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Abstract. In this paper, we study general extremal problems for
non-vanishing functions in Bergman spaces. We show the existence
and uniqueness of solutions to a wide class of such problems. In
addition, we prove certain regularity results: the extremal func-
tions in the problems considered must be in a Hardy space, and in
fact must be bounded. We conjecture what the exact form of the
extremal function is. Finally, we discuss the specific problem of
minimizing the norm of non-vanishing Bergman functions whose
first two Taylor coefficients are given.

1. Introduction

For 0 < p <∞, let

Ap = {f analytic in D : (

∫
D
|f(z)|pdA(z))

1
p := ‖f‖Ap <∞}

denote the Bergman spaces of analytic functions in the unit disk D.
Here dA stands for normalized area measure 1

π
dxdy in D, z = x + iy.

For 1 ≤ p < ∞, Ap is a Banach space with norm ‖ ‖Ap . Ap spaces
extend the well-studied scale of Hardy spaces

Hp := {fanalytic in D : ( sup
0<r<1

∫ 2π

0

|f(reiθ)|p dθ
2π

)
1
p := ‖f‖Hp <∞}.

For basic accounts of Hardy spaces, the reader should consult the well-
known monographs [Du, Ga, Ho, Ko, Pr]. In recent years, tremendous
progress has been achieved in the study of Bergman spaces following
the footprints of the Hardy spaces theory. This progress is recorded in
two recent monographs [HKZ, DS] on the subject.
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In Hp spaces, the theory of general extremal problems has achieved a
state of finesse and elegance since the seminal works of S. Ya. Khavin-
son, and Rogosinski and Shapiro (see [Kh1, RS]) introduced methods
of functional analysis. A more or less current account of the state of
the theory is contained in the monograph [Kh2]. However, the theory
of extremal problems in Bergman spaces is still at a very beginning.
The main difficulty lies in the fact that the Hahn-Banach duality that
worked such magic for Hardy spaces faces tremendous technical diffi-
culty in the context of Bergman spaces because of the subtlety of the
annihilator of the Ap space (p ≥ 1) inside Lp(dA). [KS] contains the
first more or less systematic study of general linear extremal problems
based on duality and powerful methods from the theory of nonlinear
degenerate elliptic PDEs. One has to acknowledge, however, the pio-
neering work of V. Ryabych [Ry1, Ry2] in the 60s in which the first
regularity results for solutions of extremal problems were obtained.
Vukotić’s survey ([Vu]) is a nice introduction to the basics of linear
extremal problems in Bergman space. In [KS], the authors considered
the problem of finding, for 1 < p <∞,

(1.1) sup{|
∫

D
w̄fdA| : ‖f‖Ap ≤ 1},

where w is a given rational function with poles outside of D. They
obtained a structural formula for the solution (which is easily seen to
be unique) similar to that of the Hardy space counterpart of problem
(1.1). Note here that by more or less standard functional analysis,
problem (1.1) is equivalent to

(1.2) inf{‖f‖Ap : f ∈ Ap, li(f) = ci, i = 1, . . . , n},

where the li ∈ (Ap)∗ are given bounded linear functionals on Ap, p > 1.
Normally, for li one takes point evaluations at fixed points of D, eval-
uations of derivatives, etc... More details on the general relationship
between problems (1.1) and (1.2) can be found in [Kh2, pp. 69-74].
For a related discussion in the Bergman spaces context, we refer to
[KS, p. 960]. In this paper, we focus our study on problem (1.2) for
nonvanishing functions. The latter condition makes the problem highly
nonlinear and, accordingly, the duality approach does not work. Yet,
in the Hardy spaces context, in view of the parametric representation
of functions via their boundary values, one has the advantage of re-
ducing the nonlinear problem for nonvanishing functions to the linear
problem for their logarithms. This allows one to obtain the general
structural formulas for the solutions to problems (1.1) or (1.2) for non-
vanishing functions in Hardy spaces as well. We refer the reader to the
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corresponding sections in [Kh2] and the references cited there. Also,
some of the specific simpler problems for nonvanishing Hp functions
have recently been solved in [BK]. However, all the above mentioned
methods fail miserably in the context of Bergman spaces for the simple
reason that there are no non-trivial Bergman functions that, acting as
multiplication operators on Bergman spaces, are isometric.

Let us briefly discuss the contents of the paper. In section 2, we
study problem (1.2) for nonvanishing Bergman functions: we show
the existence and uniqueness of the solutions to a wide class of such
problems. Our main results are presented in Sections 2 and 3 and
concern the regularity of the solutions: we show that although posed
initially in Ap, the solution must belong to the Hardy space Hp, and
hence, as in the corresponding problems in Hardy spaces in [Kh2],
must be a product of an outer function and a singular inner function.
Further, we show that that the solutions to such problems are in fact
bounded. Moreover, led by an analogy with the Hardy space case, we
conjecture that the extremal functions have the form

(1.3) f ∗(z) = exp(
k∑

j=1

λj
eiθj + z

eiθj − z
)

2n−2∏
j=1

(1− ᾱjz)
2
p

n∏
j=1

(1− β̄jz)
− 4

p ,

where |αj| ≤ 1, |βj| < 1, λj < 0, n ≥ 1, k ≤ 2n − 2. In Section
4, we sketch how, if one knew some additional regularity of the solu-
tions, it would be possible to derive the form (1.3) for the solutions. In
the context of linear problems, i.e., with the nonvanishing restriction
removed, duality can be applied and then, incorporating PDE machin-
ery to establish the regularity of the solutions to the dual problem, the
structural formulas for the solutions of (1.1) and (1.2) are obtained (see
[KS].) We must stress again that due to the nonlinear nature of ex-
tremal problems for nonvanishing functions, new techniques are needed
to establish the regularity of solutions up to the boundary beyond mem-
bership in an appropriate Hardy class. In the last section, we discuss
a specific case of Problem 1.2 with l1(f) = f(0) and l2(f) = f ′(0).
The study of this simple problem was initiated by D. Aharonov and H.
S. Shapiro in unpublished reports [AhSh1, AhSh2], and B. Korenblum
has drawn attention to this question on numerous occasions.

2. Existence and regularity of solutions

Consider the following general problem.

Problem 2.1. Given n continuous linearly independent linear func-
tionals l1, l2, ..., ln on Ap and given n points c1, c2, ..., cn in C − {0},
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find

λ = inf{‖f‖Ap : f is zero free , li(f) = ci, 1 ≤ i ≤ n}.

The set of zero-free functions satisfying the above interpolation con-
ditions can in general be empty, so we will assume in what follows that
this set is non void. Concerning existence of extremals, we have:

Theorem 2.2. The infimum in Problem 2.1 is attained.

Proof. (The following argument is well known and is included for com-
pleteness.) Pick a sequence fk of zero-free functions in Ap such that
li(fk) = ci for every 1 ≤ i ≤ n and every k = 1, 2, ..., and such that
‖fk‖Ap → λ as k → ∞. Since these norms are bounded, there exists
a subsequence {fkj

} and an analytic function f such that fkj
→ f as

j → ∞. By Hurwitz’ theorem, f is zero-free. Moreover, li(f) = ci for
every 1 ≤ i ≤ n. By Fatou’s lemma,

(

∫
D
|f |pdA)

1
p ≤ λ,

but by minimality of λ, we must actually have equality. Therefore f is
extremal for Problem 2.1. 2

Let us now consider the special case of point evaluation. More specif-
ically, let β1, ..., βn ∈ D be distinct points and let li(f) = f(βi), for
1 ≤ i ≤ n. We will assume that none of the ci is zero.

The following result shows that we need only solve the extremal
problem in A2 in order to get a solution in every Ap space (p > 0.)

Theorem 2.3. If g is minimal for the problem

inf{‖g‖A2 : g is zero free , li(g) = bi, 1 ≤ i ≤ n},

where the bi are elements of D, then g
2
p is minimal for the problem

(∗) inf{‖f‖Ap : f is zero free , li(f) = ci, 1 ≤ i ≤ n},

where ci = li(g
2
p ).

Proof. The function g
2
p is zero free and∫

D

(|g(z)|
2
p )pdA(z) =

∫
D

|g(z)|2dA(z) <∞,

so g
2
p is in Ap. Moreover by definition, g

2
p satisfies the interpolation

conditions ci = li(g
2
p ).
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Now suppose that g
2
p is not minimal for the problem (*). Then there

exists h ∈ Ap zero-free such that ci = li(h) and∫
D

|h(z)|pdA(z) <

∫
D

|g(z)|2dA(z).

The function h
p
2 is a zero-free A2 function such that

‖h
p
2‖2 < ‖g‖2.

Moreover

li(h
p
2 ) = h

p
2 (βi) = c

p
2
i = (g

2
p (βi))

p
2 = g(βi) = bi.

This contradicts the minimality of g for the A2 problem. 2

Notice that by the same argument, the converse also holds; in other
words, if we can solve the extremal problem in Ap for some p > 0,
then we can also solve the extremal problem in A2. Therefore for the
remainder of the paper, we will consider only the case p = 2. Notice
that if we consider Problem (1.2) without the restriction that f must
be zero-free, the solution is very simple and well known. Considering
for simplicity the case of distinct βj, the unique solution is the unique
linear combination of the reproducing kernels k(., βj) satisfying the
interpolating conditions, where

k(z, w) := 1/(1− w̄z)2.

Since our functions are zero-free, we will rewrite a function f as
f(z) = exp(ϕ(z)), and solve the problem (relabeling the ci)

λ = inf{‖ exp(ϕ(z))‖A2 : ϕ(βi) = ci, 1 ≤ i ≤ n}.(2.1)

Theorem 2.4. The extremal solution to Problem (2.1) is unique.

Proof. Suppose ϕ1 and ϕ2 are two extremal solutions to (2.1), that is

λ = ‖eϕ1‖A2 = ‖eϕ2‖A2

and

ϕ1(βi) = ϕ2(βi) = ci

for every 1 ≤ i ≤ n. Consider

ϕ(z) =
ϕ1(z) + ϕ2(z)

2
.
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This new function satisfies ϕ(βi) = ci for every 1 ≤ i ≤ n, and therefore

λ2 ≤
∫

D
|eϕ(z)|2dA(z)

=

∫
D
|eϕ1(z)||eϕ2(z)|dA(z)

≤ ‖eϕ1‖A2‖eϕ2‖A2 (by the Cauchy Schwarz inequality)

= λ2.

This implies that

|eϕ1(z)| = C|eϕ2(z)|
for some constant C. Since the function eϕ1/eϕ2 has constant modulus,
it is a constant, which must equal 1 because of the normalization. The
extremal solution to (2.1) is therefore unique. 2

Remark. We can generalize this theorem to some other linear func-
tionals li. For instance, one may wish to consider linear functionals lij,
i = 1, . . . , n, j = 0, . . . , ki, that give the j-th Taylor coefficients of f at
βi.

The next three lemmas are the technical tools needed to address the
issue of the regularity of the extremal function: we want to show that
the extremal function is actually a Hardy space function.

For integers m ≥ n, consider the class Pm of polynomials p of degree
at most m such that p(βi) = ci for every 1 ≤ i ≤ n. Let

(2.2) λm = inf{‖ep(z)‖A2 : p ∈ Pm}.

Lemma 2.5.

lim
m→∞

λm = λ.

Proof. Notice that λm is a decreasing sequence of positive numbers
bounded below by λ, so

lim
m→∞

λm ≥ λ.

On the other hand, let ϕ∗ be the extremal function for (2.1). Write

ϕ∗(z) = L(z) + h(z)g(z),

where L is the Lagrange polynomial taking value ci at βi, namely

L(z) =
n∑

i=1

ci

∏n
k=1,k 6=i(z − βk)∏n
k=1,k 6=i(βi − βk)

,

h(z) =
∏n

i=1(z− βi), and g is analytic in D. For each 0 < r < 1, define

ϕr(z) := ϕ∗(rz).
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Let ε > 0. Notice that there exists δ > 0 such that if c̃i are complex
numbers satisfying |ci − c̃i| < δ for i = 1, . . . , n, then |L(z)− L̃(z)| < ε
(for every z ∈ D), where L̃ is the Lagrange polynomial with values c̃i
at βi. We now pick r close enough to 1 so that

‖eϕ∗ − eϕr‖A2 < ε

and

|ϕr(βi)− ϕ∗(βi)| <
δ

2
for i = 1, . . . , n.

Define pm,r to be the m-th partial sum of the Taylor series of ϕr.
Given any integer N ≥ n, pick m ≥ N such that

‖epm,r(z) − eϕr(z)‖A2 < ε

and

|pm,r(βi)− ϕr(βi)| <
δ

2
for i = 1, . . . , n.

Let c̃i = pm,r(βi) for i = 1, . . . , n and let L̃ be the Lagrange polynomial
taking values c̃i at βi. Then we can write

pm,r(z) = L̃(z) + h(z)qm−n,r(z),

where qm−n,r is a polynomial of degree at most m−n. Notice that since
|pm,r(βi)− ϕ(βi)| < δ (for every i = 1, . . . , n),

|L(z)− L̃(z)| < ε for every z ∈ D.
Define

pm(z) = L(z) + h(z)qm−n,r(z).

Then pm ∈ Pm, and

|epm(z) − epm,r(z)|2 ≤ |epm,r(z)|2(e|pm,r(z)−pm(z)| − 1)2

= |epm,r(z)|2(e|L̃(z)−L(z)| − 1)2

≤ |epm,r(z)|2(eε − 1)2

Therefore

‖epm − epm,r‖A2 ≤ ‖epm,r‖A2(eε − 1)

≤ C(eε − 1),

where C is a constant depending only on ‖eϕ∗‖A2 . Therefore

‖epm(z) − eϕ∗(z)‖A2 ≤ 2ε+ C(eε − 1) = Cε,

which implies
λm ≤ ‖epm(z)‖A2 ≤ Cε + λ

for arbitrarily large m, where Cε → 0 as ε→ 0. Therefore

lim
m→∞

λm ≤ λ.
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Since we already have the reverse inequality, we can conclude that

lim
m→∞

λm = λ.

2

Lemma 2.6. The extremal polynomial p∗m in (2.2) exists, and for every
polynomial ψm−n of degree at most m− n,∫

D
|ep∗m(z)|2(z − β1) . . . (z − βn)ψm−n(z)dA(z) = 0.

Proof. To prove the existence of the extremal polynomial p∗m, consider
the minimizing sequence pk

m in (2.2). Without loss of generality, we

can assume that the functions epk
m converge on compact subsets, and

hence pk
m converge pointwise in D to a polynomial p∗m ∈ Pm. As above,

applying Fatou’s lemma, we see that p∗m is in fact the extremal.
Define

F (ε) = ‖ exp(p∗m(z) + ε
n∏

i=1

(z − βi)ψm−n(z))‖2
A2

where ψm−n is any polynomial of degree at most m−n. Then since p∗m
is extremal, F ′(0) = 0.

F (ε) =

∫
D
| exp(p∗m(z) + ε

n∏
i=1

(z − βi)ψm−n(z))|2dA(z)

=

∫
D
| exp(p∗m(z))|2 exp(2εRe(

n∏
i=1

(z − βi)ψm−n(z))dA(z)

Therefore

F ′(0) =

∫
D
| exp(p∗m(z)|22Re(

n∏
i=1

(z − βi)ψm−n(z))dA(z) = 0.

Replacing ψm−n by iψm−n gives∫
D
| exp(p∗m(z)|22Re(

n∏
i=1

(z − βi)iψm−n(z))dA(z) = 0,

and therefore∫
D
| exp(p∗m(z)|2

n∏
i=1

(z − βi)ψm−n(z)dA(z) = 0

for every polynomial ψm−n of degree at most m− n. 2

Lemma 2.7. For each m ≥ n, ep∗m ∈ H2, and these H2 norms are
bounded.
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Proof. Write

p∗m(z) = L(z) + h(z)qm−n(z),

where L(z) is the Lagrange polynomial taking value ci at βi (for i =
1, . . . , n), h(z) =

∏n
i=1(z − βi), and qm−n is a polynomial of degree at

most m− n. We then have∫
T
|ep∗m(eiθ))|2dθ = i

∫
T
|ep∗m(z)|2zdz̄

= 2

∫
D

∂

∂z
(|ep∗m(z)|2z)dA(z) (by Green’s formula)

=

∫
D
|ep∗m(z)|2(p∗′m(z)z + 1)dA(z).

We would like to show that this integral is bounded by C‖ep∗m(z)‖2
A2 ,

where C is a constant independent of m. First notice that

zp∗
′

m(z) = zL′(z) + zh′(z)qm−n(z) + zh(z)q′m−n(z).

Since zq′m−n(z) is a polynomial of degree at most m − n, Lemma 2.6
allows us to conclude that∫

D
|ep∗m(z)|2zh(z)q′m−n(z)dA(z) = 0.

On the other hand, zL′(z) is bounded and independent of m, and
therefore

|
∫

D
|ep∗m(z)|2zL′(z)dA(z)| ≤ C1‖ep∗m(z)‖2

A2 ,

where C1 is a constant independent of m. Therefore the crucial term is
that involving zh′(z)qm−n(z). Write

qm−n(z) = qm−n(βk) + (z − βk)qm−n−1(z),

where qm−n−1 is a polynomial of degree at most m− n− 1. Then

zh′(z)qm−n(z) = z{
n∑

k=1

[
n∏

i=1,i6=k

(z−βi)]}{qm−n(βk)+(z−βk)qm−n−1(z)}

=
n∑

k=1

{z
n∏

i=1,i6=k

(z − βi)}qm−n(βk) +
n∑

k=1

{
n∏

i=1

(z − βi)}zqm−n−1(z).

Since zqm−n−1(z) is a polynomial of degree at most m− n, by Lemma
2.6, the contribution of the second big sum above, when integrated
against |ep∗m(z)|2, is zero. On the other hand, it is not hard to see that
the polynomials qm−n are (uniformly) bounded on the set {βk : k =
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1, . . . , n}, and therefore their contribution is a bounded one, that is,
there exists a constant C2 such that∫

D
|ep∗m(z)|2zh′(z)qm−n(z)dA(z) ≤ C2‖ep∗m(z)‖2

A2 .

We have therefore shown that there exist constants C and M, indepen-
dent of m, such that∫

T
|ep∗m(eiθ)|2dθ ≤ C‖ep∗m(z)‖2

A = Cλm ≤ CM.

Thus the functions ep∗m have uniformly bounded H2 norms. 2

Theorem 2.8. eϕ∗ ∈ H2.

Proof. By an argument similar to that of Theorem 2.2 and by unique-
ness of the extremal function for (2.1), there exists a subsequence {p∗mk

}
of {pm} such that

ep∗mk → eϕ∗

pointwise as k → ∞. For each fixed radius r, 0 < r < 1, by Fatou’s
lemma, ∫

T
| exp(ϕ∗(reiθ))|2dθ ≤ lim inf

k→∞

∫
T
| exp(p∗mk

(reiθ))|2dθ.

By Lemma 2.7, the right hand side is bounded for all 0 < r < 1, and
therefore eϕ∗ ∈ H2. 2

The following corollary follows from Theorems 2.8 and 2.3.

Corollary 2.9. Let 0 < p < ∞, and let eϕ∗ be the extremal function
that minimizes the norm

λ = inf{‖ exp(ϕ(z))‖Ap : ϕ(βi) = ci, 1 ≤ i ≤ n}.

Then eϕ∗ is in Hp.

3. Another approach to regularity

In the following, we present a very different approach to showing
the a priori regularity of the extremal function. It was developed by
D. Aharonov and H. S. Shapiro in 1972 and 1978 in two unpublished
preprints ([AhSh1, AhSh2]) in connection with their study of the min-
imal area problem for univalent and locally univalent functions. See
also [ASS1, ASS2].
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Given n points β1, ..., βn of D, and complex numbers c1, ..., cn re-
call that L denotes the unique (Lagrange interpolating) polynomial of
degree at most n− 1 satisfying

(3.1) L(βj) = cj, j = 1, 2, ..., n.

As above, the polynomial h is defined by

h(z) := (z − β1)...(z − βn).

We are considering, as before, Problem (1.2) when the functionals li
are point evaluations at βi, in A2.

Recall that in order to get a nonvacuous problem, we assume that
none of the cj is zero. For a holomorphic function f in D, let L(f)
denote the unique polynomial of degree at most n− 1 satisfying (3.1),
with cj := f(βj). Then, there is a unique function g analytic in D such
that

f = hg + L(f).

Of course, L(f) is bounded on D by Cmax |f(βj)|, where C is a con-
stant depending on the {βj} and the {cj}, but not on f.

Suppose now for each s in the interval (0, s0), as denotes a univalent
function in D satisfying

as(0) = 0 and(3.2)

|as(z)| < 1 for z ∈ D.(3.3)

(Thus, by Schwarz’ lemma,

|as(z)| ≤ |z| for z ∈ D.)

Let Gs denote the image of D under the map z → as(z).
Let now f be an extremal function for Problem (1.2), that is, it is a

zero-free function in A2 satisfying the interpolating conditions

(3.4) f(βj) = cj, j = 1, . . . , n,

and having the least norm among such functions. Then, denoting

(3.5) gs(z) := f(as(z))a
′
s(z),

we observe that the function fs defined by

(3.6) fs(z) := gs(z)L(f/gs)(z)

is in A2 and satisfies the interpolating conditions, since

fs(βj) = gs(βj)[f(βj)/gs(βj)] = f(βj).

Moreover, gs is certainly zero-free, and hence so is fs if we can verify
that the polynomial L(f/gs) has no zeros in D.
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Now, we shall impose some further restrictions on the maps as. We
assume that

|as(z)− z| ≤ B(z)c(s) and(3.7)

|a′s(z)− 1| ≤ B(z)c(s)(3.8)

where B is some positive continuous function on D, and c is a contin-
uous function on (0, s0] such that

(3.9) c(s) → 0 as s→ 0.

With these assumptions, as(z) → z and a′s(z) → 1 for each z in D,
as s → 0. Thus, f(βj)/gs(βj) → 1 as s → 0, for each j. Thus, the
polynomials

Ls := L(f/gs)

of degree at most n− 1 tend to 1 on the set {β1, . . . , βn} as s→ 0, and
hence they tend uniformly to 1 on D. It follows that for s sufficiently
near 0, Ls has no zeros in D, and consequently fs is zero-free.

Hence, for sufficiently small s, say s < s1, fs is a “competing func-
tion” in the extremal problem, and we have:

(3.10) ‖f‖A2 ≤ ‖fs‖A2 .

Note that L(f/gs) differs from 1, uniformly for all z in D, by a constant
times the maximum of the numbers

(3.11) {|(f(βj)/gs(βj))− 1|, j = 1, 2, ..., n}.
Now,

f(z)/gs(z)− 1 = (f(z)− gs(z))/gs(z)

and since

|gs(z)| = |f(as(z)||a′s(z)| → |f(z)| as s→ 0,

by virtue of (3.7), (3.8), and (3.9) the numbers |gs(βj)| remain greater
than some positive constant as s → 0. Consequently, the numbers
(3.11) are, for small s, bounded by a constant times the maximum of
the numbers

{|f(βj)− gs(βj)|, j = 1, 2, ..., n}.(3.12)

But,

|f(z)− gs(z)| = |f(z)− f(as(z))a
′
s(z)|

≤ |f(z)− f(as(z))|+ |f(as(z))||1− a′s(z)|
Using the estimates (3.7), (3.8) we find that the numbers (3.12) are
bounded by a constant times c(s), and therefore

L(f/gs) = 1 +O(c(s)),



EXTREMAL PROBLEMS FOR NONVANISHING FUNCTIONS 13

uniformly for z in D, as s→ 0. Hence, from (3.10) and (3.6),

‖f‖A2 ≤ ‖gs‖A2(1 +Mc(s))

for some constant M, thus∫
D
|f(z)|2dA ≤

∫
D
|fs(z)|2dA+Nc(s)

for some new constant N. Since∫
D
|fs(z)|2dA =

∫
D
|f(as(z)|2|a′s(z)|2dA

=

∫
Gs

|f(z′)|2dA(z′) (changing variables by z′ = as(z))

and combining the two integrals yields:

(*) Under the assumptions made thus far, the area integral of |f |2
over the domain Ds complementary to Gs = as(D) in D does not exceed
Nc(s), where N is a constant and c(s) is as in (3.7) and (3.8).

To see the usefulness of (*) , let us first consider an almost trivial
choice of as, namely

as(z) = (1− s)z and a′s(z) = 1− s.

Then, (3.7) and (3.8) hold with c(s) = s. Here Gs is the disk {|z| <
1 − s} , so (*) asserts (denoting t := 1 − s): the integral of |f |2 over
the annulus {t < |z| < 1}, for all t sufficiently close to 1, is bounded
by a constant times 1 − t. Consequently, the mean value of |f |2 over
these annuli remains bounded. This, however, easily implies that f is
in the Hardy class H2 of the disk! So, we have given another proof
of Theorem 2.8: extremals for the zero-free A2 problem (1.2) always
belong to H2.

We can extract a bit more, namely that extremals are bounded in
D, with a more recondite choice of a(s).

Let w denote a point of the unit circle T, and s a small positive
number. Let Gs,w denote the crescent bounded by T and a circle of
radius s internally tangent to T at w. (This circle is thus centered at
(1 − s)w ). Let as,w be the unique conformal map of D onto Gs,w

mapping 0 to 0 and the boundary point w to (1 − 2s)w, and bs,w the
z-derivative of as,w. We are going to show

Lemma 3.1. With as,w and bs,w in place of as, a′s respectively, (3.7)
and (3.8) hold, with c(s) = s2, uniformly with respect to w.

Assuming this for the moment, let us show how the boundedness
of extremals follows. Applying (*), we see that if f is extremal, the
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area integral of |f |2 over the disk centered at (1− s)w of radius s does
not exceed a constant (independent of w and s) times the area of this
disk. Since |f((1− s)w)|2 does not exceed the areal mean value of |f |2
over this disk, we conclude |f((1 − s)w)| is bounded uniformly for all
w in T and sufficiently small s, i.e. |f | is bounded in some annulus
{1− s0 < |z| < 1}, and hence in D. We therefore have the following:

Theorem 3.2. The extremal function f ∗ for Problem 2.1 is in H∞.

It only remains to prove Lemma 3.1.

Proof. First note that the arguments based on (3.7 and 3.8) leading
to (*) only rely on the boundedness of the function B on compact
subsets of D, and more precisely on a compact subset containing all
interpolation points βj, j = 1, . . . , n. Since clearly (3.8) follows (with a
different choice of B(.)) from (3.7), we have only to verify (3.7). Also,
by symmetry, it is enough to treat the case w = 1. We do so, and for
simplicity denote as,1, Gs,1 by as, Gs respectively. Thus, as maps D
onto the domain bounded by T and the circle of radius s centered at
1− s. Moreover as(0) = 0, and as(1) = 1− 2s. Thus, we have a Taylor
expansion

as(z) = c1,sz + c2,sz
2 + . . .

convergent for |z| < 1. Moreover, it is easy to see from the symmetry
of Gs that all the coefficients cj,s are real.

Under the map Z = 1/(1−z), Gs is transformed to a vertical strip S
in the Z plane bounded by the lines {ReZ = 1/2} and {ReZ = 1/2s}.
Thus, the function

hs := 1/(1− as)

maps D onto S and carries 0 into 1, and the boundary point 1 to ∞.
Hence us(e

it) := Re(hs(e
it)) satisfies

us(e
it) = 1/2 for |t| > t0, and

= 1/2s for |t| < t0,

where t0, 0 < t0 < π is determined from

1 =
1

2π

∫
T
us(e

itdt =
1

2
+

1− s

2πs
t0

hence

(3.13) t0 = (s/(1− s))π.

Now, we have a Taylor expansion

hs(z) = 1 + b1,sz + b2,sz
2 + . . .(3.14)
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where the bj,s are real, and so determined from

us(e
it = 1 + b1,s cos t+ b2,s cos 2t+ . . . ,

i.e.,

bn,s =
2

π

∫ π

0

us(e
it) cos(nt)dt

hence

bn,s = sinnt0/nt0 n = 1, 2, . . .(3.15)

where t0 is given by (3.13).
We are now prepared to prove Lemma 3.1, i.e.,

|as(z)− z| ≤ B(z)s2.(3.16)

We have

hs(z)−
1

1− z
=

1

1− as(z)
− 1

1− z
=

as(z)− z

(1− z)(1− as(z))
,

so

|as(z)− z| ≤ 4|hs(z)−
1

1− z
| ≤ 4

∞∑
n=1

|bn,s − 1||z|n.(3.17)

But, from (3.15)

|bn,s − 1| = |sinnt0
nt0

− 1|.

Since the function
(sinx)/x− 1

x2

is bounded for x real, we have for some constant N :

|sinnt0
nt0

− 1| ≤ N(nt0)
2 ≤ N ′n2s2

for small s, in view of (3.13), where N ′ is some new constant. Thus,
finally, inserting this last estimate into (3.17),

|as(z)− z| ≤ N ′′s2B(z),

where

B(z) :=
∞∑

n=1

n2|z|n,

which is certainly bounded on compact subsets of D, and the proof is
finished. 2
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Remark. This type of variation can be used to give another proof of
the regularity and form of extremal functions in the non-vanishing Hp

case, which were originally established in [Kh1, Kh2]. In what follows,
we shall only discuss the case p = 2, since the case of other p follows
at once via an analogue of Theorem 2.3 in the Hp setting.

For the sake of brevity, we only consider the following problem.
Given complex constants c0, c1, . . . , cm with c0 not zero (w.l.o.g. we
could take c0 = 1), let A be the subset of H2 consisting of “admissi-
ble functions” f, i.e., those functions zero-free in D whose first m + 1
Taylor coefficients are the cj. We consider the extremal problem , to
minimize ‖f‖2 := ‖f‖H2 in the class A. The following argument is
again an adaptation of a variational argument used by Aharonov and
Shapiro in ([AhSh1, AhSh2]) for a different problem.

Proposition 3.3. Every extremal is in the Dirichlet space, that is,
satisfies ∫

D
|f ′(z)|2dA <∞.

Proof. Let f be extremal, and 0 < t < 1. Then,

(3.18) f(z) = tf(tz)[f(z)/tf(tz)] = tf(tz)[S(z; t) +R(z; t)]

where S denotes the partial sum of order m of the Taylor expansion of
f(z)/tf(tz) =: E(z; t) and R denotes the remainder E − S. Now,

|f(z)− f(tz)| ≤ C(1− t),

uniformly for |z| ≤ 1/2, where C is a constant depending on f, and
this implies easily

|1− E(z; t)| ≤ C(1− t)

for those z, and some (different) constant C. From this it follows easily
that

(3.19) S(z; t) = 1 +O(1− t), uniformly for z ∈ D.
Moreover, from (3.18) we see that tf(tz)S(z; t) has the same Taylor
coefficients as f, through terms of order m. Also, (3.19) shows that S
does not vanish in D for t near 1. We conclude that, for t sufficiently
close to 1, tf(tz)S(z; t) is admissible, and consequently its norm is
greater than or equal to that of f, so we have∫

T
|f(eis)|2ds ≤ (

∫
T
|tf(teis)|2ds)(1 +O(1− t)),

or, in terms of the Taylor coefficients an of f,∑
|an|2 ≤ [

∑
|an|2t2n+2](1 +O(1− t))
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so ∑
(1− t2n+2)/(1− t)|an|2

remains bounded as t→ 1, which implies f has finite Dirichlet integral.
2

Corollary 3.4. The extremal must be a polynomial of degree at most
m times a singular function whose representing measure can only have
atoms located at the zeros on T of this polynomial.

Proof. As usual, for every h ∈ H∞, (1+wzm+1h)f (where f is extremal,
and w a complex number) is admissible for small |w|. Hence, as in the
proof of Lemma 2.6, we obtain that f is orthogonal (in H2!) to zm+1hf.
If f = IF, where I is a singular inner function and F is outer, since
|I| = 1 a.e. on T, it follows that F is orthogonal to zm+1FH∞. Now,
F is cyclic, so FH∞ is dense in H2, i.e., F is orthogonal to zm+1H2.
Hence, F is a polynomial of degree at most m. For the product FI
to have a finite Dirichlet norm, the singular measure for I must be
supported on a subset of the zero set of F on T as claimed. Indeed, for
any singular inner function I and any point w ∈ T where the singular
measure for I has infinite Radon-Nikodym derivative with respect to
Lebesgue measure, ∫

D∩{|z−w|<c}
|I ′|2dA = ∞,

because the closure of the image under I of any such neighborhood of
w is the whole unit disk (cf. [CL, Theorem 5.4]). 2

4. A discussion of the conjectured form of extremal
functions

In this section we provide certain evidence in support of our overall
conjecture and draw out possible lines of attack that would hopefully
lead to a rigorous proof in the future. Recall that the extremal function
f ∗ in the problem (2.1):

λ = inf{‖ exp(ϕ(z))‖A2 : ϕ(βi) = ci, 1 ≤ i ≤ n}

is conjectured to have the form (1.3):

f ∗(z) = C

∏2n−2
j=1 (1− ᾱjz)

2
p exp(

∑k
j=1 λj

eiθj +z

eiθj−z
)∏n

j=1(1− β̄jz)
4
p

,

where C is a constant, |αj| ≤ 1, j = 1, . . . , 2n−2, |βj| < 1, j = 1, . . . , n,
λj ≤ 0, j = 1, . . . k, k ≤ 2n − 2. As in the previous sections, we shall
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focus the discussion on the case p = 2, since the Ap extremals are
simply the 2/p-th powers of those in A2.

First, let us observe that if the solution to the problem for p = 2 in
the whole space A2, i.e.,

(4.1) λ = inf{‖f(z)‖A2 : f(βj) = exp(cj), 1 ≤ j ≤ n}

happens to be non-vanishing in D, then it solves Problem (2.1.) The
solution to Problem (4.1) is well-known and is equal to a linear combi-
nation of the reproducing Bergman kernels at the interpolation points.
That is,

(4.2) f ∗(z) =
n∑

j=1

aj

(1− β̄jz)2
,

where the aj are constants, which does have the form (1.3) with singular
inner factors being trivial.

Recall that a closed subset K of the unit circle T is called a Carleson
set if ∫

T
log ρK(eiθ)dθ > −∞,

where ρK(z) = dist(z,K) (cf., e.g., [DS, p. 250].)
Now, if we could squeeze additional regularity out of the extremal

function f ∗ in (2.1),the following argument would allow us to establish
most of (1.3) right away. Namely

Theorem 4.1. Assume that the support of the singular measure in
the inner factor of the extremal function f ∗ in (2.1) is a Carleson set.
Then the outer part of f ∗ is as claimed in (1.3).

Remark.The regularity asssumption for the singular factor of f ∗ is not
unreasonable. In fact, some a priori regularity of extremals was the
starting point in ([KS]) for the investigation of linear extremal prob-
lems in Ap, i.e., Problem 2.1 but without the non-vanishing restriction.
There, the authors have been able to achieve the a priori regularity
by considering a dual variational problem whose solution satisfied a
nonlinear degenerate elliptic equation. Then, the a priori regularity
results for solutions of such equations (although excruciatingly diffi-
cult) yielded the desired Lipschitz regularity of the extremal functions.
Surprisingly, as we show at the end of the paper, even in the sim-
plest examples of problems for non-vanishing functions in A2, if the
extremals have the form (1.3), they fail to be even continuous in the
closed disk. This may be the first example of how some extremals in
Ap and Hp differ qualitatively. Of course, the extremal functions for
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Problem 2.1 in the Hp context are all Lipschitz continuous (cf. Corol-
lary 3.4). Unfortunately, in the context of highly nonlinear problems
for non-vanishing functions (since the latter do not form a convex set)
the direct duality approach fails at once. (Below, however, we will in-
dicate another line of reasoning which may allow one to save at least
some ideas from the duality approach.)

Proof. From the results of the previous sections, it follows that

(4.3) f ∗ = FS,

where F is outer and S is a singular inner function whose associated
measure µ ≤ 0, µ ⊥ dθ is concentrated on the Carleson set K. Note
that

S ′(z) = S(z)
1

2π

∫ 2π

0

2dµ(θ)

(eiθ − z)2
,

where

S(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ).

So

(4.4) |S ′(z)| = O(ρ−2
K (z)),

where ρK is the distance from z to the set K. By a theorem of Carleson
(see [DS], p. 250), there exists an outer function H ∈ C2(D̄) such that
K ⊂ {ζ ∈ T : H(j)(ζ) = 0, j = 0, 1, 2}, and hence

(4.5) H(j)(z) = O(ρK(z)2−j), j = 0, 1, 2

when z → K. (4.4) and (4.5) yield then that

(4.6) (HS)′ = H ′S +HS ′ = hS,

where h ∈ H∞(D). Recall from our discussions in Sections 2 and 3
that the extremal function f ∗ must satisfy the following orthogonality
condition:

(OC)

∫
D
|f ∗|2

n∏
j=1

(z − βj)gdA = 0

for all, say, bounded analytic functions g. Rewriting (OC) as

(4.7) 0 =

∫
D
F̄ S̄FS

n∏
j=1

(z − βj)gdA

and noting that F is cyclic in A2, so that we can find a sequence of
polynomials pn such that Fpn → 1 in A2 (F is “weakly invertible” in
A2 in an older terminology), we conclude from (4.7) that FS = f ∗ is
orthogonal to all functions in the invariant subspace [S] of A2 generated
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by S that vanish at the points β1, β2, . . . , βn. In particular, by (4.6), f ∗

is orthogonal to all functions ∂
∂z

(H
∏n

j=1(z−βj)
2Sg) for all polynomials

g, i.e.,

(4.8) 0 =

∫
D
f̄ ∗

∂

∂z
(H

n∏
j=1

(z − βj)
2Sg)dA.

Applying Green’s formula to (4.8), we arrive at

(4.9) 0 =

∫
T
f̄ ∗H

n∏
j=1

(z − βj)
2Sgdz̄ =

∫
T
F̄H

n∏
j=1

(z − βj)
2g
dz

z2
,

since |S| = 1 on T. Finally, since H is outer and hence cyclic in H2,
there exists a sequence of polynomials qn such that Hqn → 1 in H2.
Also there exists a sequence of polynomials pn such that pn → F in
H2, so replacing g by pnqng, we obtain

(4.10) 0 =

∫
T
|F |2

n∏
j=1

(z − βj)
2g
dz

z2

for all polynomials g. F.&M. Riesz’ theorem (cf. [Du, Ga, Ho, Ko])
now implies that

(4.11) |F |2 =
z2h∏n

j=1(z − βj)2
a.e. on T

for some h ∈ H1(D). The rest of the argument is standard (see for
example [Du], Chapter 8.) Since

r(z) :=
z2h(z)∏n

j=1(z − βj)2
≥ 0

on T, it extends as a rational function to all of Ĉ and has the form

(4.12) r(z) = C
z2

∏2n−2
j=1 (z − αj)(1− ᾱjz)∏n

j=1(z − βj)2(1− β̄jz)2

where |αj| ≤ 1, j = 1, . . . , 2n − 2, are the zeros of r in D̄ (zeros on T
have even multiplicity) and C > 0 is a constant. Thus, remembering
that F is an outer function and so

logF (z) =
1

4π

∫ 2π

0

eiθ + z

eiθ − z
log |F (eiθ)|2dθ,

we easily calculate from (4.11) and (4.12) that

(4.13) F (z) = C

∏2n−2
j=1 (1− ᾱjz)∏n
j=1(1− β̄jz)2

, |αj| ≤ 1,
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as claimed. 2

Several remarks are in order.
(i) If the inner part S of f ∗ is a cyclic vector in A2, or, equivalently,

by the Korenblum-Roberts theorem (see [DS], p. 249), its spectral
measure puts no mass on any Carleson set K ⊂ T, then (4.7) implies
right away that f ∗ is orthogonal to all functions in A2 vanishing at
β1, β2, . . . , βn, and hence

f ∗ =
n∑

j=1

aj

(1− β̄jz)2

is a linear combination of reproducing kernels. Thus, we have the
corollary already observed in ([AhSh1, AhSh2]):

Corollary 4.2. If f ∗ is cyclic in A2, it must be a rational function of
the form (4.2).

(ii) On the other hand, if we could a priori conclude that the singular
part S of f ∗ is atomic (with spectral measure consisting of at most 2n−2
atoms), then instead of using Carleson’s theorem, we could simply take
for the outer function H a polynomial p 6= 0 in D vanishing with
multiplicity 2 at the atoms of S. Then following the above argument,
once again we arrive at the conjectured form (1.3) for the extremalf ∗.

Now, following S. Ya. Khavinson’s approach to the problem (2.1)
in the Hardy space context (see [Kh2, pp. 88 ff]), we will sketch an
argument, which perhaps, after some refinement, would allow us to
establish the atomic structure of the inner factor S, using only the a
priori H2 regularity.

For that, define subsets Br of spheres of radius r in A2 :

Br := {f = eϕ : ‖f‖A2 ≤ r},
where

ϕ(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ),(4.14)

dν = log ρ(θ)dθ + dµ,(4.15)

and ρ ≥ 0, ρ, log ρ ∈ L1(T), dµ is singular and dµ ≤ 0. Consider the
map Λ that maps the subsets Br into Cn, defined by

Λ(f) = (ϕ(βj))
n
j=1.

More precisely, each ϕ is uniquely determined by the corresponding
measure ν and vice versa. Hence, Λ maps the set of measures

Σr := {ν : ν = s(θ)dθ + dµ}
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satisfying the constraints

dµ ≤ 0 and dµ is singular(4.16)

exp(s(θ)), s(θ) ∈ L1(T)(4.17)

‖ exp(P (dν))‖L2(D) ≤ r,(4.18)

where

P (dν)(reiα) =
1

2π

∫ 2π

0

1− r2

1 + r2 − 2r cos(θ − α)
dν(θ)

is the Poisson integral of ν, into Cn by

Λ(ν) = (S(ν)(βj))
n
j=1.

Here

(4.19) S(ν)(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ)

stands for the Schwarz integral of the measure ν. Let us denote the
image Λ(Σr) in Cn by Ar. Repeating the argument in [Kh2] essentially
word for word, we easily establish that for all r > 0, the sets Ar are
open, convex, proper subsets of Cn. (Convexity of Ar, for example,
follows at once from the Cauchy-Schwarz inequality as in the proof of
the uniqueness of f ∗ in Section 2.) If we denote by ~c = (c1, . . . , cn) the
vector of values we are interpolating in (2.1), then the infimum there
is easily seen to be equal to

r0 = inf{r > 0 : ~c ∈ Ar}.

Hence, our extremal function f ∗ (or equivalently ϕ∗ = log f ∗) corre-
sponds to a measure dν∗ ∈ Σr0 for which Λ(ν∗) ∈ ∂Ar0 . So, to study
the structure of extremal measures ν∗ defining the extremals ϕ∗ or
f ∗ = eϕ∗ , we need to characterize those ν∗ ∈ Σr : Λ(ν) ∈ ∂Ar. From
now on, without loss of generality, we assume that r = 1 and omit the
index r altogether. Let ~w = (w1, . . . , wn) be a finite boundary point
of A. Then there exists a hyperplane H defined by Re

∑n
j=1 ajzj = d

such that for all ~z ∈ A,

(4.20) Re
n∑

j=1

ajzj ≤ d while Re
n∑

j=1

ajwj = d.

Let ν∗ denote a preimage Λ−1(~w) in Σ. Using (4.14 and 4.15) we easily
rephrase (4.20) in the following equivalent form:

(4.21)

∫
T
R(eiθ)dν(θ) ≤ d
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for all ν satisfying (4.16), (4.17) and (4.18), (r = 1) with equality
holding for

ν∗ = s∗dθ + dµ∗ ∈ Λ−1(~w).

Then (4.14, 4.15 and 4.19) yield

(4.22) R(eiθ) =
1

2π
Re(

n∑
j=1

aj
eiθ + βj

eiθ − βj

),

a rational function with 2n poles at β1, . . . , βn and 1/β̄1, . . . , 1/β̄n that
is real-valued on T. Note the following (see [Kh2]):

Claim. For d in (4.21) to be finite for all measures ν satisfying (4.16),
(4.17) and (4.18), it is necessary that R ≥ 0 on T.

Indeed, if R(eiθ) (which is continuous on T) were strictly negative on
a subarc E ⊂ T, by choosing dν = sdθ with s negative and arbitrarily
large in absolute value on E and fixed on T − E, we would make the
left hand side of (4.21) go to +∞ while still keeping the constraints
(4.16), (4.17) and (4.18) intact, thus violating (4.21).

Now, if we knew that R(eiθ) had at least one zero at eiθ0 , we could
easily conclude that the extremal measure ν∗ in (4.21) can only have
an atomic singular part with atoms located at the zeros of R(eiθ) on T.
Then, by the argument principle, since R(eiθ) cannot have more than
n double zeros on T, the argument sketched in Remark (ii) following
Theorem 4.1 establishes the desired form of the extremal function f ∗.

To see why a zero of R at eiθ0 would yield the atomic structure of
the singular part dµ∗ of the extremal measure ν∗ in (4.16), (4.17) and
(4.18), simply note that if µ∗ puts any mass on a closed set E ⊂ T where
R > 0, we could replace µ∗ by µ1 = µ∗−µ∗|E while compensating with
a large negative weight at eiθ0 not to violate (4.18). This will certainly
make the integral in (4.21) larger, thus contradicting the extremality
of ν∗. Unfortunately, however, we have no control over whether R(eiθ)
vanishes on the circle or not, so this reasoning runs aground if we are
dealing with (4.21) for R > 0 on T. In order to establish the atomic
structure of the singular part of the extremal measure ν∗ in (4.21) for
R > 0 on T, we must come up with a variation of ν∗ which would
increase

∫
TR(eiθ)dν(θ) without violating (4.18). This is precisely the

turning point that makes problems in the Bergman space so much
more difficult than in their Hardy space counterparts. For the latter,
if we had simply gotten rid of the singular part µ∗ in ν, i.e., divided
our corresponding extremal function f ∗ by a singular inner function
defined by µ∗, then we would not have changed the Hardy norm of
f ∗ at all (while we would have dramatically increased the Bergman
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norm of f ∗). This observation in addition to the elementary inequality
u lnu − u > u ln v − v for any u, v > 0, allowed S. Ya. Khavinson
(see [Kh2]) to show that in the context of Hardy spaces, when (4.18)
is replaced by a similar restriction on the Hardy norm of exp(S(ν)), if
R > 0, the extremal measure ν∗ is simply a constant times logR(eiθ)dθ,
and an easy qualitative description of extremals follows right away.

Now, in view of the above discussion, we cannot expect that for our
problem, when R > 0 on T, the extremal measure ν∗ in (4.21) satisfying
(4.16), (4.17) and (4.18) is absolutely continuous. But where should
we expect the atoms of the singular part µ∗ of the extremal ν∗ to be
located? We offer here the following conjecture.

Conjecture. If R > 0 on T, then the singular part µ∗ of the extremal
measure ν∗ in (4.21) is supported on the set of local minimum points
of R on T.

In other words, the singular inner part of the extremal function f ∗

for Problem 2.1 corresponding to the boundary point of A defined by
the hyperplane (4.20) is atomic with atoms located at the local minima
of R on T.

The conjecture is intuitive in the sense that in order to maximize
the integral in (4.21), we are best off if we concentrate all the negative
contributions from the singular part of ν at the points where R > 0 is
smallest. Note that this conjecture does correspond to the upper esti-
mate of the number of atoms in the singular inner part of the extremal
function f ∗ in (1.3). Indeed, R is a rational function of degree 2n and

hence has 4n − 2 critical points (i.e., where R′(z) = 0) in Ĉ. Since
the number of local maxima and minima of R on T must be the same
(consider 1/R instead), we easily deduce that R cannot have more than
2n − 2 local minima (or maxima) on T. (At least two critical points
symmetric with respect to T must lie away from T.)

One possible way to attempt to prove the conjecture using a variation
of the extremal measure ν∗ in (4.21) might be to divide the function
f ∗ by a function G that would diminish the singular part µ∗ of ν∗.
Of course, a natural candidate for such a G would be the contractive
divisor associated with the invariant subspace [J ] in A2 generated by a
singular inner function J built upon a part µ0 of µ∗ such that µ0 ≥ µ∗

(recall that µ∗ ≤ 0), such that the support of µ0 is a subset of the part
of the circle that does not contain the local minima of R. Then (cf.
[DuKS]) G = hJ, where h is a Nevanlinna function and ‖f ∗/G‖A2 ≤
‖f ∗‖, so (4.18) is preserved. Unfortunately, |h| > 1 on T − supp(µ0),
so the resulting measure ν defined by log(f ∗/G) = S(ν) may at least a
priori actually diminish the integral in (4.21) instead of increasing it.
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Finally, we remark that for the special case when the βj = 0 and
instead of Problem 2.1 we have the problem of finding

(4.23) inf{‖f‖Ap : f 6= 0, f (j)(0) = cj, j = 0, . . . , n},

the conjectured general form of the extremal function f ∗ collapses to

(4.24) f ∗(z) = C

n∏
j=1

(1− ᾱjz)
2
p exp(

k∑
j=1

λj
eiθj + z

eiθj − z
),

where |αj| ≤ 1, j = 1, . . . , n, k ≤ n, λj ≤ 0. The difference in the
degree of the outer part in (4.24) versus the rational function in (1.3)
appears if one follows the proof of Theorem 4.1 word for word arriving
at

|F |2 =

∏n
j=1(z − αj)(1− ᾱjz)

zn

instead of (4.12).
We shall discuss Problem 4.23 for n = 2 in great detail in the last

section.

5. The minimal area problem for locally univalent
functions

In this section we shall discuss a particular problem arising in geo-
metric function theory and first studied by Aharonov and Shapiro in
[AhSh1, AhSh2]. The problem is initially stated as that of finding

(5.1)

inf{
∫

D
|F ′(z)|2dA : F (0) = 0, F ′(0) = 1, F ′′(0) = b, F ′(z) 6= 0 in D}.

Problem (5.1) has the obvious geometric meaning of finding, among all
locally univalent functions whose first three Taylor coefficients are fixed,
the one that maps the unit disk onto a Riemann surface of minimal
area. Setting f = F ′ and c = 2b immediately reduces the problem to
a particular example of problems mentioned in (4.23), namely that of
finding

(5.2) inf{
∫

D
|f |2dA : f 6= 0 in D, f(0) = 1, f ′(0) = c}.

Assuming without loss of generality that c is real, we find that the
conjectured form of the extremal function f in (5.2) is

(5.3) f(z) = C(z − A)eµ0
z+1
z−1 ,
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where µ0 ≥ 0, and C,A, and µ0 are uniquely determined by the inter-
polating conditions in (5.2). Of course, if |c| ≤ 1 in (5.2), the obvious
solution is

f ∗ = 1 + cz,

and hence, F ∗ = z + c
2
z2 solves (5.1), mapping D onto a cardioid. The

nontrivial case is then when |c| > 1. All the results in the previous
sections apply, so we know that the extremal for (5.2) has the form

f ∗ = hS,

where h is a bounded outer function and S is a singular inner function.
As in Section 2, a simple variation gives us the orthogonality conditions
(OC) as necessary conditions for extremality:

(5.4)

∫
D
|f ∗|2zn+2dA = 0, n = 0, 1, 2, . . . .

From now on, we will focus on the non trivial case of Problem 5.2
with c > 1. Thus, the singular inner factor of f ∗ is non trivial (cf
Corollary 4.2). In support of the conjectured extremal (5.3), we have
the following proposition.

Proposition 5.1. If the singular factor S of f ∗ has associated singular
measure dµ that is atomic with a single atom, then

(5.5) f ∗(z) = C(z − 1− µ0)e
µ0

z+1
z−1

where C and the weight µ0 are uniquely determined by the interpolating
conditions.

Remark.Although we have been unable to show that the singular inner
factor for the extremal f ∗ is atomic, we offer some remarks after the
proof that do support our hypothesis. If this is indeed the case, this
would be, to the best of our knowledge, the first example of a “nice”
extremal problem whose solution fails to be Lipschitz continuous or
even continuous in the closed unit disk. All solutions to similar or even
more general problems for non-vanishing Hp functions are Lipschitz
continuous in D̄ (cf. [Kh2] and the discussion in Section 4). Also,
solutions to similar extremal problems in Ap without the non-vanishing
restriction are all Lipschitz continuous in D̄ (cf. [KS]).

Proof. Our normalization (c ∈ R+) easily implies that the only atom
of S is located at 1. So, f ∗ = hS, where S is a one atom singular inner
function with mass µ0 at 1, and h is outer. By Caughran’s theorem
([Ca]), the antiderivative F ∗ of f ∗ has the same singular inner factor S
and no other singular inner factors, i.e.,

(5.6) F ∗ = HS,
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where H is an outer function times perhaps a Blaschke product. Writ-
ing the orthogonality condition (5.4) in the form∫

D
f̄ ∗f ∗z2p dA = 0

for any arbitrary polynomial p, and applying Green’s formula, we ob-
tain

(5.7)

∫
T
F̄ ∗f ∗z2p dz = 0

for any arbitrary polynomial p. Using (5.6) and SS̄ = 1 a.e. on T yields

(5.8)

∫
T
H̄hz3p dθ = 0.

Since h is outer, hence cyclic in H2, we can find a sequence of poly-
nomials qn such that hqn → 1 in H2. Replacing p by qnp and taking a
limit when n→∞ yields

(5.9)

∫
T
H̄z3p dθ = 0

for all polynomials p. This last equation immediately implies that H
is a quadratic polynomial. Now, f ∗ = hS = (HS)′ = H ′S +HS ′, and
S ′ = 2µ0

(z−1)2
S. Since f ∗ ∈ H2, H must have a double zero at 1 to cancel

the pole of S ′! Hence H(z) = C(z − 1)2, F (z) = C(z − 1)2S(z), and
f ∗(z) = C(z − 1− µ0) exp(µ0

z−1
z+1

) as claimed. 2

We want to offer several additional remarks here.
(i) Obviously, the above calculations are reversible, so the function

(5.5) does indeed satisfy the orthogonality condition (5.4) for the ex-
tremal.

(ii) The proof of Proposition 5.1 can be seen from a slighty different
perspective. From Theorem 4.1, it already follows (assuming the hy-
pothesis) that the outer part of f ∗ is a linear polynomial. Moreover,
(5.7) implies that the antiderivative F ∗ of f ∗ is a noncyclic vector for
the backward shift and hence has a meromorphic pseudocontinuation
to Ĉ − D ([DSS]). Accordingly, F ∗ must be single-valued in a neigh-
borhood of its only singular point {1}. This implies that f ∗ = hS must
have a zero residue at 1. (Otherwise F would have a logarithmic singu-
larity there.) Calculating the residue of f ∗ at 1 for a linear polynomial
h and an atomic singular factor S yields (5.5).

(iii) The only remaining obstacle in solving the extremal problem
(5.2) is showing a priori that the singular inner factor of the extremal
function is a one atom singular function. If one follows the outline given
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in Section 4, we easily find that for the problem (5.2), the function
R(eiθ) in (4.22) becomes a rational function of degree 2, and since
R ≥ 0 on T,

(5.10) R(eiθ) = const
(eiθ − a)(1− āeiθ)

eiθ
= const|eiθ − a|2,

where |a| ≤ 1. Thus, as we have seen in Section 4, we would be done
if we could show that the one atom measure is the solution of the
extremal problem

(5.11) max{
∫

T
R(eiθ)dµ(θ) : µ ≤ 0, µ ⊥ dθ}

where µ satisfies the constraint

(5.12)

∫
D
|h|2|Sµ|2dA ≤ 1

for a given outer function h and R is given by (5.10). (Recall that
Sµ is the singular inner function with associated singular measure µ.)
Again, as noted previously, it is almost obvious when |a| = 1, since
then we simply concentrate as much charge as needed at a to satisfy
the constraint without changing the integral (5.11). Yet, in general, we
have no control over where in D a appears.

(iv) Let k(z) denote the orthogonal projection of |f ∗|2 onto the space
of L2 integrable harmonic functions in D. The orthogonality condition
(5.4) implies that k(z) is a real harmonic polynomial of degree 1. More-
over, due to our normalization of the extremal problem (i.e., c ∈ R),
we can easily show that f ∗ in fact has real Taylor coefficients. Indeed,
f1(z) := f ∗(z) satisfies the same interpolating conditions and has the
same L2-norm over D, thus by the uniqueness of the extremal func-
tion, f1 must be equal to f ∗. Since f ∗ has real Taylor coefficients, the
projection of |f ∗|2 is an even function of y, and thus

(5.13) k(z) = A+Bx,

where A =
∫

D |f
∗|2dA and B = 4

∫
D z|f

∗|2dA. The orthogonality con-
dition (5.4) now implies that the function |f ∗|2− k is orthogonal to all
real-valued L2 harmonic functions in D. Using the integral formula in
[DKSS2] (or [DS, Chapter 5, Section 5.3]), it follows that

(5.14)

∫
D
(|f ∗(z)|2 − k(z))sdA ≥ 0

for all functions s that are smooth in D̄ and subharmonic. The following
corollary of (5.14) offers an unexpected application of the conjectured
form of the extremal f ∗.
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Corollary 5.2. Let w ∈ T, and assume that |f ∗|2/|z − w|2 ∈  L1(D).
(Note that the conjectured extremal satisfies this condition at the point
w = 1.) Then k(w) ≤ 0. Thus, if f ∗ has the form (5.5), B ≤ −A in
(5.13).

Proof. Choose s(z) = 1/|rw−z|2 for r > 1. Applying (5.14) as r → 1+,
we see that if k(w) > 0, the integral on the left must tend to −∞, which
violates (5.14). 2

Calculating the classical balayage U(eiθ) of the density |f ∗|2dA to T,
i.e.,

(5.15) U(eiθ) = Re
1

2π

∫
D
|f ∗|2 e

iθ + z

eiθ − z
dA,

explanding the Schwarz kernel eiθ+z
eiθ−z

into the power series with respect
to z and using the orthogonality condition (5.4) allows us to cancel all
the terms containing powers of z of degree 2 and higher, so we arrive
at

U(eiθ) = A+
B

2
cos θ,

where A and B are as in (5.13). Since U > 0 on T (it is a “sweep” of
a positive measure!), it follows that

Corollary 5.3.

A >
|B|
2
,

i.e., ∫
D
|f ∗|2dA > 2|

∫
D
z|f ∗|2dA|.

A calculation confirms that for f ∗ as in (5.5), Corollary 5.3 does
hold.

(v) If we denote the value of the minimal area in (5.1) by A = A(b)
and by a3 the coefficient of z3 in the Taylor expansion of the extremal
function F ∗ (i.e, F ∗(z) = z + bz2 + a3z

3 + . . . , where F ∗ is the anti-
derivative of our extremal function f ∗) then as was shown in ([AhSh2],
Theorem 4, p. 21), the following equality must hold:

(5.16) (3a3 − 2b2 − 1)A′(b) + 4bA(b) = 0.

An involved calculation yields that the conjectured extremal function
F ∗ =

∫
f ∗, where f ∗ is as in (5.5), does indeed satisfy (5.16). This

serves as yet one more justification of the conjectured form of the ex-
tremal. A number of other necessary properties of the extremal func-
tion are discussed in [AhSh1, AhSh2].
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