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“The miracle of the appropriateness of

the language of mathematics to the

formulation of the laws of physics is

a wonderful gift which we neither un-

derstand nor deserve”.

Eugene P. Wigner (1902 - 1995), 1963

Physics Nobel Prize Laureate.
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Solving Algebraic Equations

Recall quadratic equations:

ax2 + bx+ c = 0,

where a, b, c are given real numbers (coefficients).

Completing the square we can easily derive

x =
−b±

√
b2 − 4ac

2a
=
−b±

√
∆

2a
,

where ∆ = b2 − 4ac, the discriminant. Then,

the number of real solutions of the equation

depends on ∆. Yet, the number of complex

solutions counting multiplicities is always 2!
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A Brief History

Quadratic Equations - 1800-1600 B.C., Ba-
bilonians

Cubic Equations - 16th century A. D. (S. del
Ferro, N. Tartaglia, G. Cardano)

Quartic Equations - 16th century A.D., (L.
Ferrari)

All the above solutions are expressed as explicit
formulas.

19th century - N.-H. Abel, E. Galois proved
that general equations of of degree 5 and higher
CANNOT be solved by explicit formulas.

Question: How many many complex solutions
does an equation of degree n ≥ 1 have?
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Fundamental Theorem of Algebra

Theorem 1. Every complex polynomial

p(z) := anzn + ... + a0, an 6= 0 of degree n has

precisely n complex roots (counted with mul-

tiplicities).

First proved in 1799 by C. F. Gauss (1777-

1855).
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In the 1990s T. Sheil-Small, A. Wilmshurst

proposed to extend FTA to a larger class of

polynomials, harmonic polynomials.

h(z) := p(z)− q(z), n := deg p > m := deg q.

(For a complex number a+ib, a, b ∈ R, a+ ib =

a− ib.)

Theorem 2. (A. Wilmshurst, ’92)

]{z : h(z) = 0} ≤ n2.

Moreover, there exist p, q : deg q = n − 1 such

that the upper bound n2 is attained.
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Wilmshurst’s example for n = 2.

h(z) := Im(e−
iπ
4 zn) + iIm(e

iπ
4 (z − 1)n).

A little bit of algebra gives a more elegant ex-

ample:

h(z) := zn + (z − 1)n + iz̄n − i(z̄ − 1)n.

Note: m=n-1.
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Question: If m << n, what is the precise up-

per bound for the number of zeros of the poly-

nomial p(z)− q(z)?

Conjecture 1. (A. Wilmshurst, ’92)

]{z : p(z)− q(z) = 0} ≤ m(m− 1) + 3n− 2.

For m = n− 1, the above example shows that

Conjecture 1 holds and is sharp. For m = 1, it

becomes

Conjecture 2. (T. Sheil-Small - A. Wilmshurst,

’92)

]{z : p(z)− z̄ = 0, n > 1} ≤ 3n− 2.
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History of Conjecture 2

• In the 1990s D. Sarason and B. Crofoot and,

independently, D. Bshouty, A. Lyzzaik and W.

Hengartner verified it for n = 2,3.

• In 2001, using elementary complex dynamics

and the argument principle for harmonic map-

pings, G. Swiatek and DK proved Conjecture

2 for all n > 1.

• In 2003-2005 L. Geyer showed, using dynam-

ics, that 3n− 2 bound is sharp for all n.
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Theorem 3. (G. Swiatek -DK, ’01)

]{z : p(z)− z̄ = 0, n > 1} ≤ 3n− 2.

The bound 3n− 2 is sharp for all n (L. Geyer,

’03 -’05).

Example. Consider

h(z) = z−1
2(3z − z3), n = 3. It has 3×3−2 = 7

zeros 0,±1, 1
2(±
√

7± i).
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Let r(z) := p(z)
q(z) be a rational function, p(z), q(z)

are polynomials. deg r := max{deg p, deg q}. For

example,

r(z) =
n∑

j=1

aj

z − zj
.

Theorem 4. (G. Neumann -DK, ’05)

]{z : r(z)− z̄ = 0, n := deg r > 1} ≤ 5n− 5.

The bound 5n − 5 is sharp for all n (S. Rhie,

’03).

It turns out that this result opens a door

to another world.
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Geometric Optics in the Perfect World
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Optics in Less Than Perfect World
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Multiple Images by a System of Mirrors

14



Gravitational Microlensing

• n co-planar point-masses (e.g. condensed

galaxies, black holes, etc.) in lens plane or

deflector plane.

• Consider a light source in the plane parallel to

the lens plane (source plane) and perpendicular

to the line of sight from the observer.

• Due to deflection of light by masses multiple

images of the source are formed. This phe-

nomenon is known as gravitational microlens-

ing.
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L
Lens plane

S
Source plane

S1 S2

Basics of gravitational lensing.
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Gravitational lensing: the gravitational field

of a massive object(s) acts as a lens for

background sources

Exciting fact: the map from the distorted

picture to the original is a planar harmonic

map.
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Lensing by Multiple Massive Objects
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Lens Equation

Light source is located in the position w in
the source plane. The lensed image is located
at the position z in the lens plane while the
masses are located at the positions zj in the
lens plane.

w = z −
n∑
1

σj/(z − zj),

where σj 6= 0 are real constants.

Letting r(z) =
n∑
1
σj/(z−zj)+w, the lens equa-

tion becomes

z − r(z) = 0, deg r = n.

The number of solutions = the number of
“lensed” images.
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5 images of a quasar=quasi-stellar-radio object
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History

• n = 1 (one mass) A. Einstein (1912 - 1933),

either two images or the whole circle (“Einstein

ring”).

• H. Witt (’90) For n > 1 the maximum num-

ber of observed images is ≤ n2 + 1. S. Mao,

A. Petters and H. Witt (’97) showed that the

maximum is ≥ 3n+ 1.

• S.H. Rhie (’01) conjectured the upper bound

for the number of lensed images for an n-lens

is 5n− 5.

Corollary 1. (G. Neumann-DK, ’05). The num-

ber of lensed images by an n-mass lens cannot

exceed 5n − 5 and this bound is sharp (Rhie,

’03). Moreover, it follows from the proof that

the number of images is even when n is odd

and vice versa.
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Rhie’s Construction
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13 images for the non-perturbed lens and

20 images after adding a small mass at

the origin.
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Questions

1. How many zeros can a polynomial

h := z̄m − p(z), deg p = n > m

have?

Wilmshurst’s conjecture for m = 2 suggests

the upper bound 3n. Is it true?

2. Lensing. G. Neumann-DK’s theorem ap-

plies to n “spherically symmetric” mass dis-

tributions in the lens plane and gives at most

5n−5-lensed images outside the support of the

mass distribution.

Question. How many lensed images can a

uniform elliptic mass distribution produce?
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Theorem 5. (C. Fassnacht - C. Keeton - DK,

’07.)

An elliptic galaxy Ω with a uniform mass den-

sity may produce at most 4 “bright” lensing

images of a point light source outside Ω, and

at most one “dim” image inside Ω, i.e., at

most 5 lensing images altogether.

Moreover, an elliptic galaxy Ω with mass den-

sity that is constant on ellipses confocal with

Ω, may produce at most 4 “bright” lensing

images of a point light source outside Ω.
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An “Astronomical” Proof

.
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Einstein Rings are Ellipses

Theorem 6. (Fassnacht - Keeton - DK,’07.)

For any lens µ, if the lensing produces an im-

age “curve” surrounding the lens, it is either a

circle in the case when the shear, i.e., a grav-

itational “pull” by a galaxy “far, far away”,

= 0, or an ellipse.
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“Isothermal” Elliptical Lenses

• The density, important from the physical

viewpoint, is a so-called “isothermal den-

sity” obtained by projecting onto the lens

plane the “realistic” three-dimensional den-

sity ∼ 1/ρ2, where ρ is the (three-dimensional)

distance from the origin. It could be in-

cluded into the whole class of densities that

are constant on all ellipses homothetic rather

than confocal with the given one.

• Lens equation becomes transcendental.

z − const
∫ 1

0

dt√
z̄2 − c2t2

− γz̄ = w.
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Final Remarks

• An isothermal sphere with a shear is cov-

ered by ’06 DK -G. Neumann theorem and

may produce at most 4 images (observed).

• DK and E. Lundberg (’09) have proved

that an isothermal elliptical lens without

a shear may produce up to 8 bright im-

ages. Instantly, Bergweiler and Eremenko

improved the estimate to 6 images, and

showed that 6 is sharp. No more than 5

images (4 bright +1 dim) have been ob-

served up to now.

• In 2000 Ch. Keeton, S. Mao and H. J.

Witt constructed models with a tidal grav-

itational perturbation (shear) having

9, (8 bright + 1 dim), images.
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Three-Dimensional Lensing

• The 3-dimensional lens equation with mass-
distribution dm(y) with source at ~w be-
comes

~x−∇x
(∫ dm(y)
|x−y|

)
= ~w.

• If the mass-distribution dm(y) consists of n
point-masses, there are some estimates for
the maximal number of images (A. Petters,
’90s) based on geometric topology (Morse
theory). No sharp estimates are known.

• A difficult Maxwell’s problem concerns a
number of stationary points of the Newto-
nian potential of n point-masses (conjec-
tured ≤ (n − 1)2). Most recent progress
due to Eremenko, Gabrielov, D. Novikov,
B. Shapiro. But this is the beginning of a
new tale.
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THANK YOU!
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