Chords and Solitons: C \& G of the KP Equation

Yuji Kodama

Ohio State University

Joint work with

S. Chakravarty, C-Y. Kao, M. Oikawa and H. Tsuji

International Workshop on
Nonlinear and Modern Mathematical Physics
Beijing Xiedao Group, Beijing, China, July 15-21, 2009

The KP Equation

The KP equation:

$$
\frac{\partial}{\partial x} \underbrace{\left(4 \frac{\partial u}{\partial t}+\frac{\partial^{3} u}{\partial x^{3}}+6 u \frac{\partial u}{\partial x}\right)}_{K d V}+3 \frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

The solution $u(x, y, t)$ in terms of the τ-function:

$$
u(x, y, t)=2 \frac{\partial^{2}}{\partial x^{2}} \ln \tau(x, y, t) .
$$

The τ-function given by the Wronskian determinant:

$$
\tau_{N}=\operatorname{Wr}\left(f_{1}, \ldots, f_{N}\right)
$$

The KP Equation

The linearly independent set $\left\{f_{i}(x, y, t): i=1, \ldots, N\right\}$:

$$
\underbrace{\frac{\partial f_{i}}{\partial y}=\frac{\partial^{2} f_{i}}{\partial x^{2}}}_{\text {Heat equation }}, \quad \frac{\partial f_{i}}{\partial t}=-\frac{\partial^{3} f_{i}}{\partial x^{3}} .
$$

Finite dimensional solutions:

$$
\begin{aligned}
f_{i}(x, y, t) & =\sum_{j=1}^{M} a_{i j} E_{j}(x, y, t), \quad i=1, \ldots, N<M, \\
E_{j}(x, y, t) & =\exp \left(k_{j} x+k_{j}^{2} y-k_{j}^{3} t\right), \quad j=1, \ldots, M .
\end{aligned}
$$

with the ordering $k_{1}<k_{2}<\cdots<k_{M}$.

The KP Equation

Note that we have a Grassmannian picture, i.e. $\operatorname{Gr}(N, M)$:

- $\operatorname{Span}_{\mathbb{R}}\left\{E_{j}: j=1, \ldots, M\right\} \cong \mathbb{R}^{M}$.
- $\operatorname{Span}_{\mathbb{R}}\left\{f_{i}: i=1, \ldots, N\right\}$ forms an N-dimensional subspace in \mathbb{R}^{M},

$$
\left(f_{1}, \ldots, f_{N}\right)=\left(E_{1}, \ldots, E_{M}\right) A^{T}
$$

where A-matrix is defined by

$$
A=\left(\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1 M} \\
\vdots & \ddots & \ddots & \vdots \\
a_{N 1} & \cdots & \cdots & a_{N M}
\end{array}\right) \in M_{N \times M}(\mathbb{R}) .
$$

Each solution can be parametrized by the A-matrix.

The KP Equation

- For $\forall H \in G L_{N}(\mathbb{R}),\left(g_{1}, \ldots, g_{N}\right)=\left(f_{1}, \ldots, f_{N}\right) H$ gives the same solution, i.e. $\tau(g)=|H| \tau(f)$. This implies that the τ-function is identified as a point on the Grassmannian $\operatorname{Gr}(N, M)$, i.e.

$$
\operatorname{Gr}(N, M) \cong G L_{N}(\mathbb{R}) \backslash M_{N \times M}(\mathbb{R}),
$$

with $\operatorname{dim} \operatorname{Gr}(N, M)=N M-N^{2}=N(M-N)$.

- $H \in G L_{N}(\mathbb{R})$ gives a row reduction of the A-matrix. For example, a generic A can be written in the form (RREF),

$$
A=\left(\begin{array}{cccccc}
1 & \cdots & 0 & * & \cdots & * \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & * & \cdots & *
\end{array}\right)
$$

The KP Equation

- $\operatorname{Gr}(N, M)$ has a Schubert decomposition,

$$
\operatorname{Gr}(N, M)=\bigsqcup_{1 \leq j_{1}<\cdots<j_{N} \leq M} W\left(j_{1}, \ldots, j_{N}\right),
$$

where $\left(j_{1}, \ldots, j_{N}\right)$ is a Schubert symbol representing the pivot indices.

- The set of the Schubert symbols forms a partially ordered set (POSET) with a weak Bruhat order, i.e.

$$
\left(j_{1}, \ldots, j_{N}\right) \Longleftrightarrow \exists!\sigma \in S_{M} / P_{N},
$$

where S_{M} is the permutation group of order M, and P_{N} is a parabolic subgroup generated by the simple reflections (transposition) $s_{k}=(k, k+1)$ without s_{M-N}.

The KP Equation

Example:

- $\operatorname{Gr}(1,2)=W(1) \sqcup W(2)$ where $W(1)=\{(1, *)\}$ and $W(2)=\{(0,1)\}$. In terms of the permutation S_{2}, we have

$$
(12) \xrightarrow{s_{1}^{-1}}(21) .
$$

- $\operatorname{Gr}(1,3)=W(1) \sqcup W(2) \sqcup W(3)$, and in terms of the permutation S_{3} / P_{1} with $P_{1}=\left\langle s_{2}\right\rangle$,

$$
(123) \xrightarrow{s_{2}^{-1}}(132) \xrightarrow{s_{1}^{-1}}\binom{2}{3} .
$$

- $\operatorname{Gr}(2,4)=W(1,2) \sqcup W(1,3) \sqcup \cdots \sqcup W(3,4)$, and

$$
(1234) \xrightarrow{s_{2}^{-1}}(1324) \cdots(2413) \xrightarrow{s_{2}^{-1}}(3412) .
$$

The KP Equation

Example: For $N=1$, the function $w=\frac{\partial}{\partial x} \ln \tau_{1}$ satisfies

$$
\frac{\partial w}{\partial y}=2 w \frac{\partial w}{\partial x}+\frac{\partial^{2} w}{\partial x^{2}} \quad \text { (The Burgers equation). }
$$

A shock solution is given by $\tau_{1}=f_{1}=E_{1}+a E_{2},(A=(1, a))$,

$$
w=\frac{1}{2}\left(k_{1}+k_{2}\right)+\frac{1}{2}\left(k_{2}-k_{1}\right) \tanh \frac{1}{2}\left(\theta_{2}-\theta_{1}+\ln a\right),
$$

where $\theta_{j}=k_{j} x+k_{j}^{2} y-k_{j}^{3} t$. Notice that for $k_{1}<k_{2}$,

$$
w \longrightarrow \begin{cases}k_{1} & x \rightarrow-\infty \\ k_{2} & x \rightarrow \infty\end{cases}
$$

The KP Equation

Example 1: One line-soliton solution with $\tau=E_{1}+a E_{2}$.

3D figure of $u=2 \frac{\partial w}{\partial x}$, and the contour plot. The numbers (i) represent the dominant exponential term in the τ-function. We denote this [1, 2]-soliton.

The KP Equation

One-solton solution is given by a balance between two exponential terms, and in general it is expressed with the parameters $\left\{k_{i}, k_{j}\right\}$,

$$
u=A_{[i, j]} \operatorname{sech}^{2} \Theta_{[i, j]},
$$

where the amplitude $A[i, j]$ and the phase $\Theta[i, j]$ are

$$
A_{[i, j]}=\frac{1}{2}\left(k_{i}-k_{j}\right)^{2}, \quad \Theta_{[i, j]}=\frac{1}{2}\left(\theta_{j}-\theta_{i}\right) .
$$

The slope of the soliton in the $x y$-plane is given by

$$
\tan \Psi_{[i, j]}=\frac{K_{[i, j]}^{y}}{K_{[i, j]}^{x}}=k_{i}+k_{j} .
$$

The KP Equation

Example 2: Y -type solution with $\tau_{1}=f_{1}=E_{1}+a E_{2}+b E_{3}$,

In each region, one of the exponential terms is dominant.
Each line-soliton is given by the balance between two exponential terms, E_{i} and E_{j}, denoted as (i) and (j).

The KP Equation

Chord diagrams: One can express each soliton solution in a chord diagram (= permutation). For example, Y-type soliton with the parameters $\left\{k_{1}, k_{2}, k_{3}\right\}$ is given by

$$
\pi=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

- The upper part represents $[1,3]$-soliton in $y>0$.
- The lower part represents [1, 2]- and [2,3]-solitons in $y<0$.

Classification Theorem

The τ-function is given by

$$
\tau(x, y, t)=\operatorname{det}\left(K D(x, y, t) A^{T}\right)
$$

where $D=\operatorname{diag}\left(E_{1}, \ldots, E_{M}\right)$ with $E_{j}=\exp \left(k_{j} x+k_{j}^{2} y+k_{j}^{3} t\right)$, and K is the $N \times M$ matrix given by

$$
K=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
k_{1} & k_{2} & \cdots & k_{M} \\
\vdots & \vdots & \ddots & \vdots \\
k_{1}^{N-1} & k_{2}^{N-1} & \cdots & k_{M}^{N-1}
\end{array}\right)
$$

Recall that $\tilde{A}=H A$ with $H \in G L_{N}(\mathbb{R})$ gives the same solution, i.e. A can be written in RREF.

Classification Theorem

Lemma: (Binet-Cauchy) The τ-function can be expanded as

$$
\tau_{N}=\sum_{1 \leq i_{1}<\cdots<i_{N} \leq M} \xi\left(i_{1}, \ldots, i_{N}\right) E\left(i_{1}, \ldots, i_{N}\right),
$$

where $\xi\left(i_{1}, \ldots, i_{N}\right)$ is the $N \times N$ minor of the A-matrix, and $E\left(i_{1}, \ldots, i_{N}\right)$ is given by

$$
E\left(i_{1}, \ldots, i_{N}\right)=\left(\prod_{1 \leq j<l \leq N}\left(k_{i_{j}}-k_{i_{l}}\right)\right) E_{i_{1}} \cdots E_{i_{N}}>0
$$

Note that if all the $N \times N$ minors of the A-matrix are non-negative (i.e. A is totally non-negative), then the τ-function is positive definite. Namely, u is non-singular.

Classification Theorem

We say that the A-matrix is irreducible, if

- in each column, there is at least one nonzero element,
- in each raw, there is at least one more nonzero element in addition to the pivot.

Example: For $N=2$ and $M=4$, there are only two types of irreducible A-matrices in RREF:

$$
\left(\begin{array}{cccc}
1 & 0 & * & * \\
0 & 1 & * & *
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right) .
$$

Note that other cases can be expressed by a smaller matrix of $N^{\prime} \times M^{\prime}$ with either $N^{\prime}<N$ or $M^{\prime}<M$.

Classification Theorem

Example: For $N=2, M=4$, there are seven types of the A-matrices in RREF which are both irreducible and totally non-negative:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & -c & -d \\
0 & 1 & a & b
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 0 & -b & -c \\
0 & 1 & a & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 0 & 0 & -c \\
0 & 1 & a & b
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 0 & 0 & -b \\
0 & 1 & a & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & a & 0 & -c \\
0 & 0 & 1 & b
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & a & 0 & 0 \\
0 & 0 & 1 & b
\end{array}\right)
\end{aligned}
$$

Here a, b, c and d are positive numbers, and for the first one, either $a d-c b>0$ or $=0$. The total number of nonzero minors is at least four, and the maximal number is six.

Classification Theorem

Theorem 1: Let $\left\{e_{1}, \ldots, e_{N}\right\}$ be the pivot indices, and let $\left\{g_{1}, \ldots, g_{M-N}\right\}$ be the non-pivot indices for an irreducible and totally non-negative A-matrix. Then the soliton solution associated with the A-matrix has
(a) N line-solitons of $\left[e_{n}, j_{n}\right]$-type for $n=1, \ldots, N$ as $y \rightarrow \infty$,
(b) $M-N$ line-solitons of $\left[i_{m}, g_{m}\right]$-type for $m=1, \ldots, M-N$ as $y \rightarrow-\infty$.

Classification Theorem

Theorem 2: The set of those solitons $\left[e_{n}, j_{n}\right]$ and $\left[i_{m}, g_{m}\right]$ are expressed by a unique chord diagram which corresponds a derangement of the permutation group \mathcal{S}_{M}, i.e.

$$
\left(\begin{array}{cccccc}
e_{1} & \cdots & e_{N} & g_{1} & \cdots & g_{M-N} \\
j_{1} & \cdots & j_{N} & i_{1} & \cdots & i_{M-N}
\end{array}\right)
$$

Theorem 3: Conversely, for each chord diagram associated with the derangement, one can construct an A-matrix, and the corresponding τ-function gives the solution of the KP equation having line-solitons expressed by the chord diagram. The entries of the A-matrix give the scattering data, i.e. the locations of those line-solitons and their interaction properties.

Classification Theorem

Example: $N=2, M=4$. We have seven different types of $(2,2)$-soliton solution, which are parametrized by the permutation group \mathcal{S}_{4} :

(3412)

(4312)

(2413)

(3421)

(3142)

(4321)

(2143)

The 4-tuples of the diagrams represent the permutation,

$$
\pi=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\pi(1) & \pi(2) & \pi(3) & \pi(4)
\end{array}\right)=(\pi(1), \ldots, \pi(4)) .
$$

Exact Solutions

Example 1: O-type soliton solution.

O - Type Soliton Solution

$$
\pi=(2143)
$$

$$
A_{[1,2]}+A_{[3,4]}<u_{\text {center }}<\left(\sqrt{A_{[1,2]}}+\sqrt{A_{[3,4]}}\right)^{2} .
$$

Exact Solutions

Example 2: P-type soliton solution.

P-Type Soliton Solution

$$
\pi=(4321)
$$

$$
\left(\sqrt{A_{[1,4]}}-\sqrt{A_{[2,3]}}\right)^{2}<u_{\text {center }}<A_{[1,4]}-A_{[2,3]}
$$

Exact Solutions

Example 3: (3142)-type soliton solution.

(3142)-type

[1,3] and [3,4]-solitons
[1,2] and [2,4]-solitons

Note that $[1,4]$ gives the maximum amplitude $A=\frac{1}{2}\left(k_{4}-k_{1}\right)^{2}$.

Exact Solutions

Example 4: T-type soliton solution (i.e. (3412)-type).

T-type soliton

[1,3] and [2,4]-solitons
[1,3] and [2,4]-solitons
Notice that the front half is the same as (3142)-type.

Exact Solutions

Example: $N=3, M=6$ (7-dimensional solution).

$$
t=-30 \quad t=0 \quad t=30
$$

$$
A=\left(\begin{array}{cccccc}
1 & 0 & -a & -b & 0 & c \\
0 & 1 & d & e & 0 & -f \\
0 & 0 & 0 & 0 & 1 & g
\end{array}\right)
$$

$$
\pi=(451263)
$$

Numerical Simulations

The initial wave profile:

$$
\begin{gathered}
\mathrm{A}_{[i, j]}=\frac{1}{2}\left(\mathrm{k}_{\mathrm{i}}-\mathrm{k}_{\mathrm{j}}\right)^{2} \\
\tan \Psi_{[i, j]}=\mathrm{k}_{\mathrm{i}}+\mathrm{k}_{\mathrm{j}} \\
\mathrm{~A}_{[\mathrm{i}, \mathrm{j}]}=\mathrm{A}_{0} \\
\mathrm{~A}_{[\mathrm{m}, \mathrm{n}]}=2 \\
\Psi_{[\mathrm{m}, \mathrm{n}]}=-\Psi_{[i, j]}=\Psi_{0}
\end{gathered}
$$

Numerical Simulations

Physical example: The Mach reflection with a rigid wall:

Here $\Psi_{0}<\Psi_{c}$. The right figure shows the equivalent system.

Numerical Simulations

V-shape initial data of O-type:

Numerical Simulations

(3142)-type:

Numerical Simulations

(3142)-type with a cut:

Numerical Simulations

P-type:

Summary for V-shape IWs

Chord diagrams for V-shape initial waves: $\mathrm{A}=2$

Summary for V-shape IWs

Example 1 (O-type): $A_{0}=1, \Psi_{0} \approx \pm 72^{\circ}$.

(a): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{4}(-(3+2 \sqrt{2}), \quad-(3-2 \sqrt{2}), 2,10)$.
(b): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{4}(-10,-2,3-2 \sqrt{2}, 3+2 \sqrt{2})$.

Summary for V-shape IWs

Example 2 ((3142) and dual): $A_{0}=3, \Psi_{0}= \pm 45^{\circ}$.

(a): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{2}(-(\sqrt{6}+1),-1, \sqrt{6}-1,3)$.
(b): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{2}(-3,-(\sqrt{6}-1), 1, \sqrt{6}+1)$.

Summary for V-shape IWs

Example 2 Exact : $A_{0}=3, \Psi_{0}= \pm 45^{\circ}$.

(a): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{2}(-(\sqrt{6}+1),-1, \sqrt{6}-1,3)$.
(b): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{2}(-3,-(\sqrt{6}-1), 1, \sqrt{6}+1)$.

Summary for V-shape IWs

Example 3 ((1,3)- and dual): $\Psi_{0}=0^{\circ}$.

(a): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{2}(-2,-\sqrt{2}, \sqrt{2}, 2) \Rightarrow A_{0}=1$.
(b): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(-\sqrt{3},-1,1, \sqrt{3}) \Rightarrow A_{0}=6$.

Summary for V-shape IWs

Example 3 Exact ((1,3)- and dual): $\Psi_{0}=0^{\circ}$.

(a): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{2}(-2,-\sqrt{2}, \sqrt{2}, 2) \Rightarrow A_{0}=1$.
(b): $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(-\sqrt{3},-1,1, \sqrt{3}) \Rightarrow A_{0}=6$.

Summary for X-shape IWs

Chord diagrams for X-shpae initial waves:

Summary for X-shape IWs

T-type solution: $A_{0}=8, \Psi_{0}=45^{\circ}\left(\Psi_{c} \approx 63.4^{\circ}\right)$.

(a): Simulation for sum of two line-solitons with $A_{0}=2$.
(b): Exact solution with $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{1}{2}(-3,-1,1,3)$.

Example of 3 half-waves

(415362)-type solution (one of (3,3)-type solitons):

(a) Initial wave with $[1,4],[3,5]$ for $y>0$ and $[2,6]$ for $y<0$.
(b) Exact solution with $\left(k_{1}, \ldots, k_{6}\right)=\frac{1}{2}(-4,-3,-1,0,1,4)$.

References

- Y. K., Young diagrams and N-soliton solutions of the KP equation, J. Phys. A: Math. Gen. 37 (2004) 11169-11190.
- S. Chakravarty and Y. K., Classification of the line-solitons of KPII, J. Phys. A: Math. Theor. 41 (2008) 275209 (33pp).
- S. Chakravarty and Y. K., A generating function for the N-soliton solutions of the Kadomtsev-Petviashvili II equation, Contemporary Math. 471 (2008) 47-67.
- S. Chakravarty and Y. K., Soliton solutions of the KP equation and application to shallow water waves, Stud. in Appl. Math. 123 (2009) 83-151. (arXiv: 0902.4433)

References

- S. Chakravarty and Y. K., Combinatorics and geometry of soliton solutions of the KP equation, coming soon.
- C-Y. Kao and Y. K., Numerical study on the Initial value problems of the KP equation, coming soon.
- Y. K., M. Oikawa and H. Tsuji, Soliton solutions of the KP equation with V-shape initial waves, arXiv:0904.2620.
- B.-F. Feng, Y. K. and K.-I. Maruno, Tow dimensional solitary wave solutions in the Boussinesq approximation of shallow water wave equation, coming soon.
- Y. K. and H. Yeh, Experimental study of soliton solutions of the KP equation in shallow water, coming soon.

