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Fundamental Theorem of Algebra

Theorem 1. Every complex polynomial

p(z) ‘= anz"+ ... + ag, an = 0 Of degree n has
precisely n complex roots (counted with mul-
tiplicities).

In the 1990s T. Sheil-Small, A. Wilmshurst
proposed to extend FTA to a larger class of
polynomials, harmonic polynomials.

h(z) :=p(z) —q(z),n :=degp > m .= degq.
Theorem 2. (A. Wilmshurst, '92)
#t{z: h(z) =0} < n?.

Moreover, there exist p,q : degqg = n — 1 such
that the upper bound n? is attained.
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Wilmshurst's example for n = 2.



Wilmshurst’s Example Continued.

h(z) .= Im(e_%rzn) + iIm(e%T(z —1H)").

A little bit of algebra gives a more elegant ex-
ample:

h(z) =2"+(z—-1D)"+z" —i(z - 1)".

Note: m=n-1.



Question: If m << n, what is the precise up-
per bound for the number of zeros of the poly-
nomial p(z) — q(2)7?

Conjecture 1. (A. Wilmshurst, '92)

#H{z : p(2) — q(z) =0} <m(m —1)+3n - 2.

For m = n — 1, the above example shows that
Conjecture 1 holds and is sharp. For m =1, it
becomes

Conjecture 2. (T. Sheil-Small - A. Wilmshurst,
'92)

#H{z . p(z) —z2=0,n>1} <3n— 2.



History of Conjecture 2

e In the 1990s D. Sarason and B. Crofoot and,
independently, D. Bshouty, A. Lyzzaik and W.
Hengartner verified it for n = 2, 3.

e In 2001, using elementary complex dynamics
and the argument principle for harmonic map-
pings, G. Swiatek and DK proved Conjecture
2 for all n > 1.

e In 2003-2005 L. Geyer showed, using dynam-
ics, that 3n — 2 bound is sharp for all n.



Main Results
Theorem 3. (G. Swiatek -DK, '01)
t{z  p(z) —z=0,n>1} <3n-—2.

The bound 3n — 2 is sharp for all n (L. Geyer,
‘03 -'05).

Let r(z2) := 5%2 be a rational function, p(2), ¢(2)
are polynomials. degr := maz{degp,degq}.

Theorem 4. (G. Neumann -DK, '05)
t{z:r(z) —z=0,n:=degr > 1} <5n— 5.

The bound 5n — 5 is sharp for all n (S. Rhie,
'03).



Gravitational Microlensing

e n Co-planar point-masses (e.g. condensed
galaxies, black holes, etc.) in lens plane or
deflector plane.

e Consider a light source in the plane parallel to
the lens plane (source plane) and perpendicular
to the line of sight from the observer.

e Due to deflection of light by masses multiple
images of the source are formed. This phe-
nomenon is known as gravitational microlens-

ing.



Source plane : »
\

Lens plane

Basics of gravitational lensing.



Lens Equation

Light source is located in the position w in
the source plane. The lensed image is located
at the position z in the lens plane while the
masses are located at the positions Zj in the
lens plane.

w=z—20j/(2—z_j),
1

where o; 7 0 are real constants.

n
Letting r(2) = > 0;/(2—2;)+w, the lens equa-
1

tion becomes

z—1r(z) =0, degr = n.

The number of solutions = the number of
“lensed” images.
10



ravitational Lens HST - WFPC2
alaxy Cluster 0024+1654

FRCS6-10 « 5T Sel OPO - April 24, 1986

M. Colley (Princeton University). E. Turner {(Princeton University).
A. Tyson (AT&T Bell Labs) and NASA




5 images of a quasar=quasi-stellar-radio object




History

e n =1 (one mass) A. Einstein (1912 - 1933),
either two images or the whole circle (“Einstein

ring’ ).

e H. Witt ("90) For n > 1 the maximum num-
ber of observed images is < n2 + 1. S. Mao,
A. Petters and H. Witt ('97) showed that the
maximum is > 3n + 1.

e S.H. Rhie ("01) conjectured the upper bound
for the number of lensed images for an n-lens
IS Bbn — 5.

Corollary 1. (G. Neumann-DK, '05). The num-
ber of lensed images by an n-mass lens cannot
exceed 5n — 5 and this bound is sharp (Rhie,
'03). Moreover, it follows from the proof that
the number of images is even when n is odd
and vice versa.
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The Ideas Involved

h:=z—p(z),degp=mn>1

Critical set of h

{z: Jacobian(h) =1 — |p/|? =0} =: L,

a lemniscate with at most n—1 connected com-
ponents.
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e Inside each of these components, h IS sense-
preserving. God willing, h would be univalent
inside L, so there will be at most n — 1 zeros
of h where [p/| < 1.

e Outside L, h is sense reversing and all of its
n_ Sense-reversing zeros are finite.

—(n—1)< —-Apargh=n—n_
e, n_ <2n— 1.
e [ he total number of zeros of h is

<n—14+2n—-—1=3n -2, done.
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Example Consider

h(z) =z — %(32 — 23),

n=3. Ithas 3 x3—-2=7 zeros

1
O,il,i(iﬁii).

2x3—1 = 5 sense-reversing roots 0, 5(£v/7+i)

and 3—1 = 2 sense preserving roots £1, where
p' = 0. Great!
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2 sense preserving zeros at =1 and 5 sense
reversing zeros at 0 and 5(£v7 £4).
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But God is NOT willing and h
need not be univalent inside L.

Thus the above argument fails.
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Help From Dynamics

Proposition 1. Let degp = n. Then,

t{attracting fixed points of p(z)} =

H{z:2—p(z)=0,p'(2)| <1} <n-1.

e Q(z) :=p(p(z)) is an ANALYTIC polynomial
of degree n2.

e Every attracting fixed point of p(z) is an at-
tracting fixed point of Q and by Fatou’s theo-
rem it “attracts” at least one CRITICAL (i.e.,

z:Q'(z) =0) point of Q.

Lemma 1. Each attracting fixed point of p(z)
attracts at least a group of n+1 critical points

of Q.

e Q has n? — 1 critical points. Divided into
groups of2at least n + 1 points they “run” to
at most Z—_ljll = n — 1 fixed points of p(z) and
the proposition and then the theorem follow.
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Sharpness Results

Theorem 5. (L. Geyer, 2003-05) For every
n > 1 there exists a complex analytic polyno-
mial p of degree n and mutually distinct points
21, ey Zn—1 WIth p’(Zj) = 0 and p(zj) = Zj.

Theorem 6. (S. H. Rhie, 2001) For every

n > 1 there exists a gravitational lens with n
masses that produces precisely 5n — 5 images
of a point source.

Corollary 2. For every n > 1 there exists a
complex analytic polynomial p of degree n such
that p(z) — z has precisely 3n — 2 zeros. Simi-
larly, there exists a rational function r(z) with
(finite) poles z1, ..., zn such that the r(z) —z has
precisely bn — 5 zeros.
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Rhie’s Construction
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13 images for the non-perturbed lens and
20 1mages after adding a small mass at

the origin.
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Topological Dynamics Tools

Two polynomials p and g are called conjugate
if there is an affine linear map T such that
p = T_l oqo T.

They are equivalent if there are affine linear
maps S and T such that p=SoqgoT.

Theorem 7. (L. Geyer, 2005) The number E,,
of equivalence classes of real polynomials p of
degree n having n — 1 distinct critical points
c1,...,cp—1 and satisfying p(c;) = ¢; for j =
l1,...n—11Is B, = C["z;l]’ where Cy, IS the m-
th Catalan number. The number of conjugacy
classes is Qn = En + Cy, if n = 4k + 3 and
Qn = Ey if n £ 3(mod4).
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Questions

1. How many zeros can a polynomial

h.=zZ"—p(z),degp =n >m

have?

Wilmshurst's conjecture for m = 2 suggests
the upper bound 3n. Is it true?

2. Lensing. G. Neumann-DK’s theorem ap-
plies to n ‘spherically symmetric’ mass dis-
tributions in the lens plane and gives at most
5n—5-lensed images outside the support of the
mass distribution.

Question. How many lensed images can a
uniform elliptic mass distribution produce?
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Theorem 8. (C. Fassnacht - C. Keeton - DK,
'07.)

An elliptic galaxy €2 with a uniform mass den-
sity may produce at most 4 “bright” lensing
images of a point light source outside 2, and
at most one “dim” image inside 2, i.e., at
most 5 lensing images altogether.

Moreover, an elliptic galaxy €2 with mass den-
Sity that is constant on ellipses confocal with
€2, may produce at most 4 “bright” lensing
images of a point light source outside (2.
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An “Astronomical” Proof

Gravitational Lenses HST « WFPC2

PACHS43 « 5T 5ol GRO « Oetobar 18, 1955 « K. Rafnatunga (JHU), RASA
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Einstein Rings are EIllipses

Theorem 9. (Fassnacht - Keeton - DK,’'07.)
For any lens u, if the lensing produces an im-
age ‘“curve” surrounding the lens, it is either a
circle in the case when the shear, i.e., a grav-
itational “pull” by a galaxy ‘“far, far away’,
= 0, or an ellipse.
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Einstein Ring Gravitational Lenses
Hubble Space Telescope + Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team STScl-PRC05-32




“Isothermal” Elliptical Lenses

e T he density, important from the physical
viewpoint, is a so-called “isothermal den-
sity” obtained by projecting onto the lens
plane the “realistic’” three-dimensional den-
sity ~ 1/p2, where p is the (three-dimensional)
distance from the origin. It could be in-
cluded into the whole class of densities that
are constant on all ellipses homothetic rather
than confocal with the given one.

e Lens equation becomes transcendental.

e T here have been no more than 5 images
(4 + 1) observed as of today.
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Final Remarks

e An isothermal sphere with a shear is cov-
ered by '06 DK -G. Neumann theorem and
may produce at most 4 images (observed).

e A rigorous proof that an isothermal ellipti-
cal lens may only produce finitely many im-
ages is still missing. Up to today, no more
than 5 images (4 bright 4+1 dim) have been
observed.

e In 2000 Ch. Keeton, S. Mao and H. J.
Witt constructed models with a tidal grav-
itational perturbation (shear) having
9, (8 bright + 1 dim), images.
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