A NOTE ON A THEOREM OF J. GLOBEVNIK

DMITRY KHAVINSON

In this note we offer a short proof of Globevnik's theorem [Gl1, Gl2] for simply connected domains. Yet, this idea alone is insufficient to give the proof of his result in its full generality in finitely connected domains [Gl2].

Theorem 1. Let **D** be the unit disk, **T** is the circle, $f \in C(\mathbf{T})$. If for any function g in the disk-algebra $A := A(\mathbf{D})$ such that $f + g \neq 0$ on **T** $\Delta_{\mathbf{T}} \arg(f + g) \geq 0$, then f extends analytically to **D**.

Proof.

Assume that f does not extend analytically to \mathbf{D} , then dist(f, A) = d > 0, where the distance is understood in the $C(\mathbf{T})$ -metric. Of course, then for all rational functions f_n uniformly approximating f on \mathbf{T} we can assume that $dist(f_n, A) = d_n > d/2$. Let g_n be the best $A(\mathbf{D})$ approximation to f_n . As is known from the rudiments of the theory of extremal problems as in, e.g., [Kh], [Du] (Chapter 8), g_n is analytic across \mathbf{T} , and $|g_n - f_n| = d_n > d/2 > 0$ everywhere on \mathbf{T} . Moreover, since f_n is continuous on \mathbf{T} , there is an extremal function F_n in the dual problem of finding

$$\max |\int_{\mathbf{T}} f_n h \, dz|$$

over all h in the unit ball of the Hardy space H^1 .

 F_n is also analytic across T and

$$F_n(f_n - g_n)dz = |F_n| d_n |dz| \ge 0 \quad \text{on} \quad \mathbf{T}.$$
(1)
Since $\Delta_{\mathbf{T}} \arg F_n \ge 0$ and $\Delta_{\mathbf{T}} \arg dz = 2\pi$, (1) implies that

$$\Delta_{\mathbf{T}} \arg \left(f_n - g_n \right) \le -2\pi \tag{2}$$

for all sufficiently large n.

The rest is standard. Assume that f_n approximate f, so that $|f - f_n| < \varepsilon$ on **T** and $|f - g_n| = |f_n - g_n - (f_n - f)| \ge d_n - \varepsilon > 0$ for all n. Then,

$$\Delta_{\mathbf{T}} \arg \left(f - g_n \right) = \Delta_{\mathbf{T}} \arg \left[(f_n - g_n) \left(1 - \frac{f_n - f}{f_n - g_n} \right) \right] = \Delta_{\mathbf{T}} \arg \left(f_n - g_n \right) \le -2\pi,$$

giving a desired contradiction.

Remarks. (i) The proof could still be shortened if one notices that the function $f_n - g_n$ is *badly approximable*, cf. [Ga] (p.177). Then, Poreda's theorem yields (2). (ii) This particular argument does not directly extend to multiply connected domains, the focus of the Globevnik's paper [Gl2]. There, $\Delta \arg dz = 2 - k$, k being the number of the boundary components, and the latter number is ≤ 0 for all $k \geq 2$.

The author gratefully acknowledges support by the National Science Foundation.

DMITRY KHAVINSON

References

- [Du] P. Duren, Theory of H^p Spaces, Academic Press, 1970.
- [Ga] J. Garnett, Bounded Analytic Functions, Academic Press, 1983.
- [G11] J. Globevnik, Holomorphic extendibility and the argument principle, to appear in Complex Analysis and Dynamical Systems II, Proceedings of a conference held in honor of Professor Lawrence Zalcman's sixtieth birthday in Naharia, Israel, June 9-12,2003, Contemp. Math. [http://arxiv.org/abs/math/math.CV/0403446].
- [Gl2] J. Globevnik, The argument principle and holomorphic extendibility, J. d'Analyse, to appear [http://arxiv.org/abs/math/math.CVCV/0405409].
- [Kh] S.Ya. Khavinson, Two papers on extremal problems in complex analysis, AMS Translations, ser. 2, 1986, v. 129, 1-114

Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas72701

 $E\text{-}mail \ address: \texttt{dmitry@uark.edu}$