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Historic Development

Solving extremal problems has been one of the
major stimuli for progress in complex analysis.

Linear problems in Hardy type spaces

e H. A. Schwarz’' lemma

e C. Carathéodory-L. Fejér problem (coeffi-
cients of bounded analytic functions)

e E. Landau, S. Kakeya, F. Riesz, J. Doob,
H. Milloux, A.Denjoy..

e Use of duality in linear extremal problems
(S. Ya. Khavinson, also W. Rogosinski and
H. S. Shapiro, late 40s early 50s)



Common Wisdom

Theorem 1. (Metatheorem) Solutions to “good”
extremal problems are MUCH “better” than a
generic representative of the class for which
the problem is posed.

TRUE even in Hardy-Orlicz spaces. (V.
Terpigoreva, '1960s).



Linear Problems in Bergman Spaces

e V. Ryabych, early 60s

o K. Osipenko and M. Stessin, 1991

e Contractive divisors in Bergman spaces (H.
Hedenmalm, then P. Duren, D. Khavinson,
H. S. Shapiro, C. Sundberg), 90s

e D. Khavinson and M. Stessin, D. Vukotic,
General linear extremal problems in Bergman
spaces, 1995-96.

In this talk, I will focus on nonlinear problems,
specifically, on problems for non-vanishing func-
tions. This talk is based on a recent survey
paper with C. Beneteau.



Hardy Spaces

I. General Theory

Definition 1. For p > O,

HY = {f:fis ana/ytic and non-vanishing in D,

5= sup o [ I GreyPa < 1),

General (‘““good” ) extremal problem: Given

TO, T1y---5Tm € C, find
m - £(k)(0
sup {Re ) _ Tk |( )} (1)
feEH; k=0 k!

and identify the corresponding extremal func-
tion(s).



Convex analysis approach (S. Ya. Khavin-
son - V. M. Terpigoreva, 1960s).
(Some of the results (not the methods) were

re-discovered in '70s-'80s by J. Hummel, S.
Scheinberg, T. Suffridge, L. Zalcman).

Define the set
Am(HS) = {E:< C0,C1,---,Cm > € (Cm—l_l :

()= epf+... e HPY.
k=0

Notice that if
™m
()= > c}';zk + ...
k=0
is a solution to a problem of type (1) then

— * % *
c =< Cpy,C1y---,Cmp >

is a boundary point of A, (Hy).



Obstacle: A, (HJ) = An(Hg) U {0} is not a
convex set!

Natural step: Write f(z) = exp(qg(z)) and let
Q) be the class of logarithms g(z) of functions
in HY.

Am(Qp), the set of the first m + 1 coefficients
of all elements of Q;, IS a convex set.

Am(Hp) ~ Am(Q})

Finite boundary points of A, (Q)) correspond
to non-zero boundary points of Ay, (HY).

Goal: Study the boundary points of Am(Qp).



et
A =<a0,a7,--.,0y, >

be a boundary point of Amn(Q}).

There exists a supporting hyperplane passing
through that point: that is, there exist con-

stants d € R and v9,71,...,7m € C such that

m
Re( ) vpag) <d
k=0

for every @ € Am(Qyp) and

m
Re( )  paj) =d.
k=0

Problem restated: Find, given vg,v1,...,7m €
C fixed,

Xy = sup{Re( Y wag) 1 a(z) = > ap2" € Q5.
k=0 k=0 )



Theorem 2. (S. Ya. Khavinson, 1960). Given
a non-zero boundary point

¢t =< c¢H,c] ... 0 >E Am(Hg),

there exists a unique function f € H{ such that

f(z) = XM jci2® +.... This function has the
form
m _ 2 Al —|— <
f(z)=C J] @ —agz)rexp(— > X ),
k=1 |a |:1 ol — =
k
(3)

where C > 0 is a constant such that

LT st =1
- e p— ;
21 JO

|04k| <1, and A\ > 0.



Discussion

e The extremal function f(z) has represen-
tation

1 et? + z

= [T,
P <2p7r /I‘ etf — 2 i )>

where measure du = log|f(e'?)|d0+dv, dv1db

and dv < 0.

e 11 IS extremal in finding for a nonegative
trigonometric polynomial P of degree m
the maximum of

Pdpu,
| Pau

over a convex subset of measures p with
non-positive singular part and a priori bound

10
on the Hardy norm ||exp (% I ﬂdﬂ(9)> | 772

etd 5



Conclusions

e It is not difficult to see that the maximum
Is determined by the absolutely continuous
part of the measure u and is attained for
log|f| = Clog |P|.

e Finally, not to violate the maximum of

Pdp,
| Pau

the singular part v of the measure y must

be supported exclusively by the zeros of P
on T.
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II. Some Examples
Problem. Find

(m) (0o
sup {Ref (0)
fEH™>® m!

N flloo <1, f non-vanishing in D}.

What’s known from the previous theorem:
f*(z) is a singular function with at most m
point masses on the circle.

Conjecture 1. (Krzyz)

fmm>

I flloo <1, f;so/nm}__

(Open for m > 5') C. Horowitz (1978) showed
that |f(mT)!(O)| < 1 for all m!
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Problem. Find, for a positive integer m,

(m)
sup {Ref (0)
feH? m!

}- (4)

What’s known from the previous theorem:

F¥(2) = (pm(2))?/PS(2),

where py, is a polynomial of degree m and S(z)
IS a singular function with atomic masses at at
most m points on the circle (which can only
occur where the polynomial has roots on the
circle).

12



Hummel-Scheinberg-Zalcman conjecture.

Conjecture 2. (Hummel-Scheinberg-Zalcman)

(m) 1
sup {Ref I(O)} — (g> /q,
fer m. €

where g is conjugate to p.

(Open for p > 1 and m > 3!)

(Various results obtained by J. Brown (1985),
T. Suffridge (1989), C. Beneteau and B. Ko-
renblum (2001), ... ).

In 1990 K. Samotij showed a la Horowitz that
for each p > 1 the supremum in H-S-Z conjec-
ture is strictly < 1.

13



Bergman Spaces

I. Known Results

Definition 2. For 0 < p < oo, let

1
AP = {f analytic in D : (/D|f(z)|pdA(Z))p
=1 || fllar < oo},

where dA denotes normalized area measure in
the unit disk D.

Ag :— set of non-vanishing AP functions.
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Model Problem:

Find

inf{ [ 1fIPdA: f € Af: f9(0) = ¢;,0 < j < m},
(5)

where the cj are given non-zero complex num-
bers.

Remarks:
e Without loss of generality, p = 2.
e Solution always exists and is unique.
e Rewrite f = €4, and solve

inf{||e?|| 42 : ¢ is analytic in D,
¢¥)(0) = a;,0 < j <m}.
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The Solution is...
Theorem 3. (D. Aharonov, C. Beneteau, D.
K., H. Shapiro, 2005) The extremal function
f*is in H°°. If the singular measure in the rep-
resentation of f* is supported on a Carleson
set, then the outer factor of f is a polynomial
of degree m.

Conjectured form of the extremal:

7,9 i+ 2
f (2)=C H (1-— CV]Z) exp( Z )‘] 70 ),

el — z
J=

(6)

|Ozj|§1,k'§mand )\jZO.
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A Special Case: Find, for ¢ > 1 fixed,

inf{[|fll42: f# 0inD,f(0)=1,f(0)=c}.
(7)
Theorem 4. (ABKS, '05) If the singular part
of the extremal function f* has a single point
mass, then

F(2) = C(z — 1 — po)e ™01, (8)

where the constants C' and ug are uniquely de-
termined by c.

Remark: Recall Hardy space extremal

14z

f*(z) = C(z — 1)e H01=. (9)

It differs in an essential way (which is not at
all the case in the linear problems!)
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II. Further Conjectures

Where should we expect the atoms of the
singular measure to be?

We know that the singular part pu* of the ex-
tremal measure v* is non-trivial for many val-
ues of the data. The example above shows
that it may be possible that the extremal func-
tions in Bergman spaces need not be contin-
uous in the closed disk, so the atoms are not
expected to be at the zeros of the polynomial
R>0,R=|IIT(1 - a;z)|? corresponding to
the modulus of the outer part of the extremal
function. Where are they?
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Discussion

There is another non-negative trigonometric
polynomial P that appears if one follows the
S. Ya. Khavinson’s ideas to construct the loga-
rithmically convex coefficient body for Bergman
functions. Essentially, P appears from the equa-
tion of the supporting hyperplane at a bound-
ary point of that coefficient body correspond-
ing to the extremal function.

Conjecture 3. (ABKS) If P > 0 on the unit
circle T, then the singular part u* of the ex-
tremal measure v* is supported on the set of
local minimum points of P on T.
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The characterization of a boundary point for
the convex body leads to maximizing the inte-
gral

Pdp,
| Pau

over a convex subset of measures p with non-
positive singular part and a priori bound on the
Bergman (1) norm

1 ew—l—z
= =T aue .
|ezp (2W | S—du >> .42

Intuitively, in order to maximize the integral,
we are best off if we concentrate all the neg-
ative contributions from the singular factor at
the points where P is smallest. Yet, the main
difficulty is to sort out the dependence of the
Bergman norms of singular inner function on
supports of the corresponding singular mea-
sures.
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A Krzyz type conjecture for the Bergman space.

Consider the problem

max{Re(f(™(0)/m!) : f € A, || fllar < 1}.

(10)
Suppose f* has the conjectured form
1+ 2
ffz)=C(z-1-p) exp(p——), (11

where u > 0 and C = C(u) is a constant such
that || f*||a» = 1.
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If we denote by F* the antiderivative of f* such
that F*(1) = 0, then

1+ 2
z—1

F'(2) = o (= = )% exp(us )

Using the complex form of Green's theorem
together with the fact that

1
+Z)| =1 a.e. on T,
z—1

we can calculate that

| exp(u

* 2 — 2 * xS — 02
LI @Raa= = [ PG = -G+2m.
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Since fp |f*(2)|2dA = 1, we get that C = , /22

342w’
where p > 0. Substituting ', we obtain
2
*\/ — 2
0) = K142 2 . (12
(f)'(0) 3+2M6(+u—l—u)()

It is not hard to see that this function of u,
when p > 0, is maximized when p = 1. We
thus obtain

Conjecture 4.

max{Re(f'(0)) : [Ifll 2 < 1, f # 0} = @@
(13)

23



A wild conjecture. It is also natural then to
expect that an extremal function for any m in
the problem

max{Re(f™(0)) : Ifll;2 < 1,f #0} (14)

would be ¢ f*(z™), where f* is the extremal
for the first derivative, and ¢, is the normaliz-
ing constant.

Conjecture 5.

max{Re( "™ (0)/m!) : |||l 42 < 1, f # 0} =
V5
= vm + 1?.
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Let Am = Amp for 1 < p < oo be defined by

Am = max{Re(f(™(0)/m!) : ||fllar < 1,f # O in D}.
(15)
Conjecture 6.

. Am

lim sup 51 < 1.

m—r o0 —
(MEE2yp

Denote by Ap, the analog of Ay, in the HE-
context. A priori, of course, Apyy > A

Question. What are the asymptotics of A7
Is Am — 1 1/p7

Am
We think that perhaps with the advances in the
theory of Bergman spaces in the last decade,
the time has come for a thorough study of
these fundamental extremal problems.
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THANK YOU!
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