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V. Arnold (1972) classified simple degenerate critical points,
using the fact that a smooth function can be put in a
polynomial form similar to the Morsian normal form near a
nondegenerate critical point.
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V. Arnold (1972) classified simple degenerate critical points,
using the fact that a smooth function can be put in a
polynomial form similar to the Morsian normal form near a
nondegenerate critical point.

In doing so, he obtained a correspondence with the
Coxeter-Dynkin diagrams of type
An (n ≥ 2),Dn (n ≥ 4),E6,E7,E8.
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V. Arnold (1972) classified simple degenerate critical points,
using the fact that a smooth function can be put in a
polynomial form similar to the Morsian normal form near a
nondegenerate critical point.

In doing so, he obtained a correspondence with the
Coxeter-Dynkin diagrams of type
An (n ≥ 2),Dn (n ≥ 4),E6,E7,E8.

We have already encountered a few of these: the fold (A2)
and the cusp (A3).
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V. Arnold (1972) classified simple degenerate critical points,
using the fact that a smooth function can be put in a
polynomial form similar to the Morsian normal form near a
nondegenerate critical point.

In doing so, he obtained a correspondence with the
Coxeter-Dynkin diagrams of type
An (n ≥ 2),Dn (n ≥ 4),E6,E7,E8.

We have already encountered a few of these: the fold (A2)
and the cusp (A3).

Higher-order examples include the “swallowtail” (A4) and the
“parabolic umbilic” (D5).
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To each such singularity is associated a mapping
fc : R

2 −→ R
2 (analogous to the lensing map ηc).
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To each such singularity is associated a mapping
fc : R

2 −→ R
2 (analogous to the lensing map ηc).

Some terminology: for fc(x) = s, call x ∈ R
2 the pre-image of

the target point s ∈ R
2.
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To each such singularity is associated a mapping
fc : R

2 −→ R
2 (analogous to the lensing map ηc).

Some terminology: for fc(x) = s, call x ∈ R
2 the pre-image of

the target point s ∈ R
2.

In analogy with gravitational lensing, we call

M(x; s) ≡
1

det(Jac fc)(x)

the magnification of the pre-image x.
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To each such singularity is associated a mapping
fc : R

2 −→ R
2 (analogous to the lensing map ηc).

Some terminology: for fc(x) = s, call x ∈ R
2 the pre-image of

the target point s ∈ R
2.

In analogy with gravitational lensing, we call

M(x; s) ≡
1

det(Jac fc)(x)

the magnification of the pre-image x.

It was recently shown (Aazami & Petters 2009, 2010) that
each such fc satisfies a magnification relation of the form

n∑

i=1

M(xi ; s) = 0,

for any non-caustic target point s.
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Take any fc : R
2 −→ R

2, with a given pre-image x0 = (x0, y0)
of a non-caustic target point s = (s1, s2).
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Take any fc : R
2 −→ R

2, with a given pre-image x0 = (x0, y0)
of a non-caustic target point s = (s1, s2).

Let f
(1)
c and f

(2)
c denote the two components of fc, with

degrees d1 and d2, respectively.

Amir B. Aazami Orbifolds, the A, D, E Classification, and Gravitational Lensing



Take any fc : R
2 −→ R

2, with a given pre-image x0 = (x0, y0)
of a non-caustic target point s = (s1, s2).

Let f
(1)
c and f

(2)
c denote the two components of fc, with

degrees d1 and d2, respectively.

STEP 1:

P1(x , y) ≡ f
(1)
c (x , y) − s1 , P2(x , y) ≡ f

(2)
c (x , y) − s2.

Note that

J(x0) ≡ det

[
∂xP1 ∂yP1

∂xP2 ∂yP2

]

(x0)

= det(Jac fc)(x0) =
1

M(x0; s)
·
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Take any fc : R
2 −→ R

2, with a given pre-image x0 = (x0, y0)
of a non-caustic target point s = (s1, s2).

Let f
(1)
c and f

(2)
c denote the two components of fc, with

degrees d1 and d2, respectively.

STEP 1:

P1(x , y) ≡ f
(1)
c (x , y) − s1 , P2(x , y) ≡ f

(2)
c (x , y) − s2.

Note that

J(x0) ≡ det

[
∂xP1 ∂yP1

∂xP2 ∂yP2

]

(x0)

= det(Jac fc)(x0) =
1

M(x0; s)
·

STEP 2: treat the pre-image coordinates x = (x , y) as
complex variables, so that x ∈ C

2, and consider the following
meromorphic two-form defined on C

2:

ω =
dx dy

P1(x , y)P2(x , y)
·
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At points where J 6= 0, it can be shown that the residue of ω
is given by

Res ω =
1

J(x , y)
= M(x; s).

Thus we have expressed the magnification M(x; s) as the
residue of a meromorphic two-form defined on C

2.
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At points where J 6= 0, it can be shown that the residue of ω
is given by

Res ω =
1

J(x , y)
= M(x; s).

Thus we have expressed the magnification M(x; s) as the
residue of a meromorphic two-form defined on C

2.

STEP 3: using homogeneous coordinates [X : Y : U], where
x = X/U and y = Y /U, extend the Pi (x , y) to CP

2:

P1(X ,Y ,U)hom ≡ Ud1 f
(1)
c (X/U,Y /U) − s1U

d1

P2(X ,Y ,U)hom ≡ Ud2 f
(2)
c (X/U,Y /U) − s2U

d2 .

Affine space corresponds to U = 1.
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STEP 4: extend ω to a form on CP
2 that is homogeneous of

degree zero:

ω =
d(X/U)d(Y /U)

P1(X/U,Y /U)P2(X/U,Y /U)

=
Ud1+d2−3(UdXdY − XdUdY − YdXdU)

P1(X ,Y ,U)homP2(X ,Y ,U)hom
.
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STEP 4: extend ω to a form on CP
2 that is homogeneous of

degree zero:

ω =
d(X/U)d(Y /U)

P1(X/U,Y /U)P2(X/U,Y /U)

=
Ud1+d2−3(UdXdY − XdUdY − YdXdU)

P1(X ,Y ,U)homP2(X ,Y ,U)hom
.

STEP 5: the Global Residue Theorem states that the sum of
the residues of ω, on CP

2, is identically zero.
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STEP 4: extend ω to a form on CP
2 that is homogeneous of

degree zero:

ω =
d(X/U)d(Y /U)

P1(X/U,Y /U)P2(X/U,Y /U)

=
Ud1+d2−3(UdXdY − XdUdY − YdXdU)

P1(X ,Y ,U)homP2(X ,Y ,U)hom
.

STEP 5: the Global Residue Theorem states that the sum of
the residues of ω, on CP

2, is identically zero.

all the poles of ω in affine space correspond to pre-images of fc

and vice-versa, so the sum of their residues is the total signed
magnification Mtot(s).
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STEP 4: extend ω to a form on CP
2 that is homogeneous of

degree zero:

ω =
d(X/U)d(Y /U)

P1(X/U,Y /U)P2(X/U,Y /U)

=
Ud1+d2−3(UdXdY − XdUdY − YdXdU)

P1(X ,Y ,U)homP2(X ,Y ,U)hom
.

STEP 5: the Global Residue Theorem states that the sum of
the residues of ω, on CP

2, is identically zero.

all the poles of ω in affine space correspond to pre-images of fc

and vice-versa, so the sum of their residues is the total signed
magnification Mtot(s).
Mtot(s) is thus precisely equal to minus the sum of the
residues of ω at infinity (U = 0).
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In conclusion, we arrive at the following:

Dalal & Rabin (2001)

The total signed magnification Mtot(s) corresponding to a
non-caustic target point s of a mapping fc reflects the behavior of
fc at infinity when it is extended to CP

2.
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In conclusion, we arrive at the following:

Dalal & Rabin (2001)

The total signed magnification Mtot(s) corresponding to a
non-caustic target point s of a mapping fc reflects the behavior of
fc at infinity when it is extended to CP

2.

So what happens if a particular mapping fc has images at
infinity?
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In conclusion, we arrive at the following:

Dalal & Rabin (2001)

The total signed magnification Mtot(s) corresponding to a
non-caustic target point s of a mapping fc reflects the behavior of
fc at infinity when it is extended to CP

2.

So what happens if a particular mapping fc has images at
infinity?

Then ω has poles at infinity, so their residues must be
calculated (in general, this is not easy!).
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Pick a mapping fc : R
2 −→ R

2.
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Pick a mapping fc : R
2 −→ R

2.

Let s = (s1, s2) be a non-caustic target point.
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Pick a mapping fc : R
2 −→ R

2.

Let s = (s1, s2) be a non-caustic target point.

We know it satisfies:

Mtot(s) =

n∑

i=1

M(xi ; s) = 0.
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Pick a mapping fc : R
2 −→ R

2.

Let s = (s1, s2) be a non-caustic target point.

We know it satisfies:

Mtot(s) =

n∑

i=1

M(xi ; s) = 0.

Because r.h.s. is identically zero, we want there to be NO
images at infinity.
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Pick a mapping fc : R
2 −→ R

2.

Let s = (s1, s2) be a non-caustic target point.

We know it satisfies:

Mtot(s) =

n∑

i=1

M(xi ; s) = 0.

Because r.h.s. is identically zero, we want there to be NO
images at infinity.

Is this always the case when we extend to CP
2?
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Pick a mapping fc : R
2 −→ R

2.

Let s = (s1, s2) be a non-caustic target point.

We know it satisfies:

Mtot(s) =

n∑

i=1

M(xi ; s) = 0.

Because r.h.s. is identically zero, we want there to be NO
images at infinity.

Is this always the case when we extend to CP
2?

Answer: NO!
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Take, for example, the “parabolic umbilic” singularity (D5). . .
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Take, for example, the “parabolic umbilic” singularity (D5). . .

Its induced mapping is

fc(x , y) =
(
2xy , x2 ± 4y3 + 3c3y

2 + 2c2y
)

= (s1, s2)
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Take, for example, the “parabolic umbilic” singularity (D5). . .

Its induced mapping is

fc(x , y) =
(
2xy , x2 ± 4y3 + 3c3y

2 + 2c2y
)

= (s1, s2)

Now extend fc to CP
2

{
2XY − s1U

2

X 2U ± 4Y 3 + 3c3Y
2U + 2c2YU2 − s2U

3.
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Take, for example, the “parabolic umbilic” singularity (D5). . .

Its induced mapping is

fc(x , y) =
(
2xy , x2 ± 4y3 + 3c3y

2 + 2c2y
)

= (s1, s2)

Now extend fc to CP
2

{
2XY − s1U

2

X 2U ± 4Y 3 + 3c3Y
2U + 2c2YU2 − s2U

3.

In affine space (U = 1), this is just fc.
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At infinity (U = 0), these equations reduce to

{
2XY

±4Y 3.
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At infinity (U = 0), these equations reduce to

{
2XY

±4Y 3.

These have a nonzero common root: [1 : 0 : 0].
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At infinity (U = 0), these equations reduce to

{
2XY

±4Y 3.

These have a nonzero common root: [1 : 0 : 0].

CONCLUSION: the total signed magnification is equal to
minus the residue of ω at this point.
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At infinity (U = 0), these equations reduce to

{
2XY

±4Y 3.

These have a nonzero common root: [1 : 0 : 0].

CONCLUSION: the total signed magnification is equal to
minus the residue of ω at this point.

Can we “get rid” of this pole at infinity?
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At infinity (U = 0), these equations reduce to

{
2XY

±4Y 3.

These have a nonzero common root: [1 : 0 : 0].

CONCLUSION: the total signed magnification is equal to
minus the residue of ω at this point.

Can we “get rid” of this pole at infinity?

Answer: YES, but we need “weighted” projective space. . .
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The rough idea. . .

Whereas a manifold locally looks like an open subset of R
n, an

orbifold locally looks like the quotient of an open subset of R
n by a

finite group action.
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The rough idea. . .

Whereas a manifold locally looks like an open subset of R
n, an

orbifold locally looks like the quotient of an open subset of R
n by a

finite group action.

The formal definition

Let X be a paracompact Hausdorff space.

An n-dimensional orbifold chart is a connected open subset
Ũ ⊂ R

n and a continuous mapping φ : Ũ −→ φ(Ũ) ≡ U ⊂ X ,
together with a finite group G of diffeomorphisms of Ũ such that φ
is G -invariant (φ ◦ g = φ for all g ∈ G ) and induces a
homeomorphism Ũ/G ∼= U.

There is a compatibility condition that two overlapping orbifolds
charts will satisfy (details omitted).
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For any x ∈ X , pick an orbifold chart (Ũ,G , φ) containing it
and pick a point y in the fiber φ−1(x) ⊂ Ũ ⊂ R

n.
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For any x ∈ X , pick an orbifold chart (Ũ,G , φ) containing it
and pick a point y in the fiber φ−1(x) ⊂ Ũ ⊂ R

n.

Define the local group of x to be

Gx = {g ∈ G : g(y) = y}.

Amir B. Aazami Orbifolds, the A, D, E Classification, and Gravitational Lensing



For any x ∈ X , pick an orbifold chart (Ũ,G , φ) containing it
and pick a point y in the fiber φ−1(x) ⊂ Ũ ⊂ R

n.

Define the local group of x to be

Gx = {g ∈ G : g(y) = y}.

Gx is uniquely determined up to conjugacy (proof not easy).
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For any x ∈ X , pick an orbifold chart (Ũ,G , φ) containing it
and pick a point y in the fiber φ−1(x) ⊂ Ũ ⊂ R

n.

Define the local group of x to be

Gx = {g ∈ G : g(y) = y}.

Gx is uniquely determined up to conjugacy (proof not easy).

If Gx 6= 1, then x is singular. If X has no singular points, then
the local actions are all free, so X is a smooth manifold.
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For any x ∈ X , pick an orbifold chart (Ũ,G , φ) containing it
and pick a point y in the fiber φ−1(x) ⊂ Ũ ⊂ R

n.

Define the local group of x to be

Gx = {g ∈ G : g(y) = y}.

Gx is uniquely determined up to conjugacy (proof not easy).

If Gx 6= 1, then x is singular. If X has no singular points, then
the local actions are all free, so X is a smooth manifold.

Singular points will play an important role for us below:
namely, we want to make sure to avoid them!
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For any x ∈ X , pick an orbifold chart (Ũ,G , φ) containing it
and pick a point y in the fiber φ−1(x) ⊂ Ũ ⊂ R

n.

Define the local group of x to be

Gx = {g ∈ G : g(y) = y}.

Gx is uniquely determined up to conjugacy (proof not easy).

If Gx 6= 1, then x is singular. If X has no singular points, then
the local actions are all free, so X is a smooth manifold.

Singular points will play an important role for us below:
namely, we want to make sure to avoid them!

The orbifold we’ll be interested in is a space that is a
generalization of CP

n. . .
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CP
n as a Lie group action

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (zw0, . . . , zwn)
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CP
n as a Lie group action

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (zw0, . . . , zwn)

S
1 ⊂ C, S

2n+1 ⊂ C
n+1, so z ,wi ∈ C

This action satisfies the following properties:
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CP
n as a Lie group action

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (zw0, . . . , zwn)

S
1 ⊂ C, S

2n+1 ⊂ C
n+1, so z ,wi ∈ C

This action satisfies the following properties:

it is smooth
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CP
n as a Lie group action

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (zw0, . . . , zwn)

S
1 ⊂ C, S

2n+1 ⊂ C
n+1, so z ,wi ∈ C

This action satisfies the following properties:

it is smooth
it is free: (zw0, . . . , zwn) = (w0, . . . , wn) ⇐⇒ z = 1 ∈ S1
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CP
n as a Lie group action

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (zw0, . . . , zwn)

S
1 ⊂ C, S

2n+1 ⊂ C
n+1, so z ,wi ∈ C

This action satisfies the following properties:

it is smooth
it is free: (zw0, . . . , zwn) = (w0, . . . , wn) ⇐⇒ z = 1 ∈ S1

it is “proper”: i.e., the map

S
1 × S

2n+1 −→ S
2n+1 × S

2n+1

(
z, (w0, . . . , wn)

)
7−→

(
(zw0, . . . , zwn), (w0, . . . , wn)

)

is proper (pre-images of compact sets are compact).
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These three conditions guarantee that the quotient space

S
2n+1/S

1

is a smooth manifold, which is none other than CP
n (to see

this, just restrict the domain of the usual quotient map
π : C

n+1\{0} −→ CP
n to S

2n+1 ⊂ C
n+1\{0}.)
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These three conditions guarantee that the quotient space

S
2n+1/S

1

is a smooth manifold, which is none other than CP
n (to see

this, just restrict the domain of the usual quotient map
π : C

n+1\{0} −→ CP
n to S

2n+1 ⊂ C
n+1\{0}.)

The importance of this alternative definition of CP
n is that it

can be generalized. . .
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. . . Consider now the following Lie group action:

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (za0w0, . . . , z

anwn),

where each ai ∈ Z+ (they are usually coprime).
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. . . Consider now the following Lie group action:

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (za0w0, . . . , z

anwn),

where each ai ∈ Z+ (they are usually coprime).

This action is still smooth.
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. . . Consider now the following Lie group action:

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (za0w0, . . . , z

anwn),

where each ai ∈ Z+ (they are usually coprime).

This action is still smooth.

It is still proper.
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. . . Consider now the following Lie group action:

S
1 × S

2n+1 −→ S
2n+1

(
z , (w0, . . . ,wn)

)
7−→ (za0w0, . . . , z

anwn),

where each ai ∈ Z+ (they are usually coprime).

This action is still smooth.

It is still proper.

But it is not free: e.g.,

(0, . . . , zai wi , . . . , 0) = (0, . . . ,wi , . . . , 0)

for any ath
i root of unity, not just 1.
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Rather this action is almost free: the stabilizer group

{z ∈ S
1 : (za0w0, . . . , z

anwn) = (w0, . . . ,wn)} ⊂ S
1

is not trivial for every (w0, . . . ,wn) ∈ S
2n+1, but it is always

finite.
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Rather this action is almost free: the stabilizer group

{z ∈ S
1 : (za0w0, . . . , z

anwn) = (w0, . . . ,wn)} ⊂ S
1

is not trivial for every (w0, . . . ,wn) ∈ S
2n+1, but it is always

finite.

Denote the resulting quotient space by WP(a0, . . . , an). Since
it’s not a smooth manifold, is it an orbifold?
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Rather this action is almost free: the stabilizer group

{z ∈ S
1 : (za0w0, . . . , z

anwn) = (w0, . . . ,wn)} ⊂ S
1

is not trivial for every (w0, . . . ,wn) ∈ S
2n+1, but it is always

finite.

Denote the resulting quotient space by WP(a0, . . . , an). Since
it’s not a smooth manifold, is it an orbifold?

Orbifolds as Quotients of Manifolds by Lie Groups

Let G × M −→ M be a smooth action of a compact Lie group G

on a smooth manifold M. If the action is effective and almost free,
then the quotient space M/G will be an orbifold.
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Rather this action is almost free: the stabilizer group

{z ∈ S
1 : (za0w0, . . . , z

anwn) = (w0, . . . ,wn)} ⊂ S
1

is not trivial for every (w0, . . . ,wn) ∈ S
2n+1, but it is always

finite.

Denote the resulting quotient space by WP(a0, . . . , an). Since
it’s not a smooth manifold, is it an orbifold?

Orbifolds as Quotients of Manifolds by Lie Groups

Let G × M −→ M be a smooth action of a compact Lie group G

on a smooth manifold M. If the action is effective and almost free,
then the quotient space M/G will be an orbifold.

The orbifold WP(a0, . . . , an) is called weighted projective

space.
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Let’s use this machinery: consider the weighted projective
space WP(3, 2, 1).
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Let’s use this machinery: consider the weighted projective
space WP(3, 2, 1).

Recall: this is the action

S
1 × S

5 −→ S
5

(
z , (X ,Y ,U)

)
7−→ (z3X , z2Y , zU).

So WP(3, 2, 1) = S
5/S

1.
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Let’s use this machinery: consider the weighted projective
space WP(3, 2, 1).

Recall: this is the action

S
1 × S

5 −→ S
5

(
z , (X ,Y ,U)

)
7−→ (z3X , z2Y , zU).

So WP(3, 2, 1) = S
5/S

1.

CONCLUSION: the homogeneous coordinates X and Y now
have “weights” 3 and 2, respectively.

Amir B. Aazami Orbifolds, the A, D, E Classification, and Gravitational Lensing



Let’s use this machinery: consider the weighted projective
space WP(3, 2, 1).

Recall: this is the action

S
1 × S

5 −→ S
5

(
z , (X ,Y ,U)

)
7−→ (z3X , z2Y , zU).

So WP(3, 2, 1) = S
5/S

1.

CONCLUSION: the homogeneous coordinates X and Y now
have “weights” 3 and 2, respectively.

Their relation to the usual coordinates x , y are given by

x =
X

U3
, y =

Y

U2
·
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Let’s go back to the parabolic umbilic (D5) . . .
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Let’s go back to the parabolic umbilic (D5) . . .

Recall that its induced mapping is

fc(x , y) =
(
2xy , x2 ± 4y3 + 3c3y

2 + 2c2y
)

= (s1, s2)
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Let’s go back to the parabolic umbilic (D5) . . .

Recall that its induced mapping is

fc(x , y) =
(
2xy , x2 ± 4y3 + 3c3y

2 + 2c2y
)

= (s1, s2)

This times let’s extend fc to WP(3, 2, 1)

{
2XY − s1U

5

X 2 ± 4Y 3 + 3c3Y
2U2 + 2c2YU4 − s2U

6.
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Let’s go back to the parabolic umbilic (D5) . . .

Recall that its induced mapping is

fc(x , y) =
(
2xy , x2 ± 4y3 + 3c3y

2 + 2c2y
)

= (s1, s2)

This times let’s extend fc to WP(3, 2, 1)

{
2XY − s1U

5

X 2 ± 4Y 3 + 3c3Y
2U2 + 2c2YU4 − s2U

6.

Compare this with the extension to CP
2

{
2XY − s1U

2

X 2U ± 4Y 3 + 3c3Y
2U + 2c2YU2 − s2U

3.
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Once again in affine space (U = 1), this is just fc.
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Once again in affine space (U = 1), this is just fc.

At infinity (U = 0), however, we now have

{
2XY

X 2 ± 4Y 3.
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Once again in affine space (U = 1), this is just fc.

At infinity (U = 0), however, we now have

{
2XY

X 2 ± 4Y 3.

The only common root is [0 : 0 : 0], which is not a point in
WP(3, 2, 1).
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Once again in affine space (U = 1), this is just fc.

At infinity (U = 0), however, we now have

{
2XY

X 2 ± 4Y 3.

The only common root is [0 : 0 : 0], which is not a point in
WP(3, 2, 1).

CONCLUSION: there are NO poles at infinity, hence no
residues at infinity (i.e., we “got rid” of the pole at infinity).
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Once again in affine space (U = 1), this is just fc.

At infinity (U = 0), however, we now have

{
2XY

X 2 ± 4Y 3.

The only common root is [0 : 0 : 0], which is not a point in
WP(3, 2, 1).

CONCLUSION: there are NO poles at infinity, hence no
residues at infinity (i.e., we “got rid” of the pole at infinity).

Also, there are NO singular points in affine space, because U

has weight 1.
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So by the Global Residue Theorem (for compact orbifolds),
the parabolic umbilic satisfies

Mtot(s) =

5∑

i=1

Mi = 0 (1)

for any non-caustic target point s = (s1, s2).
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So by the Global Residue Theorem (for compact orbifolds),
the parabolic umbilic satisfies

Mtot(s) =

5∑

i=1

Mi = 0 (1)

for any non-caustic target point s = (s1, s2).

This in fact works for ALL the singularities of the A,D,E
family. . .
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So by the Global Residue Theorem (for compact orbifolds),
the parabolic umbilic satisfies

Mtot(s) =

5∑

i=1

Mi = 0 (1)

for any non-caustic target point s = (s1, s2).

This in fact works for ALL the singularities of the A,D,E
family. . .

What are the advantages to this approach?
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So by the Global Residue Theorem (for compact orbifolds),
the parabolic umbilic satisfies

Mtot(s) =

5∑

i=1

Mi = 0 (1)

for any non-caustic target point s = (s1, s2).

This in fact works for ALL the singularities of the A,D,E
family. . .

What are the advantages to this approach?

NO residues to calculate (the answer is immediate),
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So by the Global Residue Theorem (for compact orbifolds),
the parabolic umbilic satisfies

Mtot(s) =

5∑

i=1

Mi = 0 (1)

for any non-caustic target point s = (s1, s2).

This in fact works for ALL the singularities of the A,D,E
family. . .

What are the advantages to this approach?

NO residues to calculate (the answer is immediate),
an understanding that CP

2 is not the only space in which to
work,
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So by the Global Residue Theorem (for compact orbifolds),
the parabolic umbilic satisfies

Mtot(s) =

5∑

i=1

Mi = 0 (1)

for any non-caustic target point s = (s1, s2).

This in fact works for ALL the singularities of the A,D,E
family. . .

What are the advantages to this approach?

NO residues to calculate (the answer is immediate),
an understanding that CP

2 is not the only space in which to
work,
therefore, an explanation of such magnification relations:
“eqn. (1) is really saying that in the appropriate space, there
are no images at infinity.”
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