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““T’he miracle of the appropriateness of
the language of mathematics to the
formulation of the laws of physics is
a wonderful gift which we neither un-

derstand nor deserve' .

Eugene P. Wigner (1902 - 1995), 1963

Physics Nobel Prize Laureate.




Solving Algebraic Equations

Recall quadratic equations:

aaf;z—l—baﬁ—l—czo,

where a, b, ¢ are given real numbers (coefficients).
Completing the square we can easily derive

b\ b2 —dac  —btVA
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where A = b2 — 4ac, the discriminant. Then,
the number of real solutions of the equation
depends on A. Yet, the number of complex
solutions counting multiplicities is always 2!




A Brief History

Quadratic Equations - 1800-1600 B.C., Ba-
bilonians

Cubic Equations - 16th century A. D. (S. del
Ferro, N. Tartaglia, G. Cardano)

Quartic Equations - 16th century A.D., (L.
Ferrari)

All the above solutions are expressed as explicit
formulas.

19th century - N.-H. Abel, E. Galois proved
that general equations of of degree 5 and higher
CANNOT be solved by explicit formulas.

Question: How many many complex solutions
does an equation of degree n > 1 have?



Fundamental Theorem of Algebra

Theorem 1. Every complex polynomial

p(z) ;= anz™ + ... + ag, an 7 0 Of degree n has
precisely n complex roots (counted with mul-
tiplicities).

First proved in 1799 by C. F. Gauss (1777-
1855).




In the 1990s T. Sheil-Small, A. Wilmshurst
proposed to extend FTA to a larger class of
polynomials, harmonic polynomials.

h(z) ;= p(z) —q(2),n :=degp > m = deg q.

(For a complex number a+1ib, a,b € R, a + ib =
a — 1b.)

Theorem 2. (A. Wilmshurst, '92)
#t{z: h(z) =0} < n?.

Moreover, there exist p,q : degqg = n — 1 such
that the upper bound n? is attained.



Wilmshurst's example for n = 2.

h(z) := Im(e_%rzn) + ilm(e%(z —1)").

A little bit of algebra gives a more elegant ex-
ample:

h(z) =2"+(z—-1)"+z" —i(z - 1)"

Note: m=n-1.



Question: If m << n, what is the precise up-
per bound for the number of zeros of the poly-
nomial p(z) — q(2)7?

Conjecture 1. (A. Wilmshurst, '92)

#{z: p(z) —q(z) =0} <m(m —1) 4+ 3n — 2.

For m = n — 1, the above example shows that
Conjecture 1 holds and is sharp. For m = 1, it
becomes

Conjecture 2. (T. Sheil-Small - A. Wilmshurst,
'92)

#H{z: p(z) —z2=0,n>1} < 3n— 2.



History of Conjecture 2

e In the 1990s D. Sarason and B. Crofoot and,
independently, D. Bshouty, A. Lyzzaik and W.
Hengartner verified it for n = 2, 3.

e In 2001, using elementary complex dynamics
and the argument principle for harmonic map-
pings, G. Swiatek and DK proved Conjecture
2 for all n > 1.

e In 2003-2005 L. Geyer showed, using dynam-
ics, that 3n — 2 bound is sharp for all n.



Theorem 3. (G. Swiatek -DK, '01)

#H{z p(z) —z=0,n>1} < 3n-—2.

The bound 3n — 2 is sharp for all n (L. Geyer,
‘03 -'05).

Example. Consider

h(z) = 2—2(32—23),n =3. It has 3x3-2=7
zeros 0, +1, 5(£V7 £4).
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Let r(z2) := gg% be a rational function, p(2), ¢(2)
are polynomials. degr := max{deg p,deg q}. For

example,

4j

r) =Y

j=1%7"%j
Theorem 4. (G. Neumann -DK, '05)

t{z:r(z) —z=0,n:=degr > 1} < bn— 5.

The bound 5n — 5 is sharp for all n (S. Rhie,
'03).

It turns out that this result opens a door
to another world.
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Geometric Optics in the Perfect World

Real image
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Optics in Less Than Perfect World

Spherical aberration

Chromatic aberration
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Multiple Images by a System of Mirrors

formed by mirror 2

Mirror 2
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Gravitational Microlensing

e n Cco-planar point-masses (e.g. condensed
galaxies, black holes, etc.) in lens plane or
deflector plane.

e Consider a light source in the plane parallel to
the lens plane (source plane) and perpendicular
to the line of sight from the observer.

e Due to deflection of light by masses multiple
images of the source are formed. This phe-
nomenon is known as gravitational microlens-
ing.
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Source plane : »
\

Lens plane

Basics of gravitational lensing.
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Gravitational lensing: the gravitational field
of a massive object(s) acts as a lens for
background sources

EXxciting fact: the map from the distorted
picture to the original is a planar harmonic
map.
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Lensing by Multiple Massive Objects

Cluster of

Ohservers Distant

hiere on Earth

18



Lens Equation

Light source is located in the position w in
the source plane. The lensed image is located
at the position z in the lens plane while the
masses are located at the positions Z; in the
lens plane.

w = Z—ZO']'/(E—Z_J'),
1

where o; 7 0 are real constants.

n
Letting r(z) = > 0;/(2z—2;)+w, the lens equa-
1

tion becomes

z—1r(z) =0, degr = n.

The number of solutions = the number of
“lensed” images.
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ravitational Lens HST - WFPC2
alaxy Cluster 0024+1654

FRCS6-10 « 5T Sel OPO - April 24, 1986

M. Colley (Princeton University). E. Turner {(Princeton University).
JA. Tyson (AT&T Bell Labs) and NASA




5 images of a quasar=quasi-stellar-radio object




History

e n =1 (one mass) A. Einstein (1912 - 1933),
either two images or the whole circle ( “Einstein

ring’ ).

e H. Witt ('90) For n > 1 the maximum num-
ber of observed images is < n?+1. S. Mao,
A. Petters and H. Witt ('97) showed that the
maximum is > 3n + 1.

e S.H. Rhie ('01) conjectured the upper bound
for the number of lensed images for an n-lens
IS 5n — 5.

Corollary 1. (G. Neumann-DK, '05). The num-
ber of lensed images by an n-mass lens cannot
exceed 5n — 5 and this bound is sharp (Rhie,
'03). Moreover, it follows from the proof that
the number of images is even when n is odd
and vice versa.
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Rhie’s Construction
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13 i1mages for the non-perturbed lens and
20 1mages after adding a small mass at
the origin.
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Questions

1. How many zeros can a polynomial

h:=2z"—p(z),degp =n >m

have?

Wilmshurst's conjecture for m = 2 suggests
the upper bound 3n. Is it true?

2. Lensing. G. Neumann-DK's theorem ap-
plies to n ‘spherically symmetric’ mass dis-
tributions in the lens plane and gives at most
5n—5-lensed images outside the support of the
mass distribution.

Question. How many lensed images can a
uniform elliptic mass distribution produce?
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Theorem 5. (C. Fassnacht - C. Keeton - DK,
'07.)

An elliptic galaxy €2 with a uniform mass den-
sity may produce at most 4 “bright” lensing
images of a point light source outside 2, and
at most one “dim” image inside 2, i.e., at
most 5 lensing images altogether.

Moreover, an elliptic galaxy €2 with mass den-
Sity that is constant on ellipses confocal with
€2, may produce at most 4 “bright” lensing
images of a point light source outside €.
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An “Astronomical” Proof

Gravitational Lenses HST - WFPC2

PACHS43 « 5T 5ol GRO « Oetobar 18, 1955« K. Rafnatunga (JHU), RASA
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Einstein Rings are EIllipses

Theorem 6. (Fassnacht - Keeton - DK,’'07.)
For any lens u, if the lensing produces an im-
age ‘“curve’” surrounding the lens, it is either a
circle in the case when the shear, i.e., a grav-
itational “pull” by a galaxy ‘far, far away’,
= 0, or an ellipse.
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J073728.45+321618.5

J095629.77+510006.6

J120540.43+491029.3

.

J125028.25+052349.0

-

J140228.21+632133.5

’

.
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J162746.44-005357.5

.

J163028.15+452036.2

J232120.93-093910.2

Einstein Ring Gravitational Lenses
Hubble Space Telescope + Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team STScl-PRC05-32




“Isothermal” Elliptical Lenses

e [ he density, important from the physical
viewpoint, is a so-called “isothermal den-
sity” obtained by projecting onto the lens
plane the “realistic’” three-dimensional den-
sity ~ 1/p2, where p is the (three-dimensional)
distance from the origin. It could be in-
cluded into the whole class of densities that
are constant on all ellipses homothetic rather
than confocal with the given one.

e |L.ens equation becomes transcendental.

t/l dt
z — COons — YZ — W.
0 \/52 _ 0242 K
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Final Remarks

e An isothermal sphere with a shear is cov-
ered by '06 DK -G. Neumann theorem and
may produce at most 4 images (observed).

e DK and E. Lundberg ('09) have proved
that an isothermal elliptical lens without
a shear may produce up to 8 bright im-
ages. Instantly, Bergweiler and Eremenko
improved the estimate to 6 images, and
showed that 6 is sharp. No more than 5
images (4 bright 4+1 dim) have been ob-
served up to now.

e In 2000 Ch. Keeton, S. Mao and H. J.
Witt constructed models with a tidal grav-
itational perturbation (shear) having
9, (8 bright + 1 dim), images.
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Three-Dimensional Lensing

e [ he 3-dimensional lens equation with mass-

distribution dm(y) with source at @ be-
comes

e If the mass-distribution dm(y) consists of n
point-masses, there are some estimates for
the maximal number of images (A. Petters,
'90s) based on geometric topology (Morse
theory). No sharp estimates are known.

e A difficult Maxwell’'s problem concerns a
number of stationary points of the Newto-
nian potential of n point-masses (conjec-
tured < (n — 1)2). Most recent progress
due to Eremenko, Gabrielov, D. Novikov,
B. Shapiro. But this is the beginning of a
new tale.

31



THANK YOU!
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