4}\left(\theta_{1} u_{n}+\theta_{2} u_{n+1}+\theta_{3} u_{n-1}\right),
\end{aligned}
$$

Ablowitz-Ladik integr. $d N L S$ when $\beta_{1}=\theta_{1}=\theta_{2}=\theta_{3}=0$ and $\beta_{2}=\beta_{3}=\varepsilon$; the standard nonintegrable $d N L S E$ when $\beta_{2}=\beta_{3}=\theta_{1}=\theta_{2}=\theta_{3}=0$, and $\beta_{1}=\varepsilon$;
the first term of the small amplitude approximation of the saturable dNLSE when $\beta_{1}=\varepsilon, \theta_{1}=-1$ and $\beta_{j}=\theta_{j}=0, j=2,3$; the Salerno dNLSE when $\beta_{1}=\varepsilon(1-s)$ and $\beta_{2}=\beta_{3}=\varepsilon s / 2$.

Integrability of discrete NLS equations (dNLS)

- Solution of the form:

$$
u_{n}(t ; \varepsilon)=\sum_{j=1}^{+\infty} \sum_{\alpha=-j}^{j} \varepsilon^{j} f_{j}^{(\alpha)}\left(n_{1}, t_{1}, t_{2}, \ldots\right) e^{\mathrm{i} \alpha(\kappa n-\omega t)}
$$

Expansion Parameters

(1) $0 \leq \varepsilon \ll 1$: perturbative parameter around plane wave solution of $d N L S$;
(2) $n_{1} \doteq \varepsilon n$: slow "space" variable;
(0) $t_{j}=\varepsilon^{j} t, j \geq 1$ slow times variables;

- $f_{j}^{(\alpha)}\left(n_{1}, t_{1}, t_{2}, \ldots\right) \mathcal{C}^{(\infty)}$ in n_{1} :

$$
\begin{aligned}
f_{j}^{(\alpha)}\left(n_{1} \pm \varepsilon\right) & =f_{j}^{(\alpha)}\left(n_{1}\right) \pm \varepsilon \partial_{n_{1}} f_{j}^{(\alpha)}+\frac{\left(\varepsilon \partial_{n_{1}}\right)^{2}}{2} f_{j}^{(\alpha)}+\ldots \doteq e^{ \pm \varepsilon \partial_{n_{1}}} f_{j}^{(\alpha)} \\
f_{n \pm 1}(t ; \varepsilon) & =\sum_{j=1}^{+\infty} \sum_{\alpha=-j}^{j} \sum_{\rho=\max \{1,|\alpha|\}}^{j} \varepsilon^{j}\left(\mathcal{A}_{j-\rho}^{ \pm} f_{\rho}^{(\alpha)}\right) e^{\mathrm{i} \alpha[\kappa(n \pm 1)-\omega t]}
\end{aligned}
$$

Expansion Operators

(1) $\mathcal{A}_{\kappa}^{ \pm} \doteq\left(\pm \partial_{n_{1}}\right)^{\kappa} / \kappa$!: from shift operators as series of derivatives;
(2) $\partial_{n_{1}}$: derivative operator w. r. t. n_{1} (continuos through $\mathcal{C}^{(\infty)}$) with derivatives calculated in $n_{1}=\varepsilon n$;

- Similar expansion for the time derivative:

$$
\partial_{t} f_{n}(t ; \varepsilon)=-\mathrm{i} \omega f_{n}+\sum_{j=2}^{+\infty} \sum_{\alpha=-(j-1)}^{j-1} \sum_{\rho=\max \{1,|\alpha|\}}^{j-1} \varepsilon^{j}\left(\partial_{t_{j-\rho}} f_{\rho}^{(\alpha)}\right) \mathrm{e}^{\mathrm{i} \alpha(\kappa n-\omega t)} ;
$$

The reduced equations

Plug everything into the $d N L S$:

- Order ε :
$\alpha=1$: dispersion relation

$$
\omega=\frac{1-\cos (\kappa)}{\sigma^{2}} ;
$$

$\alpha=-1$:

$$
f_{1}^{(-1)}=0 ;
$$

- Order ε^{2} :
$\alpha=1$: group velocity

$$
\partial_{t_{1}} f_{1}^{(1)}+\frac{\sin (\kappa)}{\sigma^{2}} \partial_{n_{1}} f_{1}^{(1)}=0, \quad f_{1}^{(1)}\left(n_{1}-\frac{\sin (\kappa)}{\sigma^{2}} t_{1}\right) ;
$$

$\alpha=0,-1, \pm 2$:

$$
f_{1}^{(0)}=f_{2}^{(-1)}=f_{2}^{(\pm 2)}=0 ;
$$

- Order ε^{3} :

$$
\alpha=1:
$$

$$
\begin{gathered}
\partial_{t_{1}} f_{2}^{(1)}+\frac{\sin (\kappa)}{\sigma^{2}} \partial_{n_{1}} f_{2}^{(1)}=-\partial_{t_{2}} f_{1}^{(1)}+\frac{\mathrm{i} \cos (\kappa)}{2 \sigma^{2}} \partial_{n_{1}}^{2} f_{1}^{(1)}-\mathrm{i} \rho_{2} f_{1}^{(1)}\left|f_{1}^{(1)}\right|^{2}, \\
\rho_{2} \doteq\left[\beta_{1}+\left(\beta_{2}+\beta_{3}\right) \cos (\kappa)+\mathrm{i}\left(\beta_{2}-\beta_{3}\right) \sin (\kappa)\right] / N_{2} .
\end{gathered}
$$

No-secularity conditions

- The right-hand side solves the homogeneous equation: secularity!

$$
\begin{gathered}
\partial_{t_{1}} f_{2}^{(1)}+\frac{\sin (\kappa)}{\sigma^{2}} \partial_{n_{1}} f_{2}^{(1)}=0, \\
\partial_{t_{2}} f_{1}^{(1)}=K_{2}\left[f_{1}^{(1)}\right], \\
K_{2}\left[f_{1}^{(1)}\right] \doteq \frac{\mathrm{i} \cos (\kappa)}{2 \sigma^{2}} \partial_{n_{1}}^{2} f_{1}^{(1)}-\mathrm{i} \rho_{2} f_{1}^{(1)}\left|f_{1}^{(1)}\right|^{2}: \text { NLS equation! }
\end{gathered}
$$

- A_{1}-integrability condition: $\rho_{2} \doteq\left[\beta_{1}+\left(\beta_{2}+\beta_{3}\right)\right] \cos (\kappa)+\mathrm{i}\left(\beta_{2}-\beta_{3}\right) \sin (\kappa)$ has to be real: it is satisfied iff $\beta_{2}=\beta_{3}$.

Theorem of A_{1}-integrability:

The dNLS equation

$$
\begin{aligned}
\mathrm{i} \dot{u}_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right) & =\left|u_{n}\right|^{2}\left(\beta_{1} u_{n}+\beta_{2} u_{n+1}+\beta_{3} u_{n-1}\right)+ \\
& +\left|u_{n}\right|^{4}\left(\theta_{1} u_{n}+\theta_{2} u_{n+1}+\theta_{3} u_{n-1}\right),
\end{aligned}
$$

is A_{1}-integrable iff $\beta_{2}=\beta_{3}$:

$$
\begin{aligned}
\mathrm{i} u_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right) & =\left|u_{n}\right|^{2}\left(\beta_{1} u_{n}+\beta_{2}\left[u_{n+1}+u_{n-1}\right]\right)+ \\
& +\left|u_{n}\right|^{4}\left(\theta_{1} u_{n}+\theta_{2} u_{n+1}+\theta_{3} u_{n-1}\right),
\end{aligned}
$$

$\alpha=0,-1, \pm 2, \pm 3:$

$$
f_{2}^{(0)}=f_{3}^{(-1)}=f_{3}^{(\pm 2)}=f_{3}^{(\pm 3)}=0 ;
$$

- Order ε^{4} : $\alpha=1$:

$$
\begin{gathered}
\partial_{t_{1}} f_{3}^{(1)}+\frac{\sin (\kappa)}{\sigma^{2}} \partial_{n_{1}} f_{3}^{(1)}=\mathrm{i}\left(\partial_{t_{2}} f_{2}^{(1)}-K_{2}^{\prime}\left[f_{1}^{(1)}\right] f_{2}^{(1)}\right)+ \\
+\mathrm{i}\left(\partial_{t_{3}} f_{1}^{(1)}-K_{3}\left[f_{1}^{(1)}\right]\right)-\mathrm{i} a\left|f_{1}^{(1)}\right|^{2} \partial_{n_{1}} f_{1}^{(1)},
\end{gathered}
$$

$K_{3}\left[f_{1}^{(1)}\right]$: flux of first higher order NLS symmetry (cmKdV), $a \doteq-\beta_{1} \tan (\kappa)$;

No-secularity conditions 1

- The right-hand side solves the homogeneous equation: secularity!

$$
\begin{gathered}
\partial_{t_{1}} f_{3}^{(1)}+\frac{\sin (\kappa)}{\sigma^{2}} \partial_{n_{1}} f_{3}^{(1)}=0, \\
\partial_{t_{2}} f_{2}^{(1)}-K_{2}^{\prime}\left[f_{1}^{(1)}\right] f_{2}^{(1)}=a\left|f_{1}^{(1)}\right|^{2} \partial_{n_{1}} f_{1}^{(1)}-\left(\partial_{t_{3}} f_{1}^{(1)}-K_{3}\left[f_{1}^{(1)}\right]\right) ;
\end{gathered}
$$

$$
\partial_{t_{2}} f_{2}^{(1)}-K_{2}^{\prime}\left[f_{1}^{(1)}\right] f_{2}^{(1)}=a\left|f_{1}^{(1)}\right|^{2} \partial_{n_{1}} f_{1}^{(1)}-\left(\partial_{t_{3}} f_{1}^{(1)}-K_{3}\left[f_{1}^{(1)}\right]\right) ;
$$

No-secularity conditions 2

- The red highlighted term on right-hand side solves the homogeneous equation: secularity!

$$
\begin{gathered}
\partial_{t_{3}} f_{1}^{(1)}=K_{3}\left[f_{1}^{(1)}\right], \\
\partial_{t_{2}} f_{2}^{(1)}-K_{2}^{\prime}\left[f_{1}^{(1)}\right] f_{2}^{(1)}=a\left|f_{1}^{(1)}\right|^{2} \partial_{n_{1}} f_{1}^{(1)} ;
\end{gathered}
$$

- A_{2}-integrability conditions: $a \doteq-\beta_{1} \tan (\kappa)$ has to be real \rightarrow satisfied!

Theorem of A_{2}-integrability:

The dNLS equation

$$
\begin{aligned}
\mathrm{i} \dot{u}_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right) & =\left|u_{n}\right|^{2}\left(\beta_{1} u_{n}+\beta_{2}\left(u_{n+1}+u_{n-1}\right)\right)+ \\
& +\left|u_{n}\right|^{4}\left(\theta_{1} u_{n}+\theta_{2} u_{n+1}+\theta_{3} u_{n-1}\right)
\end{aligned}
$$

is A_{2}-integrable $\forall \beta_{1}, \beta_{2}, \theta_{i}, i=1,2,3$;
$\alpha=0,-1, \pm 2, \pm 3, \pm 4$:

$$
f_{3}^{(0)}=f_{4}^{(-1)}=f_{4}^{(\pm 2)}=f_{4}^{(\pm 3)}=f_{4}^{(\pm 4)}=0
$$

- Order ε^{5} :

$$
\alpha=1
$$

No-secularity conditions

$$
\begin{gathered}
\partial_{t_{1}} f_{4}^{(1)}+\frac{\sin (\kappa)}{\sigma^{2}} \partial_{n_{1}} f_{4}^{(1)}=0, \\
\partial_{t_{2}} f_{3}^{(1)}-K_{2}^{\prime}\left[f_{1}^{(1)}\right] f_{3}^{(1)}=g_{2}(3): \text { forced linearized NLS, } \\
\partial_{t_{3}} f_{2}^{(1)}-K_{3}^{\prime}\left[f_{1}^{(1)}\right] f_{2}^{(1)}=g_{3}(2): \text { forced linearized cmKdV,} \\
\partial_{t_{4}} f_{1}^{(1)}=K_{4}\left[f_{1}^{(1)}\right]: \text { flux of second higher order NLS symmetry; }
\end{gathered}
$$

- A_{3}-integrability conditions (on the coefficient of $g_{2}(3)$): $\beta_{1}=\theta_{1}=\theta_{2}=\theta_{3}=0 \rightarrow$ Ablowitz-Ladik!;

Theorem of A_{3}-integrability:

The only dNLS belonging to our class

$$
\begin{aligned}
\mathrm{i} \dot{u}_{n}+\frac{1}{2 \sigma^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right) & =\left|u_{n}\right|^{2}\left(\beta_{1} u_{n}+\beta_{2} u_{n+1}+\beta_{3} u_{n-1}\right)+ \\
& +\left|u_{n}\right|^{4}\left(\theta_{1} u_{n}+\theta_{2} u_{n+1}+\theta_{3} u_{n-1}\right)
\end{aligned}
$$

being A_{3}-integrable, is the Ablowitz-Ladik dNLS equation

$$
\mathrm{i} \partial_{t} u_{n}(t)+\frac{u_{n+1}(t)-2 u_{n}(t)+u_{n-1}(t)}{2 \sigma^{2}}=\beta_{2}\left|u_{n}(t)\right|^{2}\left(u_{n+1}(t)+u_{n-1}(t)\right)
$$

Other partial difference equations

- offcentrically discretized $K d V$ equation: A_{0}-asymptotically integrable!

$$
u_{2}-u_{-2}=\frac{\alpha}{4}\left[u_{111}-3 u_{1}+3 u_{-1}-u_{-1-1-1}\right]-\frac{b}{2}\left[u_{1}^{2}-u^{2}\right] ;
$$

- symmetrically discretized $K d V$ equation: A_{2}-asymptotically integrable!

$$
u_{2}-u_{-2}=\frac{\alpha}{4}\left[u_{111}-3 u_{1}+3 u_{-1}-u_{-1-1-1}\right]-\frac{b}{2}\left[u_{1}^{2}-u_{-1}^{2}\right] ;
$$

- Zabusky-Kruskal KdV
$\dot{q}_{n}=\frac{1}{2 h^{3}}\left(q_{n+2}-2 q_{n+1}+2 q_{n-1}-q_{n-2}\right)+\frac{1}{h}\left(q_{n+1}+q_{n}+q_{n-1}\right)\left(q_{n+1}-q_{n-1}\right)$
A_{2}-asymptotically integrable!
- IpKdV equation: A_{3}

$$
\begin{aligned}
& \alpha\left(u_{n+1, m+1}-u_{n, m}\right)+\beta\left(u_{n+1, m}-u_{n, m+1}\right)- \\
& \quad-\left(u_{n+1, m}-u_{n, m+1}\right)\left(u_{n+1, m+1}-u_{n, m}\right)=0 ;
\end{aligned}
$$

- Hietarinta equation $\left(A_{1}\right.$: linearizable $\left.\rightarrow A_{\infty}\right)$.

$$
\frac{u_{n, m}+e_{2}}{u_{n, m}+e_{1}} \cdot \frac{u_{n+1, m+1}+o_{2}}{u_{n+1, m+1}+o_{1}}=\frac{u_{n+1, m}+e_{2}}{u_{n+1, m}+o_{1}} \cdot \frac{u_{n, m+1}+o_{2}}{u_{n, m+1}+e_{1}} .
$$

Classification of lattice equations on the square

- Dispersive affine linear equation on the square:

$$
\begin{aligned}
& a_{1}\left(u_{n, m}+u_{n+1, m+1}\right)+a_{2}\left(u_{n+1, m}+u_{n, m+1}\right)+ \\
& \quad+\left(\alpha_{1}-\alpha_{2}\right) u_{n, m} u_{n+1, m}+\left(\alpha_{1}+\alpha_{2}\right) u_{n, m+1} u_{n+1, m+1}+ \\
& \quad+\left(\beta_{1}-\beta_{2}\right) u_{n, m} u_{n, m+1}+\left(\beta_{1}+\beta_{2}\right) u_{n+1, m} u_{n+1, m+1}+ \\
& \quad+\gamma_{1} u_{n, m} u_{n+1, m+1}+\gamma_{2} u_{n+1, m} u_{n, m+1}+ \\
& \quad+\left(\xi_{1}-\xi_{3}\right) u_{n, m} u_{n+1, m} u_{n, m+1}+\left(\xi_{1}+\xi_{3}\right) u_{n, m} u_{n+1, m} u_{n+1, m+1}+ \\
& \quad+\left(\xi_{2}-\xi_{4}\right) u_{n+1, m} u_{n, m+1} u_{n+1, m+1}+\left(\xi_{2}+\xi_{4}\right) u_{n, m} u_{n, m+1} u_{n+1, m+1}+ \\
& \quad+\zeta u_{n, m} u_{n+1, m} u_{n, m+1} u_{n+1, m+1}=0
\end{aligned}
$$

$a_{1}, a_{2}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \zeta$ real parameters and $\left|a_{1}\right| \neq\left|a_{2}\right|$.

- Linear dispersion relation:

$$
\omega(\kappa)=\arctan \left[\frac{\left(a_{1}^{2}-a_{2}^{2}\right) \sin (\kappa)}{\left(a_{1}^{2}+a_{2}^{2}\right) \cos (\kappa)+2 a_{1} a_{2}}\right]
$$

Theorem of A_{1}-integrability: The only A_{1}-integrable eq. in our class are characterized by:

- Case 1:

$$
\left\{\begin{array}{l}
2 a_{1} a_{2} \alpha_{1}=\gamma_{1} a_{2}^{2}+\gamma_{2} a_{1}^{2}, \tag{10}\\
2 a_{1} a_{2}\left(a_{1}-a_{2}\right) \beta_{1}=\left(a_{1}+a_{2}\right)\left(\gamma_{2} a_{1}^{2}-\gamma_{1} a_{2}^{2}\right), \\
\left(a_{2}+a_{1}\right) \beta_{2}=\left(a_{2}-a_{1}\right) \alpha_{2}, \\
\left(a_{2}^{2}-a_{1}^{2}\right)\left(\xi_{1}-\xi_{2}\right)=\left[\gamma_{1}\left(a_{1}-3 a_{2}\right)-\gamma_{2}\left(a_{2}-3 a_{1}\right)\right] \alpha_{2}, \\
\left(a_{1}+a_{2}\right)\left(\xi_{3}-\xi_{4}\right)=\left(\gamma_{2}-\gamma_{1}\right) \alpha_{2} .
\end{array}\right.
$$

- Case 2:

$$
\left\{\begin{array}{l}
2 a_{1} a_{2}\left(a_{1}-a_{2}\right) \alpha_{1}=\left(a_{1}+a_{2}\right)\left(\gamma_{2} a_{1}^{2}-\gamma_{1} a_{2}^{2}\right), \tag{11}\\
2 a_{1} a_{2} \beta_{1}=\gamma_{1} a_{2}^{2}+\gamma_{2} a_{1}^{2}, \\
\left(a_{2}-a_{1}\right) \beta_{2}=\left(a_{2}+a_{1}\right) \alpha_{2}, \\
\left(a_{2}-a_{1}\right)\left(\xi_{1}-\xi_{2}\right)=\left(\gamma_{1}-\gamma_{2}\right) \alpha_{2}, \\
\left(a_{2}-a_{1}\right)^{2}\left(\xi_{3}-\xi_{4}\right)=\left[\gamma_{2}\left(a_{2}-3 a_{1}\right)-\gamma_{1}\left(a_{1}-3 a_{2}\right)\right] \alpha_{2} .
\end{array}\right.
$$

Theorem of A_{1}-integrability: (cont.)

- Case 3:

$$
\left\{\begin{array}{l}
\gamma_{1} a_{2}=\gamma_{2} a_{1}, \tag{12}\\
\alpha_{1}=\beta_{1}=\frac{1}{2}\left(\gamma_{1}+\gamma_{2}\right), \\
a_{1}\left(\xi_{1}-\xi_{2}\right)=-\alpha_{2} \gamma_{1}, \\
a_{1}\left(\xi_{3}-\xi_{4}\right)=\beta_{2} \gamma_{1} .
\end{array}\right.
$$

- Case 4:

$$
\left\{\begin{array}{l}
\alpha_{2}=\beta_{2}=0 \tag{13}\\
\xi_{1}=\xi_{2} \\
\xi_{3}=\xi_{4}
\end{array}\right.
$$

Theorem of A_{1}-integrability: (cont.)

- Case 5:

$$
\left\{\begin{array}{l}
a_{2}=2 a_{1}, \tag{14}\\
\alpha_{1}=\beta_{1}, \\
\alpha_{2}=-\beta_{2}, \\
\gamma_{2}=2 \gamma_{1}, \\
a_{1}\left(\xi_{1}-\xi_{2}\right)=a_{1}\left(\xi_{3}-\xi_{4}\right)=-\alpha_{2} \gamma_{1} .
\end{array}\right.
$$

- Case 6:

$$
\left\{\begin{array}{l}
a_{1}=2 a_{2} \tag{15}\\
\alpha_{1}=\beta_{1} \\
\alpha_{2}=\beta_{2} \\
\gamma_{1}=2 \gamma_{2}, \\
a_{1}\left(\xi_{1}-\xi_{2}\right)=-a_{1}\left(\xi_{3}-\xi_{4}\right)=-\alpha_{2} \gamma_{1} .
\end{array}\right.
$$

Conclusions

(1) Integrability test suitable for a large variety of nonlinear systems;
(2) We have shown that among a class of $d N L S$ equations considered in the literature only the Ablowitz-Ladik $d N L S$ is integrable;
(A_{1}-classification of dispersive affine linear equation on the square.

Open problems

- What happens if we do not require the $\mathcal{C}^{(\infty)}$ property of solutions: can we still get discrete integrable systems;
- Extend to other discrete systems as weakly dissipative systems: Burgers hierarchy;
- Find the appropriate normal form theory for discrete equations;

Conclusions

Open problems

- In the A_{1}-classification of dispersive affine linear equation on the square one equation emerges as a possibly integrable equation:

$$
\begin{aligned}
& a_{1}\left[u_{n, m}+u_{n+1, m+1}+2\left(u_{n+1, m}+u_{n, m+1}\right)\right]+ \\
& \quad+3 \gamma_{1}\left[u_{n, m} u_{n+1, m}+u_{n, m+1} u_{n+1, m+1}+u_{n, m} u_{n, m+1}+u_{n+1, m} u_{n+1, m+1}\right] \\
& \quad+\gamma_{1}\left[u_{n, m} u_{n+1, m+1}+2 u_{n+1, m} u_{n, m+1}\right]+ \\
& \quad+\left(\xi_{1}-\xi_{3}\right)\left[u_{n, m} u_{n+1, m} u_{n, m+1}+u_{n+1, m} u_{n, m+1} u_{n+1, m+1}\right]+ \\
& \quad+\left(\xi_{1}+\xi_{3}\right)\left[u_{n, m} u_{n+1, m} u_{n+1, m+1}+u_{n, m} u_{n, m+1} u_{n+1, m+1}\right]+ \\
& \quad+\zeta u_{n, m} u_{n+1, m} u_{n, m+1} u_{n+1, m+1}=0,
\end{aligned}
$$

Analyze its A_{3} integrability.

- Integrability test for maps;
- Dependence of degree of asymptotic integrability from the solutions used.

THANK YOU

