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Abstract. We provide an example of a function f non-vanishing
in the closed bidisk and the affine polynomial minimizing the norm
of 1− pf in the Hardy space of the bidisk among all affine polyno-
mials p. We show that this polynomial vanishes inside the bidisk.
This provides a counterexample to the weakest form of a conjecture
due to Shanks that has been open since 1980, with applications
that arose from digital filter design. This counterexample has a
simple form and follows naturally from [7], where the phenomenon
of zeros seeping into the unit disk was already observed for similar
minimization problems in one variable.

1. Introduction

In the theory of invariant subspaces, a central role is played by the
shift operator of multiplication by z and its action on reproducing ker-
nel Hilbert spaces. A celebrated case is that of the Hardy space over the
unit disk, formed by functions whose Maclaurin coefficients are square-
summable. There, a complete description of invariant subspaces is
available, thanks to the work of Beurling (see, e.g., [14]) that exploits
the role played by so-called inner functions and leads to a character-
ization of cyclic vectors for the operator. More than 80 years later,
the equivalent problem in two dimensions is far from solved. When
moving into the several complex variables world, a natural analogue of
the one-dimensional shift is the tuple (S1, S2) of shifts on each of the
variables, given by

S1(g)(z1, z2) = z1g(z1, z2); S2(g)(z1, z2) = z2g(z1, z2).

This is particularly relevant for the setting of the present article. More
precisely, let D = {z ∈ C : |z| < 1} and let D2 = D × D. The Hardy
space of the bidisk H2(D2) is the space of those holomorphic functions
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2 BÉNÉTEAU, KHAVINSON, AND SECO

g : D2 → C given by a Taylor series around 0,

g(z1, z2) =
∞∑

k,l=0

ak,lz
k
1z

l
2,

for which the norm

∥g∥H2(D2) =

(
∞∑

k,l=0

|ak,l|2
)1/2

is finite. In this space, polynomials form a dense subclass, the shifts
S1 and S2 are bounded operators (in fact, isometries) and there exists
a reproducing kernel at any point (w1, w2) ∈ D2. From the work of
Rudin (see, e.g., [20]), it is known that the concept of inner function
fails to completely describe the subspaces that are invariant under the
shifts S1 and S2 simultaneously. We refer the reader to [20] for more
on this space and its invariant subspace theory.
There is thus significant interest in the complex analysis commu-

nity to understand cyclic functions in H2(D2). With this in mind,
the authors of the current article and their collaborators extended to
this context the study of optimal approximation techniques that had
been introduced in [5] for a family of one variable spaces. A function
g ∈ H2(D2) is called cyclic, if Pg is a dense subspace of H2(D2), where
P is the space of all polynomials of two variables. Equivalently, g is
cyclic if the smallest (closed) subspace of H2(D2) containing it and
invariant under both S1 and S2 is the whole of H2(D2). Because poly-
nomials are dense in H2(D2), it is then clear that the constant 1 is a
cyclic function, and therefore an alternative definition is that g is cyclic
if there exists a sequence of polynomials {pn}n∈N such that

lim
n→∞

∥1− png∥H2(D2) = 0.

In some earlier papers in the 1960s, such functions g were also called
weakly invertible (see, e.g., [24, 1] and references therein).

Thus we set ourselves the task of understanding the problem of min-
imizing, for each f ∈ H2(D2) and each n ∈ N, the norm ∥1− pf∥H2(D2)

over the set Pn of all polynomials of degree less than or equal to n.
The norm minimizer is called an optimal polynomial approximant or
OPA for 1/f of degree n. Here one should choose a definition of degree
or an enumeration of the monomials. In this paper, Pn will denote the
set of 2-variable polynomials of z1 and z2 spanned by monomials zk1z

l
2

with k + l ≤ n.
Although OPAs as discussed above were introduced to study cyclic

functions, they had been studied much earlier under a different name
in connection with work on signal processing in engineering. In 1963,
Robinson [19] introduced the concept of “least squares inverses”: given
a sequence a = (a0, a1, . . . , am) of real numbers, find a sequence b =
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(b0, b1, . . . , bn) of real numbers such that b ⋆ a (the discrete convolution
of the sequences b and a) approximates the “unit spike”, that is

∥b ⋆ a− (1, 0, . . . , 0)∥ℓ2

is of smallest norm. Associating the sequence a with the function
f(t) =

∑m
k=0 ake

ikt and b with p(t) =
∑n

k=0 bke
ikt shows that Robin-

son’s problem is the same as finding the OPA of 1/f of degree n in
H2(D) for a polynomial f . In 1980, Chui [8] took this a step further
and studied “double least squares inverses”: given a polynomial f , for
each n, construct the H2(D) OPA pn, then for each k, construct the
OPA qn,k of pn. He proved in particular that the OPAs do not have
zeros in the closed unit disk, and then a couple of years later, Chui
and Chan [9] took advantage of this non-vanishing property to apply
their ideas to recursive digital filter design. In 1985, Izumino [15] gen-
eralized the theory to arbitary f ∈ H2 and reformulated the problem
using operator theory. This circle of ideas was also linked to earlier
work in the 1970s of Justice, Shanks and Treitel [23] in the design of
digital filters in function spaces of several variables. One goal of signal
processing is to design filters that will transform a signal into different
forms, say for compression or edge detection, and then, when needed,
be able to reconstruct the original signal. In particular, if the signal
lives in a space where a given function f (the filter) is cyclic, then it
is possible to completely reconstruct the signal without loss of infor-
mation. Several authors were interested in whether this reconstruction
would be stable, which happened to be equivalent to the function f
generating a sequence of OPAs that do not vanish anywhere on the
bidisk. In particular, Shanks and his co-authors [23] conjectured in
1972 that for any polynomial f , the H2(D2) OPAs for 1/f are zero-free
in D2, as is the case for one variable. Genin and Kamp [13] shortly
thereafter gave a counterexample and constructed a polynomial f with
an H2(D2) OPA with a zero in D2. Their f itself had a zero in D2.
However, in 1976, Anderson and Jury [2] proved that the conjecture is
true for certain polynomials of low and restricted degree. Two notable
recent papers of M. Sargent and A. Sola in 2021 and 2022 [21, 22] sim-
plified the Genin and Kamp counterexample and discussed OPAs and
orthogonal polynomials in a variety of spaces of several variables. See
also [4] for a survey of OPAs of one and several variables and a more
precise description of the filter design process.

In 1980, Delsarte, Genin and Kamp [10] stated the “weakest” form
of the Shanks Conjecture as follows:

Conjecture 1.1 (The Weak Shanks Conjecture). Suppose f is a poly-

nomial with no zeros in D2. Then its OPAs are zero-free in D2.

The authors of [17] thought to have a counterexample to the Weak
Shanks Conjecture, but Delsarte, Genin and Kamp showed that the
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proof failed in [11], which was later also confirmed by Karivaratharajan
and Reddy in [16]. In a recent preprint, Felder [12] explores some
specific cases where the conjecture holds.

In this article, we provide a counterexample to this conjecture.
Our plan is as follows: In Section 2, we outline the argument, intro-

duce a large family of function spaces of one variable, and explain our
choice of a two-variable function f , taken by extending a one-variable
function F that played a special role in the study of the zeros of OPAs
for one of those spaces. In Section 3, we show how to reduce the proof
of Lemma 2.1 to checking an explicit inequality (see Lemma 3.4). This
inequality is numerically obvious yet we prove it analytically in Sec-
tion 4. We conclude in Section 5 with a few remarks on possible further
directions of study and remaining unsolved questions.

2. Preliminaries

2.1. Outline of the argument. From now on, we denote by f the
function D2 → C given by

(2.1) f(z1, z2) =

(
1− z1 + z2√

6

)− 5
2

.

We also denote by p1 the OPA of degree 1 to 1/f , that is, the function
of the form

(2.2) p(z1, z2) = α + βz1 + γz2,

with α, β and γ in C minimizing the norm

(2.3) ∥1− pf∥H2(D2).

The existence and uniqueness of p1 is clear since p1f is, by definition,
the orthogonal projection of 1 onto the 3-dimensional subspace P1f of
H2(D2). Because of the uniqueness of p1, the fact that f has real Taylor
coefficients, the symmetry of f with respect to the two variables, and
the definition of the H2(D2) norm, it is clear that p1 must be of the
form

(2.4) p1(z1, z2) = a+ b(z1 + z2),

for some choice of real numbers a, b. From now on, we also fix this no-
tation for the coefficients of p1. Notice that f satisfies the assumptions
needed in the Weak Shanks Conjecture except for that of being a poly-
nomial. However, since OPAs and their coefficients vary continuously
within the space and the Taylor polynomials of f converge uniformly

to f over compact subsets of
√

3
2
· D2, in order to disprove the Weak

Shanks Conjecture, it suffices to show the following claim regarding p1.

Claim. p1 has a zero inside the bidisk.
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This will imply that the Weak Shanks Conjecture is false for suffi-
ciently large degree Taylor polynomials of f around 0. From the form
of p1 obtained in (2.4), the restriction of p1 to the pairs of real numbers
on the diagonal is a continuous real function for z1 = z2 ∈ [−1, 1] with
values p1(1, 1) = a + 2b and p1(−1,−1) = a − 2b. In order to show
the existence of a zero of p1 inside the bidisk, we just need to show the
following:

Lemma 2.1.
|a| < 2|b|.

This has the following direct implication:

Corollary 2.2. The Weak Shanks Conjecture is false.

2.2. One variable spaces and zeros of OPAs. Consider a sequence
of positive weights ω := {ωk}∞k=0 with ω0 = 1, limk→∞

ωk

ωk+1
= 1. The

space H2
ω consists of all analytic functions f : D → C whose Taylor

coefficients in the expansion

f(z) =
∞∑
k=0

akz
k, z ∈ D,

satisfy

∥f∥2ω =
∞∑
k=0

|ak|2ωk < ∞.

Given two functions f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k inH2
ω(D),

we also have the associated inner product

⟨f, g⟩ω =
∞∑
k=0

akbkωk.

Definition 2.3. Let f ∈ H2
ω. We say that a polynomial pn of degree

at most n is an optimal polynomial approximant (OPA) of order n to
1/f if pn minimizes ∥pf − 1∥ω among all polynomials p of degree at
most n.

In other words, pn is an optimal polynomial approximant of order n
to 1/f if

∥pnf − 1∥ω = dist
H2

ω

(1, f · Pn),

where Pn denotes the space of polynomials of degree at most n. That
is, pnf is the orthogonal projection of 1 onto the subspace f · Pn and
therefore, OPAs pn always exist and are unique for any nonzero function
f , and any degree n ≥ 0.

Remark. Notice we already made use of the notation Pn for two-variable
polynomials of algebraic degree at most n, but we will only look at
such polynomials as restricted to the diagonal, where, if we identify
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z = z1 = z2 they will coincide with 1-variable polynomials of the same
degree. Thus we consider it an acceptable abuse of notation that will
not lead to misunderstandings in the present study.

In [7], the authors studied the extremal problem

inf
n∈N

{
|z| : pn(z) = 0, ∥pnf − 1∥ω = min

q∈Pn

∥qf − 1∥ω, f ∈ H2
ω

}
.

They noticed that in this one-variable setting, partly thanks to the
Fundamental Theorem of Algebra, this extremal problem reduces to
studying zeros of first order (i.e., linear) polynomial approximants.
Letting p1(z) = a + bz be the first order approximant, noticing that
1 − p1f is orthogonal to f and zf , solving the corresponding linear
system for a and b and then setting p1(ζ) = 0 gives that the zero ζ of
the first order optimal approximant p1 is given by

∥zf∥2ω
⟨f, zf⟩ω

.

Thus, the extremal problem becomes to find

(2.5) U := sup
f∈H2

ω

|⟨f, zf⟩ω|
∥zf∥2ω

.

From now on, for a fixed weight ω, we denote by Jω the Jacobi matrix
with entries given by

(2.6) (Jω)j,k =


√

ωj

ωj+1
, if k = j + 1;√

ωj−1

ωj
, if k = j − 1;

0 otherwise.

The authors of [7] were able to exploit the relationship between the
extremal function, orthogonal polynomials on the real line, and norms
of Jacobi matrices to prove the following theorem.

Theorem 2.4. Let ω = {ωk}∞k=0 be such that ω0 = 1, limk→∞
ωk

ωk+1
= 1.

Then the following hold.

(1)

sup
f∈H2

ω

|⟨f, zf⟩ω|
∥zf∥2ω

=
∥Jω∥ℓ2→ℓ2

2
.

(2) If ωk ≤ ωk+1, then ∥Jω∥ℓ2→ℓ2 = 2 and there is no solution to
the extremal problem.

(3) If there exist n, k ∈ N such that ωk+n+1 < ωk+1

4
(in particular,

if the weights are strictly decreasing to 0), then ∥Jω∥ℓ2→ℓ2 > 2,
and the extremal problem has a solution.

For certain particular cases of weights, they were able to find the ex-
tremal functions explicitly. This is the case when the weight is defining



SHANKS 7

so-called Bergman-type spaces, A2
β for β > −1. These are H2

ω spaces
with the choice of weights

ωk :=

(
k + 1 + β

k

)−1

.

For these weights, the (square of the) norm can also be written in its
more standard integral expression

∥f∥2A2
β
= (β + 1)

∫
D
|f(z)|2(1− |z|2)βdA(z).

For a fixed weight ω, extremal functions for (2.5) are unique up
to a rotation of the variable and multiplication by a constant, so we
restrict ourselves to the extremal function that has real coefficients and
is normalized so that f(0) = 1. A key finding in [7] is Theorem 5.1,
which includes the following description of the solution to (2.5).

Theorem 2.5. The extremal function for (2.5) in A2
β is

fβ(z) := (1− z/c)−d,

where c =
√
β + 2 and d = β + 3.

Remark. Later on we will make use of a function F that will be the
function f−1/2 in the notation of the above theorem. This will be
useful because, in the next Section, we will show how H2(D2) contains
a copy of A2

−1/2 but equipped with an equivalent norm. This makes
our problem still far from trivial but makes the choice of F natural in
what follows.

3. The core of the solution to the conjecture

In order to find a counterexample to the Weak Shanks Conjecture, let
us look for a function of the form f(z1, z2) = F

(
z1+z2

2

)
, where F ∈ H2

ω

for some suitable weights. If (z1, z2) ∈ D2 then z1+z2
2

∈ D. We would
like to use this relationship to find a function f(z1, z2) that is analytic
in the closed bidisk and that has an OPA vanishing in D2. The needed
weights are given by the following lemma.

Lemma 3.1. Let ω0 = 1 and for k ≥ 1, let ωk =
(2kk )
22k

. Let F ∈ H2
ω. If

f(z1, z2) = F
(
z1+z2

2

)
, then f ∈ H2(D2) and

⟨f, f⟩H2(D2) = ⟨F, F ⟩H2
ω
.

Proof. Let F (z) =
∑∞

k=0 akz
k. Note first that from the definition of the

norm as an inner product, different powers of (z1 + z2) are mutually
orthogonal in H2(D2) since they are linear combinations of monomials
of different degrees. Thus we have right away that

⟨f, f⟩H2(D2) =
∞∑
k=0

|ak|2
〈(

z1 + z2
2

)k

,

(
z1 + z2

2

)k
〉

H2(D2)

.
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Removing the constant terms on 2−k from both sides, the inner prod-
uct inside the sum of the right-hand side is equal to

2−2k

〈(
k∑

j=0

(
k

j

)
zj1z

k−j
2

)
,

(
k∑

j=0

(
k

j

)
zj1z

k−j
2

)〉
H2(D2)

.

For j = 0, ..., k, the monomials zj1z
k−j
2 are an orthonormal system, and

hence

⟨f, f⟩H2(D2) =
∞∑
k=0

2−2k|ak|2
k∑

j=0

(
k

j

)2

.

The classical Chu-Vandermonde identity [3] yields
∑k

j=0

(
k
j

)2
=
(
2k
k

)
and the definition of our weights, ωk =

(2kk )
22k

for k ∈ N, completes the
proof of the claimed identity. From the above, it is clear that F ∈ H2

ω

if and only if f ∈ H2(D2), and the lemma is proved. □

Since the norms of these Hilbert spaces coincide, then, by the par-
allelogram law, the corresponding inner products also coincide, and
therefore the two-variable extremal problem is the same as (2.5).

By Stirling’s Formula, one can show that the weights ωk are compa-
rable to 1√

k+1
, (in fact we will prove below a more precise statement),

which implies that the space H2
ω is equal to A2

−1/2 as a set for this

collection of weights but has a different (yet equivalent) norm. By

Theorem 2.5, the function F (z) =

(
1− z√

3
2

)−5/2

is extremal for the

minimal zero problem in A2
−1/2 and has a first degree OPA vanishing

in D. However, since the norms are equivalent but not equal, we do not
have a closed form for the actual extremal function in H2

ω, which means
that although we know its OPAs will vanish inside the bidisk, we do
not know that it is zero free itself. Thus although it is not immediate
that this function will produce a counterexample to the Weak Shanks
Conjecture, it seems like a good guess.

Therefore let us consider the function f defined in the Introduction,

f(z1, z2) =

(
1−

z1+z2
2√
3/2

)−5/2

=

(
1− z1 + z2√

6

)−5/2

.

We also use from now on the rest of the notation from the introduction
regarding p1, a, b and F .

In order to check the Lemma 2.1 it then suffices to check that

(3.1) |⟨F, zF ⟩ω| > ∥zF∥2ω.
The proof of this inequality is a series of computations and estimates

that involve:

(1) A close examination of the weights ωk;
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(2) Detailed estimates of the coefficients ak of the function F that
allow us to see how far we have to go in replacing F by its Taylor
polynomial to get an accurate enough estimate to ensure (3.1);

(3) Numerical verification of (3.1) for that Taylor polynomial.

Let us begin with the following lemma in order to address item (1)
above.

Lemma 3.2. For k > 0, the product ωk ·
√
πk ∈ (7/8, 1), and

lim
k→∞

ωk ·
√
πk = 1.

Proof. A well-known estimate based on Stirling’s Formula for the fac-
torial [18] gives that for k ∈ N\{0},

√
2πk

(
k

e

)k

e
1

12k+1 < k! <
√
2πk

(
k

e

)k

e
1

12k .

Applying these estimates to ωk =
(2kk )
22k

= 1
22k

· (2k)!
(k!)2

, we deduce that for

k ≥ 1,

ωk > 2−2k ·

(
√
2π2k

(
2k

e

)2k

e
1

24k+1

)
·

(
( e
k
)2ke

−1
6k

2πk

)
=

e
1

24k+1
− 1

6k

√
πk

.

Notice that 1/(24k + 1) − 1/6k is a decreasing function of k ≥ 1 and
that e1/25−1/6 > 0.88 > 7/8 which gives

ωk >
7

8
√
πk

.

From the other side, we obtain

ωk <
e

1
24k

− 1
6k+1/2

√
πk

<
1√
πk

.

Using the more precise inequalities above for large k gives that

lim
k→∞

ωk ·
√
πk = 1

and using the outermost inequalities above give that ωk·
√
πk ∈ (7/8, 1),

as desired. □

Next, we find the detailed estimates of the coefficients to allow for a
specific truncation of the power series of F to give a sufficient result.
It turns out that computing the inner products in (3.1) using only
coefficients with indices j = 0, ..., 25 of F will yield enough accuracy.
For the rest of the article, we let

F (z) =
∞∑
j=0

ajz
j =

(
1− z√

3/2

)−5/2
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The quantity (2.5) that we want to evaluate for F will be computed
from the 3 quantities S1, S2 and S3, where

S1 :=

√
2

3

(
24∑
j=0

(
1 +

3

2(j + 1)

)
|aj|2ωj+1

)
,

S2 :=
24∑
j=0

|aj|2ωj+1

S3 := (5−
√
6)|a25|2ω26.

Now we are ready to formulate a key step of the proof:

Proposition 3.3. The function F satisfies

(3.2) aj =

j∏
t=1

[√
2

3

(
1 +

3

2t

)]
.

Moreover,

(3.3) |⟨F, zF ⟩ω| > S1 +
√
6|a25|2ω26

while

(3.4) ∥zF∥2ω < S2 + 5|a25|2ω26.

Proof. Notice that, from the definition of binomial coefficients,

(3.5) aj =
(
−
√

2/3
)j (−5/2

j

)
=

j∏
t=1

[√
2

3

(
1 +

3

2t

)]
.

From (3.5), it is clear that for j ≥ 24,

(3.6)
|aj+1|2

|aj|2
= (2/3) ·

(
1 +

3

2(j + 1)

)2

≤ (2/3) ·
(
53

50

)2

<
3

4
,

where the last estimate holds because

(53/50)2 = (1.06)2 = 1.1236 < 1.125 = 9/8.

We can also deduce from (3.5) that for all j ∈ N

|aj+1|2 ≥
2

3
|aj|2.

However, we will be a bit more ambitious and use that for j ≥ 25 we
have

|aj+1|2ωj+1 ≥ |aj|2ωjC,

where C is given by

C =
2

3
inf
j≥25

ωj+1

ωj

.
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To obtain C notice that

(3.7)
ωj+1

ωj

=
22j
(
2j+2
j+1

)
22(j+1)

(
2j
j

) =
j + 1/2

j + 1
.

Therefore

(3.8) C =
2

3
· 51
52

=
17

26
.

In order to show the estimate from below for |⟨F, zF ⟩ω| we just need
to show that the tail of this inner product is controlled accordingly,
depending on the term |a25|2. Indeed, from the definition of the inner
product and applying (3.5) to aj+1āj, we obtain:

|⟨F, zF ⟩ω| ≥
√

2

3

(
∞∑
j=0

(
1 +

3

2(j + 1)

)
|aj|2ωj+1

)
.

But all the terms in the sum with j ≥ 25 can be bounded from below
by 53

50
ω26|a25|2Ct for t = j − 25. Since C < 1, that means that the tail

contributes at most

53

50
|a25|2ω26

∞∑
t=0

Ct =
689

225
|a25|2ω26 > 3|a25|2ω26.

This completes the lower estimate. It remains to show that

∞∑
j=26

|aj|2ωj+1 < 4|a25|2ω26,

but of course for j ≥ 26 we have ωj+1 < ω26 and the exponential decay
of |aj|2 in (3.6) is sufficient for this.

□

From Proposition 3.2, a sufficient condition for (3.1) is that the right-
hand side of (3.3), S1 +

√
6|a25|2ω26, is greater than that of (3.4),

S2 + 5|a25|2ω26. This means that we only need to check the following
inequality:

Lemma 3.4.

S1 > S2 + S3.

All 3 terms can be computed exactly as algebraic numbers in finite
time analytically, but perhaps for some readers it will be enough at this
point to mention that numerically S1 ≈ 42.07 while S2 ≈ 41.04 and
S3 ≈ 0.11, and so the uncertainty of the result is much smaller than the
margin we have. However, we understand this would not constitute a
complete proof withot the next section, where we will check analytically
that Lemma 3.4 is valid.
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4. Checking the finite sum condition

Now we proceed to prove Lemma 3.4. For j = 0, ..., 25, denote by

Hj = |aj|2ωj+1, qj =
(2j + 1)(2j + 3)2

12j(j + 1)2
.

It will also be useful to denote

S4 =
24∑
j=0

Hj

j + 1
.

First notice that

(4.1)

√
3

2
S1 = S2 +

3

2
S4,

and that from (3.6) and (3.7) we have

Hj = qjHj−1, j ≥ 1.

Let us determine Hj for each j with sufficient accuracy. Notice that,
since qj is rational and H0 = 1/2, all Hj are rational. The denominator
in qj can only simplify with a factor from the numerator if j or 3 have
a common factor with (2j + 1) or (2j + 3). That can only happen
when j is congruent to 0 or 1 mod 3 and then only multiples of 3
can cancel out. As a result the simplified rational and approximate
list of values of qj together with the inferred lower and upper bounds
for Hj and Hj/(j + 1) are indicated in the table below (where all qj
approximations are truncations to 3 digits after the decimal, so they
are exact within 0.001 of the correct value and bound that correct value
from below).

Summing the lower and upper bounds from j = 0 to 24 we can infer
from these bounds that S2 ∈ [40.831, 41.227], that S3 ∈ [0.107, 0.120]
and that

24∑
j=0

Hj

j + 1
∈ [6.961, 7.018].

We make use of (4.1), and derive that S1 > S2 + S3 happens if and
only if

(4.2)

√
3

2
S4 >

(
1−

√
2

3

)
S2 + S3.

From the estimates we obtain and using
√
1.5 ∈ [1.224, 1.225] and√

2/3 ∈ [0.816, 0.817] we see that the left-hand side of (4.2) is bounded
from below by 8.525, while its right-hand side is bounded above by
7.586 + 0.120 = 7.706. This implies that S1 − S2 − S3 > 0.819 and
concludes the proof.
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j Numer. qj Denom. qj qj ≈ Hj ∈ Hj/(j + 1) ∈
0 . . . [0.500, 0.500] [0.500, 0.500]
1 25 8 3.125 [1.562,1.563] [0.781, 0.782]
2 245 144 1.701 [2.656,2.661] [0.885, 0.887]
3 21 16 1.312 [3.484,3.494] [0.871, 0.874]
4 363 320 1.134 [3.950,3.966] [0.790, 0.794]
5 1859 1800 1.032 [4.076,4.097] [0.679, 0.683]
6 325 336 0.967 [3.941,3.966] [0.563, 0.567]
7 1445 1568 0.921 [3.629,3.657] [0.453, 0.458]
8 6137 6912 0.887 [3.218,3.248] [0.357, 0.361]
9 931 1080 0.862 [2.773,2.804] [0.277, 0.281]
10 3703 4400 0.841 [2.332,2.361] [0.212, 0.215]
11 14375 17424 0.825 [1.923,1.951] [0.160, 0.163]
12 675 832 0.811 [1.559,1.585] [0.119, 0.122]
13 7569 9464 0.799 [1.245,1.268] [0.088, 0.091]
14 27869 35280 0.789 [0.982,1.002] [0.065, 0.067]
15 3751 4800 0.781 [0.766,0.784] [0.047, 0.049]
16 13475 17408 0.774 [0.592,0.608] [0.034, 0.036]
17 47915 62424 0.767 [0.454,0.467] [0.025, 0.026]
18 6253 8208 0.761 [0.345,0.356] [0.018, 0.019]
19 21853 28880 0.756 [0.260,0.270] [0.013, 0.014]
20 75809 100800 0.752 [0.195,0.204] [0.009, 0.010]
21 3225 4312 0.747 [0.145,0.153] [0.006, 0.007]
22 33135 44528 0.744 [0.107,0.114] [0.004, 0.005]
23 112847 152352 0.740 [0.079,0.085] [0.003, 0.004]
24 14161 19200 0.737 [0.058,0.063] [0.002, 0.003]
25 47753 65000 0.734 [0.042,0.047] [0.001, 0.002]

5. Further work

Here we want to emphasize that our refutal of the Weak Shanks
Conjecture only opens the door to a very rich collection of important
problems waiting to be investigated. For instance, even though we
have proved that the OPAs for our function f do get inside the bidisk
we don’t know how close to the origin the complex line of zeros for
p1 gets nor whether the OPAs for that function of higher degree have
zeros in the bidisk. More generally, we don’t know how far inside the
bidisk zeros of any OPA can get. It would be interesting to study that
extremal problem, as we did for one variable in [7], as we vary through
all orderings of polynomials and/or through all functions in H2(D2).
However, we cannot stress enough what a great difference between the
one and two variable problems there is as a result of the lack of a
Fundamental Theorem of Algebra: the fact that zeros are not isolated
means that the problem does not reduce to studying any sort of low
dimensional polynomials. Moreover, one needs to choose what “how
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far” means in this context: is this the point of minimal ℓ1, ℓ2, or ℓ∞
norm in C2?
On the other hand, the embedding of functions depending only on

z1 + z2 proved useful in our study, partly because there is a natural
version of the shift that creates a set of mutually orthogonal classes of
monomials. Perhaps other closed subspaces can take the zeros further
inside the disk, but it is not evident to us which spaces one can use for
this matter.
One could also consider finding counterexamples with other orderings

of monomials. If we choose an ordering in which 1, z1 and z2 are not
the first 3 elements of the basis, or an ordering which does yield a
symmetric OPA, we may get a different OPA, even for our function f .
Is there any particular choice of ordering of the monomials for which
the sequence of OPAs must be zero-free? It seems unlikely but far from
our current reach.

What happens in higher dimensional polydisks? We do know that
our result implies a similar failure of OPAs to be zero-free in higher
dimensional polydisk Hardy spaces, from embedding remarks in [6] but
does the answer to any of the other questions we pose vary in higher
dimensions?

Perhaps most interesting, the phenomenon observed here (OPAs hav-
ing zeros inside the domain for zero-free functions) can also be found in
subspaces of H2(D2) called Dirichlet-type spaces Dα(D2). These spaces
are defined in a similar fashion to H2(D2) but the norm of zj1z

k
2 is given

by (j+1)α/2(k+1)α/2. For a fixed f , the inner products ⟨zj1zk2f, zl1zm2 f⟩α
all vary continuously in terms of the parameter α. Hence for α > 0
small enough, OPAs for f in Dα(D2) will have zeros inside D2. How far
into the positive α values can we go? Is there a finite supremum for
the values of α for which this phenomena occur?
What happens in the Hardy space over the unit ball of Cn? Is the

extremal for the symmetric functions space we obtained actually zero-
free? Do the zeros eventually escape or is this going to happen for the
OPAs in Pn for all n ∈ N?
Finally, in many Dirichlet-type spaces in C, the zeros of OPAs even-

tually escape every compact subset of the unit disk, due to the con-
nection between OPAs and reproducing kernels in weighted spaces (see
[7]). Does this behavior prevail in the bidisk? Along the same lines,
does Jentzsch’s phenomenon related to accumulation of zeros of OPAs
proven in [7] extend to higher dimensions?
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