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Abstract. We investigate a problem posed by L. Hauswirth, F. Hélein, and F.

Pacard [10], namely, to characterize all the domains in the plane that admit a

“roof function”, i.e., a positive harmonic function which solves simultaneously
a Dirichlet problem with null boundary data, and a Neumann problem with

constant boundary data. As they suggested, we show, under some a priori

assumptions, that there are only three exceptional domains: the exterior of a
disk, a halfplane, and a nontrivial example found in [10] that is the image of

the strip |=ζ| < π/2 under ζ → ζ+sinh(ζ). We show however that one cannot

obtain any axially symmetric analogues of this example in R4.

1. Introduction

In [10], the authors have posed the following problem: find a smooth bounded
domain Ω in a Riemannian manifold Mg with metric g, such that the first eigen-
value λ1 of the Laplace-Beltrami operator on Ω has a corresponding real, positive
eigenfunction u1 satisfying u1 = 0, ∂u1

∂n = 1 on the boundary of Ω. Any such domain
is called extremal because it provides a local minimum for the first eigenvalue λ1

of the Laplace-Beltrami operator, under the constraint of fixed total volume of Ω
(see [10] and references therein).

In special cases one can find a sequence of extremal domains {Ωt} with increasing
volumes, such that the limit domain Ω = Ωt→∞ is unbounded, and its first eigen-
value vanishes as t→∞. This limit extremal domain is then called exceptional, and
the corresponding limit function (u1,t)t→∞ → u is a positive, harmonic function on
Ω which solves simultaneously the overdetermined boundary value problem with
null Dirichlet data and constant Neumann data.

The problem of finding exceptional domains in Rn and their corresponding func-
tions u (called “roof” functions by the authors of [10]) is nontrivial as a problem of
potential theory. There is no obvious variational principle to use, on the one hand
because Ω is unbounded (so the Dirichlet energy of u [2, Ch. 1] will diverge), and, on
the other hand, because the constant Neumann data constraint is not conformally
invariant.

In the absence of a suitable variational formulation, we may interpret the scaling
t → ∞ described above as a dynamical process, in which the pair (Ωt, ut) evolves
so that the limit t→∞ solves the overdetermined problem. In other words, we can
turn this observation into a constructive method for finding (building) exceptional
domains. In order to do this, it is helpful to note that, upon compactification of the
boundary ∂Ω (with metric dσ2), the pair (Ω, u) with flat metric becomes conformal
to the half-cylinder N := R+ × ∂Ω, with metric

ds2 = e−2u(du2 + dσ2).
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Under this reformulation, scaling of (Ωt, ut)t→∞ becomes equivalent to scaling of the
metric structure given above, defined over the fixed space N . This is reminiscent of
the Ricci flow, in which the metric structure g evolves with respect to a deformation
parameter t ∈ R according to the equation

dgij
dt

= −2Rij ,

with the right side of the equation given by the covariant Ricci tensor. It is known
[21] that for the case of a two-dimensional manifold, with metric given by ds2 =
e−2u(dx2 + dy2), the Ricci flow equations reduce to a single nonlinear equation

∂u

∂t
= ∇2

gu

(since in two dimensions the Riemann tensor has only one independent component).
This is a heat equation with the generator given by the Laplace-Beltrami operator
corresponding to the metric ds2. Therefore, if there is a stationary solution ∂u

∂t → 0
as t → ∞, it will correspond to the scaling of the first eigenvalue λ1(t) → 0 and,
by conformally mapping back N using the solution u(t → ∞), we will obtain the
solution (Ω, u).

In other words, we can summarize this constructive method for finding excep-
tional domains in R2 as follows: starting from a 2-dimensional Riemannian manifold
with finite volume and metric encoded through the positive real function u, and
boundary set defined via u = 0, consider the time evolution given by the Ricci flow,
without volume renormalization. Then [21] the manifold will remain Riemannian
at all times, and in the t → ∞ limit the function u will become a solution of the
nonlinear Laplace-Beltrami equation. Furthermore, if u remains finite everywhere
in the domain, then it is harmonic and satisfies both Dirichlet and Neumann con-
ditions at all finite boundary components, so it is a solution for the overdetermined
potential problem. Considered together with the (boundary) point at infinity, the
manifold is equivalent [16] to a pseudosphere (flat everywhere except at the infinity
point, with overall positive curvature). (We wish to emphasize that there is no
reason to assume that such constructive methods would be exhaustive.)

Thus, so motivated, it is natural to try to characterize exceptional domains in flat
Euclidean spaces. The authors in [10] suggested that in two dimensions there are
only three examples: a disk, a halfplane, and a nontrivial example obtained as the
image of the strip |=ζ| ≤ π/2 under the mapping ζ → ζ + sinh(ζ). They posed as
an open problem to determine if these are the only examples [10, Section 7]. (They
gave some evidence by characterizing the halfplane under a global assumption on
the gradient of the roof function [10, Prop. 6.1].) They also posed the problem
of finding nontrivial examples in higher dimensions and suggested the possibility
of axially symmetric examples similar to the nontrivial example in the plane [10,
Remark 2.1].

We address both of these problems. The paper is organized as follows. In
Section 2, we review the theory of Hardy spaces in order to address a subtlety
that arises in connection with the regularity of the boundary of an exceptional
domain. In Section 3, we characterize exteriors of disks as being the only exceptional
domain whose complement is bounded and connected. In Section 4, we establish a
connection between the ”roof function” of an exceptional domain and the so-called
Schwarz function of its boundary. We use this to show that, under some smoothness
assumptions, the boundary can pass at most twice through infinity. In Section 5,
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we show that with some smoothness assumptions on the boundary, if an exceptional
domain is simply connected and the boundary passes once through infinity, then the
domain must be a halfplane. In Section 6, we similarly characterize the nontrivial
example found in [10, Section 2].

Sections 3 through 6 together show that with some assumptions on the topology,
the smoothness of the boundary, and its behavior at infinity, there are only three
exceptional domains: the exterior of a disk, a halfplane, and the image of the strip
|=ζ| ≤ π/2 under the conformal map ζ → ζ + sinh(ζ). Under these additional
assumptions, this confirms what was suggested in [10, Section 7].

In Section 7, we extend the result of Section 3 to higher dimensions. In Section
8, we show that the nontrivial example from Section 6 does not allow an extension
to axially symmetric domains in four dimensions, contrary to what was suggested
in [10, Remark 2.1] (and we conjecture that this example has no analogues in any
number of dimensions greater than two). In Section 9, we discuss an alternative
approach to the problems discussed in this paper.
Acknowledgement: The authors are indebted to Prof. Dimiter Vassilev for bring-
ing the article [10] to their attention. The two first named authors also gratefully
acknowledge partial support from the NSF under the grant DMS-0855597.

2. Preliminaries: Classical vs. Weak Solutions, Regularity of the
Boundary, Hardy Spaces

From the rigidity of the Cauchy problem, one might expect to obtain, “for
free”, regularity of the boundary of an exceptional domain (as is often the case
for solutions of free boundary problems). Unfortunately, the problem at hand is
complicated by a remarkable family of examples with rectifiable but non-smooth
boundaries, a.k.a. non-Smirnov domains - cf. [6, Ch. 10]. This results in adding a
Smirnov condition to the assumptions on the domains if we desire to consider ”weak
solutions”, i.e., harmonic ”roof functions” satisfying the Dirichlet and Neumann
boundary conditions almost everywhere with respect to the Lebesgue measure.

In order to address this subtlety, we first give some background from Hp theory
- cf. [6] for details.

An analytic function f : D→ C is said to belong to the Hardy class Hp, 0 < p <
∞, if the integrals: ∫ 2π

0

|f(reiθ)|pdθ

remain bounded as r → 1.
Recall that a Blaschke product is a function of the form

B(z) = zm
∏
n

|an|
an

an − z
1− anz

,

where m is a nonnegative integer and
∑

(1 − |an|) < ∞. The latter condition
ensures convergence of the product (See Theorem 2.4 in [6]).

A function analytic in D is called an inner function if its modulus is bounded by
1 and its modulus has radial limit 1 almost everywhere on the boundary. If S(z) is
an inner function without zeros, then S(z) is called a singular inner function.

An outer function for the class Hp is a function of the form

F (z) = eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
logψ(t)dt

}
,
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where γ is a real number, ψ(t) ≥ 0, logψ(t) ∈ L1, and ψ(t) ∈ Lp.
The following theorem [6, Ch. 2, Ch. 5] (also cf. [9]) provides the parametriza-

tion of functions in Hardy classes by their zero sets, associated singular measures,
and moduli of their boundary values.

Theorem 2.1. Every function f(z) of class Hp (p > 0) has a unique (up to a
unimodular constant factor) factorization of the form f(z) = B(z)S(z)F (z), where
B(z) is a Blaschke product, S(z) is a singular inner function, and F (z) is an outer
function for the class Hp.

Suppose Ω is a Jordan domain with rectifiable boundary and f : D → Ω is a
conformal map. Then f ′ ∈ H1 by Theorem 3.12 in [6]. By Theorem 2.1, f ′ has
a canonical factorization f ′(z) = B(z)S(z)F (z), and since f is a conformal map
f ′ does not vanish, so f ′(z) = S(z)F (z). Then Ω is called a Smirnov domain
if S(z) ≡ 1 so that f ′(z) = F (z) is purely an outer function. This definition is
independent of the choice of conformal map.

There are examples of non-Smirnov domains with, as above, f ′(z) = S(z)F (z),
but now F (z) ≡ 1 and the singular inner function S(z) is not constant. Such
examples were first constructed by M. Keldysh and M. Lavrentiev [13] using com-
plicated geometric arguments. Their existence was somewhat demystified by an
analytic proof provided by P. Duren, H. S. Shapiro, and A. L. Shields [7]. Like the
disk, such a domain has harmonic measure proportional to arc-length. Mapping by
z → 1

z gives an example of an exceptional domain where the roof function u is the
Green’s function with singularity at infinity. This is a weak solution satisfying the
boundary conditions almost everywhere.

If we require u to be a “classical solution” that satisfies the boundary condition
everywhere (and not just almost everywhere), then non-Smirnov domains are ruled
out. Moreover, real-analyticity of the boundary then follows automatically. To be
precise, we have the following Lemma.

Lemma 2.2. If Ω ⊂ R2 is exceptional and the roof function u is a “classical
solution” in C1(Ω), then ∂Ω is locally real-analytic.

Proof. The analytic completion f(z) = u + iv (possibly multivalued) maps Ω into
the right halfplane, since u is positive. The Neumann condition for u implies that
|f ′(z)| = 1 on ∂Ω. Also, u ∈ C1(Ω) implies that f ′ ∈ C(Ω).

Choose a point z0 ∈ ∂Ω, and let ζ0 = f(z0). Let g(ζ) = f−1(ζ) denote the

local inverse of f(z). Choose a neighborhood U of ζ and let F := U ∩ {<(ζ) ≥ 0}.
Choose U small enough so that g ∈ C(F ).

Since |g′(ζ)| = 1 on ∂Ω, we can also choose U small enough that g′ does not
vanish in F . This implies that h(ζ) = Log(g′(ζ)) is analytic in the interior of
F and continuous in F . We have <{h(ζ)} vanishes on the imaginary axis, since
|g′(ζ)| = 1 there. Thus h(ζ) extends to a neighborhood of ζ0 by the Schwarz
reflection principle. This allows us to extend g′(z) and therefore g(z) and f(z)
extend analytically across z0, since u := <f = 0 on ∂Ω and |∇u| = 1 on ∂Ω near
z0. The lemma is proved.

�

Corollary 2.3. If ∂Ω is C2-smooth and Ω is exceptional then ∂Ω is locally real-
analytic.
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Proof. C2-smoothness of ∂Ω implies that u is in C1(Ω). It remains now to refer to
Lemma 2.2. �

Using Kellogg’s theorem on regularity of conformal maps up to the boundary,
cf. [17, Ch. 3], one easily extends the above corollary to C1,α, α > 0, boundaries
and even merely to C1 boundaries. We shall not pursue these details here. It
would be interesting to find sharp necessary and sufficient conditions for the a
priori regularity of the boundary that would guarantee the conclusion of Corollary
2.3. As we have mentioned in the beginning of this section, it is necessary to assume
that the domain is Smirnov, but it is not at all obvious that this is indeed sufficient
- cf. a related discussion in [5] regarding nonconstant functions of class Ep with
real boundary values.
Ansatz: In order to streamline and clarify the arguments we shall always assume
that the roof function is a classical solution so that Lemma 2.2 applies. Thus, from
now on we include the assumption that u is a classical solution in the definition of an
exceptional domain. However, for two of the three exceptional domains (exteriors of
disks and halfplanes) it is possible to relax the definition to allow weak solutions and
extend the results merely adding the assumption that the domains are Smirnov. In
these cases we indicate the appropriate changes in the remarks following the proof.

3. The Case When Infinity is an Isolated Boundary Point

Theorem 3.1. Suppose Ω is an exceptional domain whose complement C \ Ω is
bounded and connected. Then Ω is the exterior of a disk.

Remark. (i) The theorem is still true if the definition of exceptional domain is
relaxed to allow the roof function to be a weak solution satisfying the boundary
conditions a.e., but as discussed in Section 2 it is then necessary to assume that
the inversion of Ω by z → 1/z satisfies the Smirnov condition (where, without loss
of generality, the origin is not in Ω). For details, see the comments after the proof
of the theorem.

(ii) We have been unable to drop the assumption that the complement is con-
nected.

Proof. Let u be a roof function for Ω. Positivity of u implies, by Bôcher’s Theorem
[3, Ch. 3], u(z) = u0(z) + C log |z| for some constant C, where u0(z) is harmonic
in Ω ∪ {∞}. We may assume that C = 1 (multiply u(z) by 1/C, if necessary),
so the harmonic conjugate v(z) has period 2π around ∂Ω. Then define f(z) =
u(z) + iv(z) = f0(z) + Log(z), where f0(z) is analytic in Ω ∪ {∞}. Note that (for
0 ∈ C \ Ω) f ′(z) = f ′0(z) + 1

z is then analytic in Ω ∪ {∞}.
Let g(z) = exp{f(z)}. We have

(3.1) g′(z) = f ′(z) exp{f(z)}.

First notice from this equation that g′(z) = zf ′(z) exp{f0(z)} which implies that
g′(z) is analytic in Ω ∪ {∞}. Indeed, ∞ is a removable singularity for zf ′(z) by
virtue of the fact that |f ′(z)| = O( 1

|z| ).

Let Γ := ∂Ω \ {∞} denote the finite part of the boundary of Ω. The Dirichlet
data for u implies that | exp{f(z)}| = exp{<f(z)} = 1 on Γ. The Neumann data
for u and the Cauchy-Riemann equations imply |f ′(z)| = 1 on Γ. Thus, on Γ, Eq.
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(3.1) gives |g′(z)| = 1. We analyze |g′(z)| near infinity by inserting f ′(z) = f ′0(z)+ 1
z

into Eq. (3.1):

(3.2) g′(z) =

(
f ′0(z) +

1

z

)
z exp{f0(z)}.

As z → ∞, | exp{f0(z)}| is bounded and |f ′0(z)| = O( 1
|z|2 ), so that |g′(z)| ≈

exp{<f0(z)} → 1.
Now |g′(z)| = 1 on the finite boundary of Ω and at ∞. Moreover, log |g′(z)| is

harmonic in Ω∪{∞}, since g′(z) is free of zeros. To see why g′(z) does not vanish,
notice that g′(z0) = 0 implies (by (3.1) evaluated at z0) that f ′(z0) = 0 which
implies that z0 is a critical point of u. But u is Green’s function for Ω ∪ {∞} with
the pole at ∞, so the number of critical points equals the Betti number (see [9])
which is zero in this case, since Ω ∪ {∞} is simply connected.

By the maximum principle, log |g′(z)| = 0 is constant. Therefore g′(z) = eiα is
a unimodular constant, and g(z) = eiαz + C.

Now u(z) = log |eiαz + C|, and thus Ω is the exterior of a disk. �

Let us now show how to adjust the proof to extend the result to allow weak
solutions in the definition. Thus, assume merely in the hypothesis that the inversion
of Ω is a Smirnov domain. In that case, we can no longer use the maximum principle,
since |g′(z)| = 1 only holds a.e. Instead, we assert that 1/g(z) is still a conformal
map to the disk, and taking the reciprocal of the inverse gives a conformal map h(ζ)
from the disk to the inversion of Ω, with |h′(ζ)| = 1 a.e. on ∂D. From the Smirnov
condition we see that h′(ζ) is an outer function. Therefore, by the representation
for outer functions described in Section 2, the boundary values |h′(ζ)| = 1 a.e.
determine h′(ζ) is a unimodular constant.

4. The Schwarz Function of an Exceptional Domain

The Schwarz function of a real-analytic curve Γ is the (unique and guaranteed
to exist near Γ) complex-analytic function that coincides with z̄ on Γ.

We recall two basic facts needed in the proof of the next proposition.
(i): On Γ, |S′(z)| = 1.

(ii): The complex conjugate of
√
−S′(z) is normal to Γ.

Statement (i) follows from the chain rule and the fact that the complex conjugate

of the Schwarz function, S(z), is an involution (see [4, Ch. 7]). Statement (ii)
follows from the formula for the complex unit tangent vector T (z) = dz

ds = 1√
S′(z)

expressing the derivative of z with respect to the arc-length along Γ (see again [4,
Ch. 7]).

Proposition 4.1. If Ω is an exceptional domain, then Γ = ∂Ω is locally analytic,
and the z-derivative of the roof function is given by uz(z) = c

√
−S′(z), where c

is a real constant and S(z) is the Schwarz function of ∂Ω. In particular, S′(z) is
analytic throughout Ω.

Remark: The sign of the constant c depends on the orientation of the boundary.

Proof. Since Γ is real-analytic by Lemma 2.2, it has a Schwarz function S(z). The
complex conjugate of uz is normal to Γ (since u has zero Dirichlet data). In light

of the constant Neumann data, we then have |uz(z)| = 1
2 |ux − iuy| = 1

2

√
u2
x + u2

y
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is constant on Γ. This, along with the statements (i) and (ii) above, shows that

on Γ the vectors uz(z) and
√
−S′(z) are parallel and each have constant length.

Therefore, for some real constant c, the equation uz(z) = c
√
−S′(z) holds on Γ.

But since uz and
√
−S′(z) are both analytic, the equation is true everywhere that

either side is defined. In particular, this guarantees analytic continuation of S′(z)
throughout Ω. �

Corollary 4.2. Suppose infinity is a point on the boundary of Ω, and the tangent
vector on each component of the boundary smoothly approaches a limit at infin-
ity. Then, the angle at infinity between consecutive boundary components is π. In
particular, there can be at most two boundary components passing through infinity.

Proof. The derivative of the Schwarz functions of two arcs meeting at an angle
different from 0, π, or 2π clash and have a branch cut singularity along an arc
that propagates into the domain from the vertex. To see why this is the case,
note that the Schwarz function of an arc can be approximated near a point by the
Schwarz function of the tangent line (guaranteed to exist by the assumption that
the tangent vector smoothly approaches a limit). Thus, to first order, the jump
along the branch cut is linear, so to zeroth order, the jump of S′ is determined by
the slopes of the tangent lines.

If the angle is 0 or 2π then the tangent line is the same for each arc, but the
orientation changes, so there is still a jump due to the sign change. In the case
of an angle of π both the tangent line and the orientation are unchanged. Thus,
for any angle other than π, S′(z) has a jump across a branch cut between the
two boundary boundary components, contradicting the condition that u is a global
solution throughout Ω. �

5. The Case When the Boundary is Locally Jordan at Infinity

In this Section, we characterize the halfplane as the only simply connected ex-
ceptional domain having infinity as a single point on the boundary. This extends
[10, Prop. 6.1] by removing the additional hypothesis ∂xu > 0 in [10] on the roof
function in Ω.

Theorem 5.1. Suppose ∂Ω is a curve that passes once through infinity, where it
is locally Jordan. If Ω is exceptional, then Ω is a halfplane.

Remark. (i) As with Theorem 3.1, the theorem is still true if the definition of ex-
ceptional domain is relaxed to allow the roof function to be a weak solution, but it
is then necessary to assume that the inversion of Ω by z → 1/z is Smirnov (where,
without loss of generality, the closure of Ω does not contain the origin). In that
case, the same proof goes through, except the assertion below that Ω is a Smirnov
domain now holds because of our assumption.

(ii) Implicit in the boundary condition is the assumption that Ω is simply con-
nected. We have not been able to drop this condition.

Proof. Let u be a roof function for Ω, and f(z) = u + iv its analytic completion.
Since u > 0, f(z) takes Ω into the right halfplane H. By Lemma 2.2, the boundary
of Ω is locally real-analytic.

Let Ω̂ be the image of Ω under z → 1/z, where without loss of generality the
closure of Ω does not contain the origin.
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Let h(ζ) be a conformal map from the disk to Ω̂ so that h(1) = 0. So f( 1
h(ζ) )

takes the disk D into the right halfplane H. We may assume that f( 1
h(0) ) = 1. By

Herglotz’s Theorem (see [11, Ch. 3], [6, Ch. 1]),

f

(
1

h(ζ)

)
=

∫
∂D

eiθ + ζ

eiθ − ζ
dµ(θ)

for some finite positive measure µ on ∂D.
Since f(1/h(ζ)) is continuous up to the boundary of D everywhere except at

ζ = 1, and <{f(1/h(ζ)} = 0 on ∂D, then dµ = 0 except at θ = 0, so it is an atomic
measure. Thus,

(5.1) f

(
1

h(ζ)

)
= C

1 + ζ

1− ζ
.

Next we show that f ′(1/h(ζ)) is an outer function, as defined in Section 2. In
order to avoid confusion, we emphasize that we are considering the pullback of f ′(z)
by 1/h(ζ).

Differentiating (5.1), f ′(1/h(ζ))−h
′(ζ)

h(ζ)2 = −2C
(1−ζ)2 . So,

(5.2) f ′(1/h(ζ)) = 2C
h(ζ)2

(1− ζ)2h′(ζ)

Since the boundary of Ω̂ is C1-smooth (in fact, real-analytic), Ω̂ is Smirnov [6,
Ch. 10]. Therefore, h′(ζ) is an outer function. Since h(ζ) is a conformal map to a
bounded domain not containing 0, h(ζ) is an outer function. Finally, (1− ζ)2 is an
outer function. Thus, (5.2) is a quotient of products of outer functions which must
be outer.

Since f ′(1/h(ζ)) is an outer function, it is the exponential of the Poisson integral
of the log of its own modulus. But |f ′(1/h(ζ))| = 1 almost everywhere on ∂D.
Hence, f ′(1/h(ζ)) is a unimodular constant. Therefore, Ω is a halfplane. �

6. The Case When Infinity is a Double Point of the Boundary

Theorem 6.1. Suppose the boundary of Ω is a curve with a double point at infinity,
and the tangent vector smoothly approaches a limit on each side of this point. If Ω is
exceptional, then (up to Möbius transformations) Ω is the image of the strip |=ζ| ≤
π/2 under the conformal map g(ζ) = ζ + sinh(ζ), while the analytic completion of
the function u(g(ζ)) is the function f(g(ζ)) = cosh(ζ).

Remark: The exceptional domain Ω that is the image of the strip under the confor-
mal map ζ → ζ+sinh ζ is precisely the exceptional domain found by the authors in
[10]. Theorem 6.1 together with Theorems 3.1 and 5.1 and Corollary 4.2 show that
this Ω is, under an assumption on the topology of Ω and some mild smoothness
assumptions at∞, essentially the only nontrivial example of an exceptional domain
in R2.

Proof. We will use the same notation for the mapping from D into Ω as in Theorem
5.1. Starting from the formula which relates the tangent vector on ∂Ω and the
derivative of the analytic completion f of u(z),

τ(z) =
dz

ds
=
−i
f ′(z)

=
1√
S′(z)

,
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we obtain from the continuity of τ(z) through the double point at infinity (see
Figure 1), that ∮

∂Ω

d log f ′(z) = 2πi.

Note that continuity of τ(z) through the double point is guaranteed by Corollary
4.2. Since f ′(z) is analytic in Ω and, by our smoothness assumptions on ∂Ω, is
continuous up to Ω (at ∞ as well), we conclude that it is a single-cover from the
domain Ω to the unit disk, and that it has only one zero, at some point z0 ∈ Ω.
Up to a Möebius transformation, this point can be chosen such that f(z0) = 1.
Consider now the function defined on Ω, taking values in the unit disk D,

g(z) :=

√
f(z)− 1

f(z) + 1
,

which is also a univalent map from Ω into D, since f(z)−1
f(z)+1 is a double cover by argu-

ment principle, mapping each of the two boundary components shown in Figure 1
onto T. But then the ratio

r(z) ≡ f ′(z)

g(z)

has no zeros or poles in Ω and its modulus equals 1 on ∂Ω, so we conclude that
r(h(ζ)) is a (unimodular) constant. With no loss of generality, we can choose r = 1,
so we conclude that

(6.1) f ′ =

√
f − 1

f + 1
, z ∈ Ω.

The solution of this equation follows from the identity∫ √
f + 1

f − 1
df = z + C,

solved by the substitution f = cosh(ζ), z = ζ + sinh(ζ) (fixing the constant of
integration to equal zero). Now using the conditions

<f(z(ζ)) = 0 for ζ ∈ ∂Ω, and <f(z(ζ)) > 0 for ζ ∈ Ω,

and the identity < cosh(x+ iy) = cosh(x) cos(y), we find that the pre-image of the
domain in the ζ-plane is the strip |=ζ| ≤ π/2. Therefore, Ω can be described as
the image of the strip under the map z(ζ) = ζ + sinh(ζ).

�

Remark. (i) The differential equation (6.1) can be solved by a more general substi-
tution using Jacobi elliptic functions [1, p. 567, §16]: f(ζ, k) ≡ cos(θ)cn(ζ, k) +
sin(θ)sn(ζ, k) and z(ζ) = φ(ζ) + cos(θ)sn(ζ, k) − sin(θ)cn(ζ, k), where φ(ζ) =∫ ζ

dn(ξ, k)dξ and θ is an arbitrary phase, θ ∈ [0, 2π].
For a given value of the elliptic modulus k ∈ [0, 1], we define the corresponding

domain F through its fundamental periods T1(k) = 4F (π/2,
√

1− k2) and T2(k) =
4F (π/2, k), where F (π/2, k) = K(k) is the complete elliptic integral of the first
kind [1, p. 590, §17.3]:

K(k) ≡
∫ π/2

0

1√
1− k2 sin2(θ)

dθ
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Figure 1. Local geometry of the boundary Γ = ∂Ω near infinity,
for the case when supp (µ) in equation (9.1) consists of two points.

It diverges for k = 1 and equals π/2 for k = 0.
Then it is straightforward to check that (6.1) is satisfied by f(z), due to the

identity [1, p. 573, §16.9]:

1 = [−sn(z) cos(θ) + cn(z) sin(θ)]2 + [cn(z) cos(θ) + sn(z) sin(θ)]2.

Let γ be the pre-image of ∂Ω under z(ζ): it consists of two pieces γ±, γ− = −γ+,
dividing the fundamental domain F into three sub-domains. Denote the component
which contains the origin by D0, then since f(0) = 1, we conclude that <f(z) > 0
for z ∈ D0 \ γ±, and we have proven the following lemma.

Lemma 6.2. The exceptional domain Ω is the image of the domain D0(k) under
the map z(ζ) = φ(ζ) + cos(θ)sn(ζ, k)− sin(θ)cn(ζ, k).

(ii) The case discussed in the proof of the theorem corresponds to the degenerate
elliptic modulus k = 0. Then the domain F becomes the infinite strip

T1(0) = 4K(1)→∞, T2(0) = 4K(0) = 2π,

while the functions f, g become (using the fact that dn(z, 1) ≡ 1)

z(ζ) = ζ + sinh(ζ), f(z(ζ)) = cosh(ζ).

As noted before, the conditions <f(ζ)|γ± = 0 give the pre-image γ± := z−1(∂Ω) =
{=ζ = ±π2 }, and the pre-image of the domain, D0, becomes the strip |=ζ| ≤ π

2 .
(iii) The reparametrization invariance of the solution f(z) of (6.1) under rescaling

of the elliptic modulus k is indicative of a deeper invariance of the solution: as we
briefly discuss in the concluding remarks, all the specific solutions in C discussed
here are associated with fixed points in the moduli space of Riemann surfaces.
Returning to the case at hand, the domain D0(k) is the pre-image of the unit disk
under the map ζ(w) : F→ D,

ζ(w) =
sn(w, k)− i
sn(w, k) + i

, k ∈ [0, 1],

with the support of µ at points ζ± = ± 1−ik
1+ik . The case k → 0 corresponds to the

strip domain and to ζ± = ±1.
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7. An Extension of Theorem 3.1 to Higher Dimensions

In this section, we give a proof of Theorem 3.1 in higher dimensions. However,
since complex analytic methods are not available, we must impose higher regularity
assumptions on the boundary of Ω.

Theorem 7.1. Suppose Ω is an exceptional domain in Rn whose exterior is bounded
and connected. If ∂Ω is C2,α-smooth, α > 0, then ∂Ω is a sphere.

Proof. Let u be a roof function for Ω, and let v(s) = 1
|s|n−2 denote the Newtonian

kernel. Fix y ∈ Ω and take a small ball Bε centered at y. Take also a large ball BR
of radius R that containes both Bε and the complement of Ω.

Since u(x) and v(x− y) are harmonic in Ω \Bε, Green’s second identity gives

(7.1)

∫
∂BR+∂Ω−∂Bε

(v(x− y)∂nu(x)− u(x)∂nv(x− y)) dσx = 0.

Letting R→∞, we can drop the integration over ∂BR, since again by Bôcher’s
Theorem [3, Ch. 3], near infinity u(x) ≈ |x|2−n.

Since, u(x) = 0 on ∂Ω and ∂nu(x) = 1 on ∂Ω,

(7.2)

∫
∂Ω

v(x− y)dσx =

∫
∂Bε

(v(x− y)∂nu(x)− u(x)∂nv(x− y)) dσx.

Let U be the bounded domain such that Rn \ U = Ω. The outward normal for
∂U is opposite to that of ∂Ω, and since v(x− y) = 1

εn−2 on ∂Bε,

(7.3)

∫
∂U

v(x− y)dσx =

∫
∂Bε

(
− 1
εn−2 ∂nu(x) + u(x)∂nv(x− y)

)
dσx.

For the first term on the right-hand-side, we have∫
∂Bε

1
εn−2 ∂nu(x)dσx =

∫
Bε

∆u(x)dV = 0.

So, ∫
∂U

v(x− y)dσx =

∫
∂Bε

u(x)∂nv(x− y)dσx = u(y).

So, u(y) is the single layer potential with charge density one on the surface ∂U .
The normal derivative of a single layer potential has a jump across the surface equal
to the charge density (e.g., see Lemma 1.3 in [8], or for a detailed exposition, see
Theorem VI, Sec. 5, Ch. VI in Kellogg’s classic [14]). In this case the charge
density is constant. Thus, the normal derivative into U of the single-layer potential
vanishes, so that the single-layer potential inside is constant.

If the single layer potential of a charge density is constant inside the domain,
then the charge density is proportional to the equilibrium measure (see [22, pp.
28, 48]). Thus, the equilibrium measure of U is proportional to surface measure.
Under the assumption that the boundary is C2,α, this implies that U is a ball by
W. Reichel’s proof of P. Gruber’s conjecture [18] (see also the discussion near the
end of the introduction in [8]).

�
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8. Nonexistence of a Higher-dimensional Analog of the cosh(z)
Example

The authors in [10] expressed a suspicion (see Remark 2.1 in [10]) that there ex-
ist n-dimensional, rotationally-symmetric examples similar to the two-dimensional
example {(x, y) ∈ R2 : |y| < π

2 + cosh(x)} that appeared in Section 6. We show,

perhaps surprisingly, that such an example does not exist in R4. Specifically, we
show that there does not exist an exceptional domain in R4 whose boundary is
generated by rotation about the x-axis of the (two-dimensional) graph of an even
function.

Theorem 8.1. There does not exist a rotationally-symmetric exceptional domain
Ω in R4 that contains its own axis of symmetry and whose boundary is obtained
by rotating the (two-dimensional) graph of an even real-analytic function about the
x-axis.

Remark. (i) Our proof will rely heavily on two tricks, one exploiting the assump-
tion that n = 4, and the other using the assumption that the generating curve
is symmetric. However, we strongly suspect a more general non-existence of such
examples in Rn for any n > 2. Therefore, we conjecture the following.

Conjecture 8.2. For n > 2, there does not exist an axially symmetric, exceptional
domain in Rn that contains its own axis of symmetry.

(ii) The assumption that the domain contains its axis of symmetry rules out
the exteriors of balls and circular (or spherical) cylinders, respectively (which are
clearly exceptional domains as was noted in [10]).

Proof of Theorem 8.1. Suppose that Ω is such a domain in R4. Namely, the bound-
ary ∂Ω is obtained from rotation of γ := {(x, y) ∈ R2 : y = g(x)}, with g(−x) =
g(x). i.e., the boundary of Ω is given by

{(x1, x2, x3, x4) ∈ R4 :
√
x2

2 + x2
3 + x2

4 = g(x1)}.

Considering the boundary data, the rotational symmetry of the domain will be
passed to the roof function, so that, abusing notation, we can write

u(x1, x2, x3, x4) = u(x, y).

For clarity, we emphasize that the x-axis corresponds to the axis of symmetry and
the y-coordinate gives the distance from the axis of symmetry.

For axially symmetric potentials v in Rn the cylindrical reduction of Laplace’s
equation is:

∆(x,y)v +
(n− 2)vy

y
= 0,

where x = x1 and y =
√
x2

2 + ...+ x2
n. Moreover, in the case we are considering,

when n = 4, u satisfies the equation ∆u +
2uy
y = 0, if and only if yu(x, y) is a

harmonic function of two variables x and y. Indeed,

∆(yu) = y∆u+ 2∇u · ∇y + u∆y = y∆u+ 2uy.

(The trick that reduces axially symmetric potentials in R4 to harmonic functions
in the meridian plane is well known, cf. [15] and [12].)

Since yu(x, y) is then harmonic in the unbounded two-dimensional domain D
bounded by γ and its reflection (which we denote by γ̄) with respect to the x-axis,
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this implies ∂
∂z (yu(x, y)) is analytic in the domain D, where as usual z = x + iy.

The Cauchy data (originally posed in R4) imply that uz = 1
2 (ux − iuy) coincides

with
√
−S′(z) on γ and γ̄. This implies that the analytic function

(8.1) W (z) := (yu)z =
−i
2
u+ yuz

coincides with z−S(z)
2i

√
−S′(z) on γ and γ̄. Since z−S(z)

2i

√
−S′(z) is analytic, this

actually gives a formula for W (z) valid throughout D:

(8.2) W (z) =
z − S(z)

2i

√
−S′(z).

Let f(ζ) be the conformal map from the strip Σ := {|=ζ| < 1
2} to D such that

f(0) = 0 and arg{f ′(0)} = 0. The two-fold symmetry of D implies that f(ζ) is an
odd function. Indeed, otherwise h(ζ) = −f(−ζ) gives another conformal map from
the strip Σ to D. But, h(0) = −f(0) = 0 and h′(0) = f ′(0) implies h = f , by the
uniqueness of the conformal map (up to choice of f(0) and argument of f ′(0)).

The Schwarz functions St, Sb of the top and bottom edges of the strip Σ are
St(ζ) = ζ− i, and Sb(ζ) = ζ+ i. In terms of the conformal map f(ζ), the pull-back
to the ζ-plane of the Schwarz functions S+ and S− of γ and γ̄ (resp.) satisfy (see
[4, Ch. 8, Eq. 8.7])

(8.3) S±(f(ζ)) = f(ζ ∓ i), and

(8.4) S′±(f(ζ)) =
f ′(ζ ∓ i)
f ′(ζ)

.

Substituting these into (8.2), we obtain two expressions for the pullback of W (z)
to the strip Σ:

(8.5)
f(ζ)− f(ζ ∓ i)

2i

√
−f
′(ζ ∓ i)
f ′(ζ)

Even though W (f(ζ)) is analytic throughout Σ, we caution that these two ex-
pressions (one expression for “+” and one for “−”) may only be valid near the
bottom and top sides (respectively) of the strip Σ.

Claim: The function W (f(ζ)) is odd.

Before proving the Claim, let us see how it is used to finish the proof of the
Theorem. The fact that W (f(ζ)) is odd implies W (0) = W (f(0)) = 0. By (8.1) we
then have that −i2 u + yuz vanishes at z = 0, which implies that u(0, 0) = 0. This
contradicts the positivity of u.

Proof of Claim. We wish to show that V (ζ) = W (f(ζ)) + W (f(−ζ)) vanishes
identically. Use each of the expressions in (8.5) above to represent W (f(ζ)) and
W (f(−ζ)), respectively.

(8.6) V (ζ) =
f(ζ)− f(ζ − i)

2i

√
−f
′(ζ − i)
f ′(ζ)

+
f(−ζ)− f(−ζ + i)

2i

√
−f
′(−ζ + i)

f ′(−ζ)
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We show that this formula vanishes where it is valid, which then implies that
V (ζ) vanishes identically throughout Σ. For this, we use the fact that f is odd and
consequently f ′ is even.

(8.7) V (ζ) =
f(ζ)− f(ζ − i)

2i

√
−f
′(ζ − i)
f ′(ζ)

+
−f(ζ) + f(ζ − i)

2i

√
−f
′(ζ − i)
f ′(ζ)

= 0.

This establishes the Claim. �

�

9. Concluding Remarks and Some Generalizing Conjectures

The problem investigated in this work seems to have a remarkably large number
of nontrivial connections with a variety of distinct open problems from different
areas of mathematics. Moreover, the exact solutions discussed above appear as
elementary realizations of a much more general result, as we describe in these
remarks. In order to elaborate on these generalizations, let us begin by noting that
(leaving aside the obvious generic solution for the exterior of the unit ball), all the
solutions found in the two-dimensional case (sections 5 and 6) can be expressed by
first writing down the general solution to the Dirichlet problem, and then imposing
the Neumann condition to functions in that class. Let h(ζ) be a conformal map
from the disk to Ω so that h−1(∞) = Sµ ⊂ T is the pre-image of the point at
infinity in Ω. (The reason for this notation will become clear when we realize Sµ
as the support of a measure µ.) Adding a complex constant if necessary, we may
assume that f(h(0)) > 0 is real. By the Herglotz Theorem (see [11, Ch. 3], [6, Ch.
1]), we can represent f(h(ζ)), which (being analytic in D with positive real part) is
in Carathéodory class, as

(9.1) f(h(ζ)) =

∫
T

eiθ + ζ

eiθ − ζ
dµ(θ),

for some finite positive measure µ on ∂D, µ ⊥ d`, so that µ > 0 on Sµ and zero
elsewhere on T. The solutions presented in sections 5 and 6 correspond, in turn, to
the measure µ having either a single atom of mass 1, or two atoms of equal masses
1/2, placed at diametrically opposite points on T.

Towards the end of the article [10], the authors seek to construct more general
solutions of this type, i.e. corresponding to discrete measures µ, supported at n
points on the unit circle, for n > 2. Not finding any example of this type, they
consequently pose the question whether such solutions can exist at all.

As we prove in the following, it is indeed impossible to have a solution of this
type with #(Sµ) = n > 2. Moreover we conjecture that it is impossible to find such
solutions for any singular, positive measure µ on T, if the cardinality of its support
(defined here as the set where µ is strictly non-zero) is larger than 2 (including the
case when µ is supported on a continuum). We then discuss how this result relates
to representations of Kleinian groups in the hyperbolic halfplane and to functional
determinants for the Laplace-Beltrami operator and trace-class Toeplitz operators.

9.1. The case of discrete measures supported at finitely many points. In
view of the argument of the preceding section, we consider only the case of solutions
given by the Poisson kernel with measures supported at finitely many points. (This
generalizes the case described by Corollary 4.2 by removing the assumption that
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the tangent vector has a limit when approaching the point at infinity, and retaining
only the condition that the number of boundary components is finite.)

Theorem 9.1. Suppose infinity is a non-isolated boundary point of a simply con-
nected exceptional domain Ω, then the analytic completion f of the function u is a
Schwarz integral,

f(h(z)) =

∫
T

eiθ + z

eiθ − z
dµ(θ),

where h(z) is the conformal map from the unit disk D to Ω, and µ is a finite
positive measure on T, singular with respect to the arc-length measure. Suppose
card({z ∈ T : µ(z) > 0}) = n is finite. Then n = 1 or 2.

Proof. As before, let h(z) be a conformal map from the disk to Ω so that h−1(∞) =
Sµ, where Sµ ≡ {z ∈ T, µ(z) > 0} has zero Lebesgue measure. By the Herglotz
Theorem (see [11, Ch. 3], [6, Ch. 1]), we can represent f(h(z)), which is in
Carathéodory class, as

f(h(z)) =

∫
T

eiθ + z

eiθ − z
dµ(θ),

and µ is a finite positive measure with support on ∂D, µ ⊥ d`, µ(T) = 1.
Let now n = card(Sµ) ∈ N, so that Sµ consists of a finite number of isolated

points, Sµ = {z1, z2, . . . , zn}. The arcs defined by consecutive endpoints {zk, zk+1},
mod (n), have as images under h(z) the corresponding boundary arcs γk, ∪nk=1γk =
∂Ω. Noting that on each arc γk ∈ ∂Ω, f(ζ) = i`(ζ), where `(ζ) denotes arc-
length, it follows that we can define an isometry taking every arc γk into γk+1,
mod (n), since each γk is isometric to R. The pull-back of this transformation is
an orientation-preserving diffeomorphism of T, which we denote by ψ(z), with the
obvious property ψn(z) = z, for all z ∈ T. Thus, it is simply a global rotation by
2π/n.

Therefore, arg(zk) = 2π
n +arg(zk−1), k = 1, 2, . . . , n. The diffeomorphism ψ(z) =

e
2πi
n z takes Sµ into itself, which means that f(h(z)) is invariant under composition

with ψ, so f(h(z)) has a regular expansion in powers of zn, f(h(z)) = F (zn), for
some function F analytic in the unit disk. We also have that [f ′(ζ)]2 = −S′(ζ) on
∂Ω, and by the invariance under isometry of the Schwarz function, [f ′(h(z))]2 must
also be invariant under composition with ψ. But then [f ′(h(z))]2 = [nzn−1F ′(zn)]2

has a regular expansion as a function of zn, so that there is some integer k ≥ 0
such that

2(n− 1) = kn⇒ n = 1, k = 0 or n = 2, k = 1.

It follows that Sµ = {z ∈ T|µ(z) 6= 0} can consist of either one or two atoms. In
the case n = 2, invariance under rotation by π implies that they have an argument
difference equal to π, and the theorem is proved. �

Remark. In fact, a stronger result seems to hold, namely the conclusion of the
previous theorem remains valid even in the case of the measure µ having support
of arbitrary cardinality.

While our investigations convincingly point towards this conclusion, the methods
employed in a tentative proof are so different from the rest of this paper, and the
areas where the result is relevant are so diverse, that we must content ourselves
with merely formulating the result as a conjecture here; a detailed analysis will
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be provided in a future publication. Only some general comments regarding these
aspects are presented in the next section.

Theorems 3.1, 5.1, and 6.1 make certain a priori assumptions on the boundary of
an exceptional domain. However, we believe that these hypotheses are redundant
and conjecture (generalizing a similar claim first made in [10]) the following.

Conjecture 9.2. The only exceptional domains in R2 are the exterior of the unit
disk, the halfplane, and the domain described in Theorem 6.1.

9.2. Further connections and possible generalizations. As discussed in the
Introduction, the problem considered here is nontrivially different from all the “clas-
sical” variations: one must find the pair (Ω, u), not just one of elements, so it cannot
be formulated as a Caldèron problem; the domain Ω is unbounded, so there is no
variational “Dirichlet principle” in the sense of Riemann and Weierstrass; and the
dynamics formulation through the Ricci flow leads to a nonlinear heat equation
reducible to the Liouville equation, for which no general solution is known.

We offer here two approaches currently used to prove Conjecture 9.2 rigorously:

• Given an exceptional domain Ω, we can search among the functions in the
Carathéodory class the one with minimum energy on the unit circle. But
since f is analytic in D and its real part vanishes a.e. on T, the only non-
zero contribution to the energy comes from the double-layer potential (P.V.
denotes principal value)

W [µ] = P.V.

∮ ∮
1

sin2( θ−φ2 )
dµ(θ)dµ(φ),

subject to the linear constraint
∮
dµ(θ) = 1. In other words, we are search-

ing for the extremum of a quadratic form whose kernel is the positive-
definite Toeplitz kernel K(θ, φ) = sin−2( θ−φ2 ), with a uniform linear con-
straint (thus, extremum can only be a minimum). An elementary argument
shows that the minimizing measure is equidistributed on the circle. Thus,
the minimizing measure is either discrete uniform with n atoms of equal
masses 1/n, or the absolutely continuous uniform distribution on ∂D. The
latter contradicts the assumption µ ⊥ d`, so card(Sµ) ∈ N and Theorem 9.1
applies.
• The connection to the Schwarz function in Section 4 reveals that excep-

tional domains are arclength null-quadrature domains. That is, for any
function f , say analytic in Ω, continous in Ω, integrable over the bound-
ary, and vanishing at infinity, we have

∫
∂Ω
fds = 0. Indeed,

∫
∂Ω
fds =∫

∂Ω
f(z) 1

T (z)T (z)ds =
∫
∂Ω
f
√
S′(z)dz, where T (z) is the complex unit tan-

gent vector (see Section 4), and now the contour in this last integral can
be deformed to infinity in order to see that the integral vanishes. Null-
quadrature domains have only been previously studied in the case of area
measure. They were characterized in the plane by M. Sakai [19]. Our cur-
rent study can be seen as a counterpart in the setting of null-quadrature
domains for arclength (but we emphasize that in Sakai’s study, he made no
assumptions on the regularity or topology of the domain).
• Finally, a comment regarding the natural generalization of the problem

to the case where the constant Neumann data can be different on differ-
ent boundary components, in the context of symmetry considerations. Let
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again f(h(z)) be the analytic completion of a solution written in the form
of Thm. 9.1, and denote by G the group of transformations which leaves
supp(µ) invariant up to a global rotation. It follows that f is an automor-
phism of the quotient of the group of linear fractional transformations by
G, which can be in general a Kleinian group [16]. The limit set (accumu-
lation points of the orbits of the group) can be finite (in which case it can
consist of only 0, 1, or 2 points), or infinite. It is known ([2], Thm. 10.3.4.)
that the set of homeomorphic solutions for a quasilinear elliptic equation
of Laplace-Beltrami type forms a group only in the case of finite limit set
[2]. The Kleinian groups are called degenerate in this case, and they cor-
respond to either finite groups (with empty limit set), or the cyclic groups
(generated by one element, with limit set consisting of 1 or 2 points). These
correspond to the solutions described in the present paper (isolated point
at infinity, respectively simple and double boundary point at infinity).

Adopting this approach, our preliminary study of this general case (to be
presented in a forthcoming publication) seems to indicate that the excep-
tional domains and their corresponding harmonic functions (for generalized
constant Neumann data conditions) correspond to Kleinian groups gener-
ated from fundamental polygons with edges identified via homeomorphisms
reflecting the different values of Neumann data.
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