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Historic Development
Solving extremal problems has been one of themajor stimuli for progress in complex analysis.
Linear problems in Hardy type spaces
� H. A. Schwarz' lemma
� C. Carath�eodory-L. Fej�er problem (coe�-cients of bounded analytic functions)
� E. Landau, S. Kakeya, F. Riesz, J. Doob,H. Milloux, A.Denjoy..
� Use of duality in linear extremal problems(S. Ya. Khavinson, also W. Rogosinski andH. S. Shapiro, late 40s early 50s)
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Common Wisdom
Theorem 1. (Metatheorem) Solutions to \good"extremal problems are MUCH \better" than ageneric representative of the class for whichthe problem is posed.
TRUE even in Hardy-Orlicz spaces. (V.Terpigoreva, '1960s).
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Linear Problems in Bergman Spaces
� V. Ryabych, early 60s
� K. Osipenko and M. Stessin, 1991
� Contractive divisors in Bergman spaces (H.Hedenmalm, then P. Duren, D. Khavinson,H. S. Shapiro, C. Sundberg), 90s
� D. Khavinson and M. Stessin, D. Vukotic,General linear extremal problems in Bergmanspaces, 1995-96.

In this talk, I will focus on nonlinear problems,speci�cally, on problems for non-vanishing func-tions. This talk is based on a recent surveypaper with C. Beneteau. 3



Hardy Spaces
I. General Theory
De�nition 1. For p > 0;
Hp0 := ff : f is analytic and non-vanishing in D;

kfkpp := sup0<r�1 12� Z 2�0 jf(reit)jpdt � 1g:
General (\good") extremal problem: Given�0; �1; : : : ; �m 2 C; �nd

supf2Hp0fRe
mX

k=0 �kf
(k)(0)k! g (1)

and identify the corresponding extremal func-tion(s).
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Convex analysis approach (S. Ya. Khavin-son - V. M. Terpigoreva, 1960s).(Some of the results (not the methods) werere-discovered in '70s-'80s by J. Hummel, S.Scheinberg, T. Su�ridge, L. Zalcman).
De�ne the set
Am(H0p ) := f~c =< c0; c1; : : : ; cm >2 Cm+1 :

f(z) = mX
k=0 ckzk + : : : ; f 2 H0p g:

Notice that if
f�(z) = mX

k=0 c�kzk + : : :
is a solution to a problem of type (1) then

~c� =< c�0; c�1; : : : ; c�m >is a boundary point of Am(H0p ): 5



Obstacle: Am(H0p ) = Am(H0p ) [ f0g is not aconvex set!
Natural step: Write f(z) = exp(q(z)) and letQ�p be the class of logarithms q(z) of functionsin H0p :
Am(Q�p); the set of the �rst m+1 coe�cientsof all elements of Q�p; IS a convex set.

Am(H0p ) ' Am(Q�p)Finite boundary points of Am(Q�p) correspondto non-zero boundary points of Am(H0p ):
Goal: Study the boundary points of Am(Q�p):
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Let ~a� =< a�0; a�1; : : : ; a�m >be a boundary point of Am(Q�p):
There exists a supporting hyperplane passingthrough that point: that is, there exist con-stants d 2 R and 
0; 
1; : : : ; 
m 2 C such that

Re( mX
k=0 
kak) � d

for every ~a 2 Am(Q�p) and
Re( mX

k=0 
ka�k) = d:
Problem restated: Find, given 
0; 
1; : : : ; 
m 2C �xed,
��p = supfRe( mX

k=0 
kak) : q(z) =
1X
k=0 akzk 2 Q�pg:(2)7



Theorem 2. (S. Ya. Khavinson, 1960). Givena non-zero boundary point
~c� =< c�0; c�1 : : : ; c�m >2 Am(H0p );there exists a unique function f 2 Hp0 such thatf(z) = Pmk=0 c�kzk + : : : : This function has theform

f(z) = C mY
k=1(1� ��kz)2p exp(� X

j�kj=1�k
�k + z�k � z );(3)where C > 0 is a constant such that12� Z 2�0 jf(eit)jpdt = 1;

j�kj � 1; and �k � 0:
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Discussion
� The extremal function f(z) has represen-tation

exp 12p� ZT ei� + zei� � z d�(�)
! ;

where measure d� = logjf(ei�)jd�+d�; d�?d�and d� � 0.
� � is extremal in �nding for a nonegativetrigonometric polynomial P of degree mthe maximum of Z

T
P d�;

over a convex subset of measures � withnon-positive singular part and �a priori boundon the Hardy norm kexp� 12� RT ei�+zei��zd�(�)� kH2:
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Conclusions
� It is not di�cult to see that the maximumis determined by the absolutely continuouspart of the measure � and is attained forlog jf j = C log jP j.
� Finally, not to violate the maximum of

Z
T
P d�;

the singular part � of the measure � mustbe supported exclusively by the zeros of Pon T:
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II. Some ExamplesProblem. Find
supf2H1fRef(m)(0)m! : kfk1 � 1; f non-vanishing in Dg:
What's known from the previous theorem:f�(z) is a singular function with at most mpoint masses on the circle.Conjecture 1. (Krzy_z)
supf2H1fRef(m)(0)m! : kfk1 � 1; f 6= 0 in Dg = 2e :
(Open for m > 5!) C. Horowitz (1978) showedthat jf(m)(0)m! j < 1 for all m!
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Problem. Find, for a positive integer m;
supf2Hp0fRef

(m)(0)m! g: (4)
What's known from the previous theorem:

f�(z) = (pm(z))2=pS(z);
where pm is a polynomial of degree m and S(z)is a singular function with atomic masses at atmost m points on the circle (which can onlyoccur where the polynomial has roots on thecircle).

12



Hummel-Scheinberg-Zalcman conjecture.
Conjecture 2. (Hummel-Scheinberg-Zalcman)

supf2Hp0fRef
(m)(0)m! g = �2e�1=q ;

where q is conjugate to p:
(Open for p > 1 and m � 3!)
(Various results obtained by J. Brown (1985),T. Su�ridge (1989), C. Beneteau and B. Ko-renblum (2001), ... ).
In 1990 K. Samotij showed �a la Horowitz thatfor each p > 1 the supremum in H-S-Z conjec-ture is strictly < 1.
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Bergman Spaces
I. Known Results
De�nition 2. For 0 < p <1; let
Ap = ff analytic in D : �Z

D
jf(z)jpdA(z)�1p=: kfkAp <1g;where dA denotes normalized area measure inthe unit disk D:

Ap0 := set of non-vanishing Ap functions.
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Model Problem:
Find
inffZ

D
jf jpdA : f 2 Ap0 : f(j)(0) = cj;0 � j � mg;(5)where the cj are given non-zero complex num-bers.

Remarks:
� Without loss of generality, p = 2:
� Solution always exists and is unique.
� Rewrite f = eq; and solve

inffkeqkA2 : q is analytic in D;q(j)(0) = aj;0 � j � mg:
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The Solution is...Theorem 3. (D. Aharonov, C. Beneteau, D.K., H. Shapiro, 2005) The extremal functionf� is in H1: If the singular measure in the rep-resentation of f� is supported on a Carlesonset, then the outer factor of f is a polynomialof degree m:
Conjectured form of the extremal:

f�(z) = C mYj=1(1� ��jz) exp( kXj=1��je
i�j + zei�j � z );(6)

j�jj � 1; k � m and �j � 0:
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A Special Case: Find, for c > 1 �xed,
inffkfkA2 : f 6= 0 in D; f(0) = 1; f 0(0) = cg:(7)Theorem 4. (ABKS, '05) If the singular partof the extremal function f� has a single pointmass, then

f�(z) = C(z � 1� �0)e��01+z1�z ; (8)where the constants C and �0 are uniquely de-termined by c:
Remark: Recall Hardy space extremal

f�(z) = C(z � 1)e��01+z1�z : (9)
It di�ers in an essential way (which is not atall the case in the linear problems!)

17



II. Further Conjectures
Where should we expect the atoms of thesingular measure to be?
We know that the singular part �� of the ex-tremal measure �� is non-trivial for many val-ues of the data. The example above showsthat it may be possible that the extremal func-tions in Bergman spaces need not be contin-uous in the closed disk, so the atoms are notexpected to be at the zeros of the polynomialR � 0; R = jQmj=1(1 � ��jz)j2 corresponding tothe modulus of the outer part of the extremalfunction. Where are they?
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Discussion
There is another non-negative trigonometricpolynomial P that appears if one follows theS. Ya. Khavinson's ideas to construct the loga-rithmically convex coe�cient body for Bergmanfunctions. Essentially, P appears from the equa-tion of the supporting hyperplane at a bound-ary point of that coe�cient body correspond-ing to the extremal function.
Conjecture 3. (ABKS) If P > 0 on the unitcircle T; then the singular part �� of the ex-tremal measure �� is supported on the set oflocal minimum points of P on T:
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The characterization of a boundary point forthe convex body leads to maximizing the inte-gral Z
T
P d�;

over a convex subset of measures � with non-positive singular part and �a priori bound on theBergman (!) norm
kexp 12� ZT ei� + zei� � z d�(�)

! kA2:
Intuitively, in order to maximize the integral,we are best o� if we concentrate all the neg-ative contributions from the singular factor atthe points where P is smallest. Yet, the maindi�culty is to sort out the dependence of theBergman norms of singular inner function onsupports of the corresponding singular mea-sures. 20



A Krzy_z type conjecture for the Bergman space.
Consider the problem

maxfRe(f(m)(0)=m!) : f 2 A0p ; kfkAp � 1g:(10)
Suppose f� has the conjectured form

f�(z) = C(z � 1� �) exp(�1+ zz � 1); (11)
where � > 0 and C = C(�) is a constant suchthat kf�kAp = 1:
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If we denote by F � the antiderivative of f� suchthat F �(1) = 0; then
F �(z) = C2(z � 1)2 exp(�1+ zz � 1):

Using the complex form of Green's theoremtogether with the fact that
j exp(�1+ zz � 1)j = 1 a.e. on T;

we can calculate that
Z
D
jf�(z)j2dA = i2� ZT F �(z)f�(z)d�z = C22 (3+2�):
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Since RD jf�(z)j2dA = 1; we get that C = r 23+2�;where � > 0: Substituting C, we obtain
(f�)0(0) = s 23+ 2� e��(1 + 2�+2�2): (12)

It is not hard to see that this function of �;when � > 0; is maximized when � = 1: Wethus obtainConjecture 4.
maxfRe(f 0(0)) : kfkA2 � 1; f 6= 0g = p2p5e :(13)
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A wild conjecture. It is also natural then toexpect that an extremal function for any m inthe problem
maxfRe(f(m)(0)) : kfkA2 � 1; f 6= 0g (14)would be cmf�(zm); where f� is the extremalfor the �rst derivative, and cm is the normaliz-ing constant.Conjecture 5.

maxfRe(f(m)(0)=m!) : kfkA2 � 1; f 6= 0g �
� pm+1p5e :
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Let �m = �m;p for 1 < p <1 be de�ned by
�m = maxfRe(f(m)(0)=m!) : kfkAp � 1; f 6= 0 in Dg:(15)Conjecture 6.

lim supm!1 �m(mp+22 )1p < 1:
Denote by �m the analog of �m in the Hp0-context. A priori, of course, �m � �m:
Question. What are the asymptotics of �m?Is �m�m � m1=p?
We think that perhaps with the advances in thetheory of Bergman spaces in the last decade,the time has come for a thorough study ofthese fundamental extremal problems.
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THANK YOU!
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