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Abstract. In this paper we sharpen significantly several known estimates on the maximal

number of zeros of complex harmonic polynomials. We also study the relation between the
curvature of critical lemniscates and its impact on geometry of caustics and the number of

zeros of harmonic polynomials.
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1. Introduction

We concern ourselves in this paper with complex harmonic polynomials, i.e., polynomials
which admit a decomposition

h(z) = p(z) + q(z),

where p = pn and q = qm are analytic polynomials of degrees n andm respectively. An interesting
open question is, for given n and m, to find the maximal number of solutions to the equation
h(z) = 0, i.e., extending the Fundamental Theorem of Algebra to harmonic polynomials, see [8]
and references therein. Throughout the paper we assume n > m, for the case n = m could give
an infinite solution set.

Wilmshurst [15, 16], in his doctoral thesis, proved the following:

Theorem (Wilmshurst). The equation h(z) = 0 has at most n2 solutions.

The proof of this result readily follows from Bezout’s theorem [3].
Seeking to improve on this bound, Wilmshurst conjectured that the equation h(z) = 0 has

at most 3n − 2 + m(m − 1) solutions. Khavinson and Swia̧tek [7] confirmed Wilmshurst’s
conjecture when m = 1 using complex dynamics, and the bound was shown to be sharp by
Geyer [5]. However, as was shown by Lee, Lerario, and Lundberg [9], the conjecture is not true
in general, for example, when m = n− 3. Also see [6] for many more counterexamples.

Here we obtain a sharper version of Wilmshurst’s result for a large class of polynomials.
Namely, our first result is the following.
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Theorem 1. For a harmonic polynomial h(z) = pn(z)+qm(z) with real coefficients, the equation
h(z) = 0 has at most n2 − n solutions.

Our next two theorems provide lower bounds on the maximal number of roots.

Theorem 2. For all n > m, there exists a harmonic polynomial h(z) = pn(z) + qm(z) with at
least 3n− 2 roots.

Theorem 3. For all n > m, there exists a harmonic polynomial h(z) = pn(z) + qm(z) with at
least m2 +m+ n number of roots.

The above three theorems will be proved in Section 2.

Remark.

– Theorem 2 and Theorem 3 complement each other. Theorem 2 is stronger than Theorem
3 whenm2+m+2 < 2n and Theorem 3 is stronger than Theorem 2 whenm2+m+2 > 2n.
Also, Theorem 2 is not at all trivial since the argument principle for harmonic functions
[4, 13, 14] only yields that h has at least n zeroes (see Fact 1 in Section 2.2).

– Note that, compared to Wilmshurst’s conjecture, Theorem 3 undercounts the number of
roots by 2(n−m− 1). See Section 2.4 for the in-depth discussion.

Theorem 3 allows the following important corollary.

Corollary 1. Let Zn,m denote the maximal possible number of zeros of h = pn + qm. Then, for
any fixed integer a ≥ 1, we have

lim sup
n→∞

Zn,n−a
n2

= 1.

More generally, if m = αn+ o(n) with 0 ≤ α ≤ 1, we have

lim sup
n→∞

Zn,m
n2

≥ α2.

Proof. From Theorem 3 we have Zn,m ≥ n2 + 2(1 − a)n + a(a − 1) for the first case, and
Zn,m ≥ α2n2 + o(n2) for the second case. �

This corollary yields that the maximal number of roots is asymptotically given by Wilmshurst’s
theorem. This answers a question posed by the first author more than a decade ago. Also this
corollary complements the estimates on the expected number of zeros of Gaussian random har-
monic polynomials obtained by Li and Wei in [11] and, more recently, by Lerario and Lundberg
in [10]. For example, for m = αn, α < 1, the expected number of zeros is ∼ n ([11]) for the
Gaussian harmonic polynomials and ∼ cαn3/2 [10] for the truncated Gaussian harmonic polyno-
mials. Yet, Corollary 1 yields that among all harmonic polynomials the maximal number ∼ αn2

of zeros occurs with positive probability, thus expanding further the results in [2] for m = 1.
To state our last theorem, we have to introduce the set

(1) Ω = {z : |f(z)| < 1},

where

f(z) =
p′n(z)

q′m(z)
.

Recall that the mapping z 7→ h(z) is sense-reversing precisely on Ω, i.e. the Jacobian of the map
h is negative on Ω. The boundary ∂Ω is the lemniscate {z : |f(z)| = 1}.

Each connected component of Ω must contain at least one critical point of pn. Indeed, if there
is a connected component without a critical point, by applying the maximum modulus principle
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to f(z) and 1/f(z) with |f(z)| = 1 on the boundary of that component, we have that f is a
unimodular constant, a contradiction.

This implies that there are at most deg p′n = n− 1 connected components of Ω.
For m = 1 (when Wilmshurst’s conjecture was proven to hold [7]), Wilmshurst guessed ([15],

p.73) that the following might be true: “In each component of Ω where h(z) = pn(z)+z is sense
reversing, the behavior of h will be essentially determined by the z term so there will only be one
zero of h”. From that the maximal number of roots (i.e., 3n− 2 for m = 1) may be obtained by
the argument principle when each connected component of Ω contains a zero.

The statement above is true when the component of Ω is convex according to the following
result (see [15], p.75).

Theorem (Sheil-Small). If g(z) is an analytic function in a convex domain D and |g′(z)| < 1
in D, then z + g(z) is injective on D.

Note that the theorem relates the geometry of critical lemniscates with the number of zeros,
because D can have at most one zero of the function z+ g(z) if the latter is injective. In a non-
convex component of Ω, it is possible to have more than one zero of h(z). In [15] an example
is given where a non-convex component of Ω contains two critical points of pn and two zeros
of h(z) = pn(z) + z. This is not surprising because each component of Ω can have a zero of h
and, therefore, one can have two zeros in a component by merging two components into one.
The resulting component then has two critical points of pn. It was however not clear whether a
connected component containing a single critical point of pn could possibly have more than one
zero of h.

Here we show that it is indeed possible and, also, present a necessary and sufficient condition
for having more than one zero of h in a connected component of Ω that contains a single zero of
f (i.e., a single critical point of pn). The theorem holds for general m and n.

Theorem 4. Let n > m. Let D be a connected component of Ω (defined by (1)) containing
exactly one zero of f . On a smooth part of the curve qm(∂D) (the image of ∂D under qm) let
κ be the curvature of qm(∂D) with respect to the counterclockwise arclength parametrization of
∂D. Then, the following are equivalent:

i) Let f(z) = p′n(z)/q′m(z). There exists z ∈ ∂D such that

κ(z)

|f ′(z)|
< −1

2
.

ii) There exists θ ∈ R and A ∈ C such that

p̃n(z)− qm(z)

has at least two zeros in D, where p̃n(z) = eiθpn(z) +A.

Remark.

(a) Note that κ is the curvature of ∂D when qm(z) = z. In this case, the theorem tells us
exactly how “non-convex” the domain D needs to be in order to have multiple zeros of
h, improving upon Sheil-Small’s theorem.

(b) In statement (ii) of Theorem 4, we note that |p̃′n(z)| = |p′n(z)|. The corresponding
lemniscate, {z : |p̃′n(z)/q′m(z)| = 1}, is therefore, the same for all θ and A.

For (n,m) = (4, 1), we provide an example where a component of Ω with one critical point
of pn contains two zeros of h, see Figure 1. Note that the roots appear where Ω is (slightly)
concave. The example is produced based on the discussion following our final Theorem 5 in
Section 4 regarding the shapes of critical lemniscates.
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Figure 1. Roots (dots) for h(z) = −(0.934124 + 0.356949i)z∗ + (0.0581623 +
0.156514i)z4 +(0.354765−0.131835i)z3− (0.116325+0.313028i)z2− (1.06429−
0.395504i)z + (0.247627 + 0.020994i). The stars are for the zeros of f and the
shaded region is Ω. The right picture is a zooming image of the top component
of Ω.

Acknowledgement. This work resulted from an REU group discussions that also included
Prof. Catherine Bénéteau and Brian Jackson. The second author was supported by Simons
Collaboration Grants for Mathematicians. The first and third authors were supported by the
USF Proposal Enhancement Grant No. 18326 (2015), PIs: D. Khavinson and R. Teodorescu.

2. Proofs of Theorems 1, 2 and 3

2.1. Proof of Theorem 1. Given a bivariate real polynomial P defined by

P (x, y) =

n∑
i=0

m∑
j=0

aijx
iyj , aij ∈ R,

the Newton polygon NP of P is the convex hull of NP ⊂ R2 where NP = {(i, j) : aij 6= 0}.
Given two polynomials P and Q with Newton polygons NP and NQ, let MP,Q be the

Minkowski sum of NP and NQ, defined by

MP,Q = {(i1 + i2, j1 + j2)|(i1, j1) ∈ NP , (i2, j2) ∈ NQ}.

Let [X] denote the area of a set X ⊂ R2. We then define the mixed area of P and Q as
[MP,Q]− [NP ]− [NQ].

Theorem (D. Bernstein [1]). The number of solutions to the system of polynomial equations
p(x, y) = q(x, y) = 0 does not exceed the mixed area of p and q.

For any analytic polynomials pn(z) and qm(z) of degree n,m, we have

h(x+ iy) = pn(x+ iy) + qm(x+ iy) = A(x, y) + iB(x, y),
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Figure 2. The Newton polygons A (left) and B (right) for n = 6 (top) and
n = 5 (bottom), respectively.

where A and B are polynomials with real coefficients. Let A be the Newton polygon of A(x, y)
and B be the Newton polygon of B(x, y). As we will see below, the polynomials pn and qn having
real coefficients leads to a certain structure of A and B.

Lemma 1. Given a generic h(z) with only real coefficients let A and B be defined as above. If n
is even, A is the isosceles triangle with vertex set {(0, 0), (0, n), (n, 0)} and B is the trapezoid with
vertex set {(0, 1), (0, n− 1), (1, n− 1), (n− 1, 1)}. If n is odd, A is the trapezoid with vertex set
{(0, 0), (0, n−1), (1, n−1), (n, 0)} and B is the isosceles triangle with vertex set {(0, 1), (0, n), (n−
1, 1)} (see Figure 2).

Proof. The lemma follows directly from the fact that

A(x, y) =
∑

j+k≤n,
k is even

ajkx
jyk, B(x, y) =

∑
j+k≤n,
k is odd

bjkx
jyk, ajk, bjk ∈ R.

The condition, j + k ≤ n, on the summation indices follows from deg h = deg pn = n. The
condition on k to be even or odd comes from pn and qm having real coefficients. (Note that in
the expansion of pn(x + iy) or, of qm(x + iy), the “i” comes only together with y – for a term
of the form xjyk, the power of “i” is given by k, the power of y.)

We need to show that all the coefficients that correspond to the extreme points of the convex
hulls are nonvanishing. First of all, those that satisfy j + k = n:

a0,n, an,0, b1,n−1 and bn−1,1 for even n,

a1,n−1, an,0, b0,n and bn−1,1 for odd n,

are all nonvanishing because deg pn = n.
Using h(z) = pn(z) + qm(z), we note that

h(x),
∂

∂y
h(x+ iy)

∣∣∣∣
y=0

,
∂n−1

∂yn−1
h(x+ iy)

∣∣∣∣
y=0

are all nontrivial polynomials in x, due to the presence of the terms, xn, xn−1y and xyn−1 in
h(x + iy) respectively. So there exists x0 ∈ R such that, when x = x0, none of the above three
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polynomials vanishes. Defining

h̃(z) = h(z + x0), x0 ∈ R,

h̃ is a real polynomial (of the same holomorphic and antiholomorphic degrees) and has the same
number of zeros as h. Moreover, the coefficients at the extreme points are all nonvanishing
because

a0,0 = h̃(0) = h(x0),

b0,1 =
∂

∂y
h̃(iy)

∣∣∣∣
y=0

=
∂

∂y
h(x0 + iy)

∣∣∣∣
y=0

,

♥0,n−1 =
1

(n− 1)!

∂n−1

∂yn−1
h̃(iy)

∣∣∣∣
y=0

=
1

(n− 1)!

∂n−1

∂yn−1
h(x0 + iy)

∣∣∣∣
y=0

,

where, in the last line, the symbol ♥ stands for a, when n is odd, and for b, when n is even. �

Now we prove Theorem 1. We divide the proof into two cases.
Case 1. Let n be even. From Lemma 1, A is an isosceles triangle with vertex set {(0, 0), (0, n), (n, 0)}
and B is the trapezoid with vertex set {(0, 1), (0, n−1), (1, n−1), (n−1, 1)}. Now, the Minkowski
sumM of A and B is a trapezoid with vertex set {(0, 1), (0, 2n−1), (1, 2n−1), (2n−1, 1)}. The
mixed area is, then,

[M]− [A]− [B] = (2n2 − 2n)− n2

2
− n2 − 2n

2
= n2 − n.

Case 2. Let n be odd. From the lemma, A is the trapezoid with vertex set {(0, 0), (0, n −
1), (1, n− 1), (n, 0)} and B is the isosceles triangle with vertex set {(0, 1), (0, n), (n− 1, 1)}. The
Minkowski sum M of A and B is then the trapezoid with vertex set {(0, 1), (0, 2n− 1), (1, 2n−
1), (2n− 1, 1)}. The mixed area is

[M]− [A]− [B] = (2n2 − 2n)− n2 − 1

2
− (n− 1)2

2
= n2 − n.

2.2. Proof of Theorem 2. For a harmonic function h(z) = p(z) + q(z), we say that h is
sense-preserving at a point z if the Jacobian of h,

det

[
∂xReh(x+ iy) ∂yReh(x+ iy)
∂xImh(x+ iy) ∂yImh(x+ iy)

]
x+iy=z

= |p′(z)|2 − |q′(z)|2,

is positive, and sense-reversing at z if h(z) is sense-preserving at z. Otherwise, we say h is
singular at z. We also say that h is regular if all the zeros of h are either sense-reversing, or
sense-preserving.

For an oriented, closed curve Γ such that a continuous function F does not vanish on Γ, we
denote by ∆Γ argF (z) the increment in the argument of F along Γ. The following is well known.

Theorem (The argument principle for harmonic functions [4, 13]). Let H be a harmonic function
in a Jordan domain D with boundary Γ. Suppose H is continuous in D and H 6= 0 on Γ. Suppose
H has no singular zeros in D, and let N = N+−N−, where N+ and N− are the number of sense-
preserving zeros and sense-reversing zeros of H in D respectively. Then, ∆Γ argH(z) = 2πN .

The next fact [7] follows then by applying the argument principle to a circle of a sufficiently
large radius where |pn| � |qm|.
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Fact 1. Let h = pn + qm be regular. Let N+ be the number of sense-preserving zeros of h and
N− be the number of sense-reversing zeros. Then,

n = N+ −N−.

An elegant proof (due to Donald Sarason) of the following lemma can be found in [7].

Lemma 2. If p(z) is a polynomial of degree greater than 1, then the set of complex numbers c

for which p(z) + q(z)− c is regular is open and dense in C.

For m = 1, Bleher et al. [2] proved that in the space Cn+1 of harmonic polynomials pn(z) + z
of degree n ≥ 2 the set of “simple polynomials”, i.e., regular polynomials with k zeros, is a
non-empty open subset of Cn+1 if and only if k = n, n + 2, . . . , 3n − 4, 3n − 2, and that the
non-simple polynomials are contained in a real algebraic subset of Cn+1.

The following fact is noted in [12], Theorem 3.2.

Lemma 3. If the function h(z) = pn(z) + z has 3n− 2 zeros, then h(z) is regular.

Proof. Assume h is not regular and has exactly 3n− 2 roots. The number of roots that are not
sense-preserving is at most n−1 because each of those roots attracts a critical point of pn under
the iteration of z 7→ pn(z), cf. Proposition 1 in [7]. Therefore, the number of sense-preserving
roots must be at least 2n − 1. For all non-singular roots zj ’s, there exists ε > 0 such that the
disks, Bε(zj) = {z : |z − zj | < ε}, do not intersect each other, do not intersect the singular set
{z : |p′(z)| = 1}, and ∆∂Bε(zj) arg h = ±2π. Defining

δ = min
z∈∂Bε(zj)

|h(z)|,

for any c ∈ C with |c| < δ, we have ∆∂Bε(zj) arg h = ∆∂Bε(zj) arg(h− c) and, using the argument
principle for harmonic functions, the equation h(z)− c has exactly one zero in each Bε(zj).

Suppose z0 is a singular zero of h. Since h(z0) = 0 and h is continuous near z0, there is an
η > 0 such that Bη(z0) does not intersect any Bε(zj) and

|h(z)| < δ for all z ∈ Bη(z0).

Further, the set Bη(z0) intersects sense-preserving region, since otherwise, log |p′(z)| would be
constant over Bη(z0) by the maximum modulus principle. Let ζ be a sense-preserving point in
Bη(z0). We can set c = h(ζ) since |h(ζ)| < δ, and h(z) − c = h(z) − h(ζ) must have zeros in
each Bε(zj) and at ζ ∈ Bη(z0). Consequently, h(z)−h(ζ) has at least 2n sense-preserving zeros.
By Lemma 2, we can choose ζ such that h(z)− h(ζ) is a regular polynomial, which contradicts
the result of Khavinson and Swia̧tek [7] that the regular polynomial can have at most 2n − 1
sense-preserving roots. �

We now complete the proof of Theorem 2.

Proof. Let pn(z) be an analytic polynomial such that the equation pn(z) + z = 0 has 3n − 2
solutions. By Lemma 3 the polynomial h(z) = pn(z) + z is regular. Let z0 be a zero of h.
One can find a circle, Γ, centered at z0 with radius ε such that h does not vanish on Γ and
∆Γ arg h = ±2π. As in a standard proof of Rouché’s theorem, taking δ such that

0 < δ <
minz∈Γ |h(z)|

maxz∈Γ(|z|m + 1)
,

we have the perturbed mapping, z 7→ h(z) + δzm, that preserves the winding number of h(Γ),
that is, the perturbed mapping also vanishes in the interior of Γ. Applying the same argument
to all 3n−2 zeros of h, we can choose δ such that h(z) + δzm has (at least) 3n−2 zeros. Setting
now qm(z) = δzm + z completes the proof. �
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Remark. This proof suggests that if the equation pn(z) + qm−1(z) = 0 has at most k solutions,

then there exists a harmonic polynomial pn(z) + qm(z) with k zeros. However, a proof of this,

following the above argument, would require that pn(z) + qm−1(z) be regular.

2.3. Proof of Theorem 3. Let us sketch the procedure (similar to [9, 6]) that allows creating
examples of harmonic polynomials with a large number of roots (cf. Figure 3).

Fix n and m < n. Let

S(z) = (z − a)n−1(z + (n− 1)a),

T (z) = (z − b)m+1(zn−m−1 + tn−m−2z
n−m−2 + · · ·+ t0).

The n−m− 1 complex parameters tj ’s in T (z) are uniquely determined by the condition that
S(z)−T (z) is a polynomial of degree m. Then we choose a ∈ C and b ∈ C by hand to maximize
the number of intersections between the two sets:

ΓT = {z | ImT (z) = 0}, ΓS = {z |ReS(z) = 0}.

These intersections are the roots of the equation pn(z) + qm(z) = 0 where

pn(z) = S(z) + T (z), qm(z) = S(z)− T (z),

since

pn(z) + qm(z) = 2 ReS(z) + 2 i ImT (z).

Figure 3. Curves ΓT (black) and ΓS (red) for for n = 4, 5 and m = 2. The
shaded region is Ω. For n = 4 (left) we choose a = 0 and b = 1.1−0.1i to produce
12 roots. For n = 5 (right) we choose a = 1.5 − 0.5i and b = −0.05 + 0.92i to
produce 15 roots.

Theorem 3 can be stated equivalently as follows:

Theorem (Theorem 3). For a = 0 and for a generic choice of b ∈ C, the equation pn + qm = 0
defined in terms of S and T (as above) has at least m2 +m+ n roots.

Proof. Choose a = 0 and let ΓS be the set of rays emanating from the origin and extending
to the infinity, i.e., {∞ × e( 1

2 +k)πi/n : k = 0, 1, · · · , 2n − 1}. Note that ΓT has 2m + 2 curved
rays emanating from b where every ray eventually approaches the infinity in the directions of
{∞ × elπi/n}l such that: i) different rays correspond to different values of l, and ii) l is chosen
in a subset, that we will denote by N2m+2, containing 2m+ 2 numbers from {0, 1, · · · , 2n− 1}.
Assuming that b /∈ ΓS and that none of the rays hit any critical point of T (z) except at z = b,
those curved rays do not intersect each other.
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Let Wl’s (l = 0, 1, · · · , 2n− 1) denote the connected components (that we will call “sectors”)
in C \ ΓS that contain the asymptotic direction ∞× elπi/n. A simple geometric consideration
tells us that the number of intersections between ΓS and a curved ray starting from b ∈Wl1 and
continuing into Wl2 without passing the origin is at least

min(|l2 − l1|, 2n− |l2 − l1|).

This means that the minimal possible number of intersections between ΓS and “the 2m + 2
curved rays in ΓT ” is∑

l2∈N2m+2

min(|l2 − l1|, 2n− |l2 − l1|) ≥ 0 + 2(1 + 2 + · · ·+m) + (m+ 1) = (m+ 1)2.

The remaining part of ΓT (i.e. that is not connected to b) approaches the infinity in 2n−2m−2
different sectors among Wl, that are not already taken by the rays from b. Assuming that there
are no critical points of T in ΓT except the one at b, each curve in the “remaining part of ΓT ”
must connect two sectors from the 2n−2m−2 sectors such that, around∞, each sector is ”hit”
by one curve only. Since there is at least one intersection between each curve and ΓS , the minimal
number of intersections between the “remaining part of ΓT ” and ΓS is n−m−1 and the minimal
number of intersections between ΓT and ΓS is given by (m+ 1)2 +n−m− 1 = m2 +m+n. �

Figure 4. Roots and Ω (shaded region) for (n,m) = (9, 7), a = 0 and b = 1.1− 0.1i.

2.4. A remark on Wilmshurst’s conjecture. Comparing with Wilmshurst’s conjecture, The-
orem 3 undercounts the number of roots by

(2) 3n− 2 +m(m− 1)− (m2 +m+ n) = 2(n−m− 1).

One can show that the corresponding lemniscate has 2m + 2 curves that connects b and a
(cf. Figure 4). The numerics suggests that the 2m + 1 regions in between these curves have,
respectively,

m− 1,m− 2, · · · , 2, 1, 1, 2, · · · ,m− 1,m,
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(counting from top to bottom in Figure 4) roots. Among these exactly 1+2+· · ·+m = m(m+1)/2
of them are found in the sense-reversing region (with m components; the shaded part in Figure
4) and, therefore, the total number of roots must be at least

(3) 2× m2 +m

2
+ n = m2 +m+ n

by Fact 1, giving the same number as in Theorem 3.
Since there can be at most n−1 components in Ω, there can be n−m−1 extra components in

the sense-reversing region, and these components are not connected to the point b. Wilmshurst’s
count is obtained when each of these components has exactly one root. This increases the total
number of sense-reversing roots by n−m− 1 and, hence, increases the total number of roots by
2(n−m− 1), cf. (3), which is precisely Wilmshurst’s count, cf. (2).

The various counterexamples studied in [9, 6] indicate that, the n−m−1 “extra components”
of Ω (that are not connected to b) can have more than one root in each component. For example,
Figure 4 shows that there are two roots inside the component of Ω that is not connected to b.

For m = n−2, our numerical experiment supports the structure shown in Figure 4: there are
m2 + m + n roots that are counted in terms of the 2m + 2 curves connecting a and b, and the
excessive zeros are twice the number of zeros found in the component of Ω that is not connected
to b. Choosing a = 0 and b = eiπ/(2n) + ε (ε 6= 0 is needed so that the origin is not a root),
we found that the number of “excessive zeros”, i.e. (the total number of zeros)−(m2 +m+ n),
increases by 4 whenever n hits the numbers:

7, 15, 22, 30, 37, 45, 52, 60, 68, 75, 83, 90, 98, 105, 113, 120, 128, 136, · · · .

For example, for n = 100, there are total 13 numbers before 100 from the list, and the total
number of zeros is 4 × 13 + (m2 + m + n) = 52 + 9998, exceeding Wilmshurst’s count by
4 × 13 − 2(n −m − 1) = 52 − 2 = 50. These experiments prompt us to suggest the following
conjecture.

Conjecture. When m = n− 2, the maximal number of roots of h = pn + qm is given by

n2 − 3

2
n+ o(n)

as n grows to ∞ (which is larger than Wilmshurst’s count of n2 − 2n+ 4).

3. Geometry of caustics: Proof of Theorem 4

As before, let Ω be defined by (1).

Lemma 4. Setting

f(z) = p′n(z)/q′m(z),

let D be a connected component of Ω with exactly k (counting the multiplicities) zeros of f in
D. Then, f : D → D, where D is the unit disk, is a branched covering of degree k.

Proof. By definition, D is a connected component of f−1(D). By the argument principle, for
any w ∈ D, the number of preimages of w under f inside D is given by the winding number,
1

2π∆∂D arg(f(z)− w). Since f(∂D) ⊂ ∂D and cannot “backtrack” on ∂D, the winding number
does not depend on w ∈ D and it is k at w = 0 because D contains exactly k zeros of f . �

When D contains exactly one critical point of pn, f : D → D is a univalent map. In this case,
let η : [0, 2π)→ ∂D be the parametrization of ∂D given by

η(θ) = f−1(eiθ),
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where f−1 on ∂D is obtained by the continuous extension of f−1 : D→ D. This parametrization
of ∂D is given by the harmonic measure of D (normalized by the factor 2π) with respect to the
pole at the zero of f , i.e.,

(4) dθ = d arg f(z), z ∈ ∂D.
This viewpoint can be be generalized when there are k zeros of f in D. In this case, the
same equation (4) defines the parametrization, η : [0, 2πk) → ∂D, by the harmonic measure of
k-sheeted disk.

On a smooth part of the curve ∂D (i.e., where f ′ 6= 0), let v(z) be the tangent vector of the
curve ∂D at z ∈ ∂D given by

(5) v(z) =
dη(θ)

dθ
= i

f(z)

f ′(z)
.

Let us consider the image of ∂D under h. For each z ∈ ∂D with f ′(z) 6= 0 we obtain a tangent
vector of the curve h(∂D) at h(z) as follows (v is the tangent vector to ∂D, cf. (5), |f | = 1 on
∂D ):

(6) V (z) =
(
v(z)∂ + v(z) ∂

)
h(z) = v(z)p′n(z)− v(z) q′m(z),

assuming this expression does not vanish. The next two lemmas deal with the geometry of the
caustic that we identify now.

Definition. The image of the critical lemniscate h(∂Ω) is called the caustic.

Lemma 5. Let D be a component of Ω with exactly k zeros (counting multiplicity) of f and
∂D is parametrized by η : [0, 2πk)→ ∂D such that d arg f(η(θ)) = dθ. At z = η(θ) ∈ ∂D where

f ′(z) 6= 0 and Im
(
v(z)q′m(z)

√
f(z)

)
6= 0, we have

d arg V (η(θ))

dθ
=

1

2
.

In other words, the caustic, away from the possible singularities, has constant curvature with
respect to the special parametrization defined above.

Proof. Note that, for z ∈ ∂D, the two terms in the right hand side of (6) have the same modulus
(i.e., |p′n| = |q′m| on ∂D). We may rewrite V as

V (z) =

√
p′n(z)

q′m(z)
|q′m(z)|

v(z)

√
p′n(z)

q′m(z)
− v(z)

√
q′m(z)

p′n(z)


=

√
p′n(z)

q′m(z)
|q′m(z)|2i Im

(
v(z)

√
p′n(z)

q′m(z)

)
= 2i

√
f(z) Im

(
v(z)q′m(z)

√
f(z)

)
.

(7)

(Note that the result is independent of the branch of the square root function as
√
f(z) appears

twice.) If Im
(
v(z)q′m(z)

√
f(z)

)
6= 0, then we have, modulo π,

arg V (z) =
1

2
arg f(z) +

π

2
=
−i
2

log f(z) +
π

2
,

where, in the last equality, we used again that |f(z)| = 1 at z ∈ ∂D. We have:

(8)
d arg V (η(θ))

dθ
=
−i
2

f ′

f

dη(θ)

dθ
=

1

2
,
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where we used (5) in the last equality. �

The next lemma characterizes the “possible singularities”.

Lemma 6. The only singularities of the curve h(∂D) are cusps. When z0 ∈ ∂D is not in the
branch cut of

√
f there is a cusp at h(z0) if and only if the mapping from ∂D to R given by

z 7→ Im
(
v(z)q′m(z)

√
f(z)

)
on ∂D,

changes sign across z0. When z0 is in the branch cut of
√
f , the cusp occurs at h(z0) if and only

if the mapping,

z 7→ Re

( √
f(z)√
f(z0)

)
Im
(
v(z)q′m(z)

√
f(z)

)
on ∂D,

changes sign across z0.

Proof. First note that away from the branch cuts of
√
f , the set

∂D ∩ {z : Im
(
v(z)q′m(z)

√
f(z)

)
= 0}

is finite. Indeed, otherwise as a level set of a harmonic function it would contain an arc. By (6),
V = 0 over that arc and, therefore, h maps the arc into a point. Yet h, a harmonic polynomial
of degree n, has finite valence ≤ n2, a contradiction.

If f ′ 6= 0 on ∂D then all the functions (i.e. f(z), v(z) and q′m(z)) that appear in the expression
(7) for the tangent vector, V , of the caustic are smooth along ∂D. Therefore, from (7), a
singularity of h(∂D) occurs only when V changes sign, hence h(∂D) must have a cusp there.
The lemma follows immediately.

If f ′(z0) = 0 for z0 ∈ ∂D (i.e., it is a critical point of the lemniscate), then |v(z0)| = ∞ by
(5). However, the argument of V (i.e., arg V ) is still either continuous or jumps by π. And a
cusp occurs when V changes direction, i.e., arg V jumps by π. �

If f ′(z0) = 0 for z0 ∈ ∂D, multiple components of Ω merge together at z0. It turns out that
the image of ∂Ω under h has an interesting structure, as we will see below.

Remark (a critical point on the critical lemniscate). Let z0 ∈ ∂Ω satisfy f ′(z0) = · · · =
f (k−1)(z0) = 0 and f (k)(z0) 6= 0, i.e.,

f(z) = f(z0) +
f (k)(z0)

k!
(z − z0)k +O

(
(z − z0)k+1

)
.

Taking the absolute value and rotating if necessary, we obtain

(9) |f(z)| = |f(z0)|+ |f(z0)|
k!

Re

[
f (k)(z0)

f(z0)
(z − z0)k

]
+O

(
(z − z0)k+1

)
.

Locally, the lemniscate consists of 2k curved rays meeting at z0 and it divides the plane into 2k
wedge-shaped sections with the angle π/k at z0. Among them, total k sections, equally spaced,
are included in Ω. To be more precise, taking a sufficiently small disk B centered at z0, B ∩ Ω
has exactly k components such that B ∩ ∂Ω consists of 2k curves emanating from z0 with the
angular directions given by

θj =
1

k
arg

f(z0)

f (k)(z0)
+
π

k

(
j +

1

2

)
, j = 0, 1, · · · , 2k − 1.

Note that the sections between θ2` and θ2`+1 for every ` = 0, 1, · · · , k − 1 are in Ω. Therefore,
taking the single component (let us denote it by D`) of B ∩ Ω between θ2` and θ2`+1, the
tangent vector of its boundary changes angular direction from θ2`+1 − π to θ2` at z0. Using (7),
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Figure 5. Lemniscate (left) and caustics, h(z) = z4

4 − z − e
iθz for θ = 0 and θ = π

6 .

assuming z0 is not in the branch cut of
√
f , the corresponding tangent vector of h(∂D`) changes

the direction by π at h(z0) (i.e., has a cusp singularity) if and only if

Im
(
ei(θ2`+1−π)q′m(z0)

√
f(z0)

)
Im
(
eiθ2`q′m(z0)

√
f(z0)

)
< 0

or, equivalently,

θ2` + arg
(
q′m(z0)

√
f(z0)

)
∈
(

0,
k − 1

k
π

)
∪
(
π,

2k − 1

k
π

)
.

When k is even (respectively odd) there can be at most two (respectively one) values of `’s that
do not satisfy the above condition. It means that for those values of `’s h(∂D`) has a smooth
boundary at h(z0), and for the other values of `’s, h(∂D`) has a cusp at h(z0). In Figure 5, the
middle picture shows a caustic where the critical point z0 = 0 corresponds to the three cusps
at the origin, and the last picture shows a caustic where one component (red) of the lemniscate
maps z0 to a regular point of the caustic.

Lemma 7. Let D be a simply connected component of Ω with exactly k zeros of f . The number
of cusps in h(∂D) is odd (resp. even) when k is odd (resp. even) and, moreover, is ≥ 2 + k.

Proof. According to Lemma 6 a cusp in h(∂D) occurs whenever Im
(
v q′m
√
f
)

changes sign. To
locate such events, it is convenient to define the function, Ψ : [0, 2πk)→ R by

(10) Ψ : θ → arg
(
v(z) q′m(z)

√
f(z)

)
z=η(θ)

= arg v(η(θ)) + arg q′m(η(θ)) + arg
√
f(η(θ)).

For the term arg q′m(η(θ)), we choose the branch of the function “arg” such that the term is

continuous with respect to θ. For the term
√
f(η(θ)) we choose the branch of

√
f and “arg”

function (separately from the previous one), so that that term is continuous. Lastly, for the
first term, arg v, we choose the branch of “arg” such that the term is a piecewise continuous
function where the only discontinuities are at the critical points of the lemniscate (i.e., where
f ′(η(θ)) = 0). At the discontinuity arg v jumps by a positive angle, k−1

kπ ∈ [π/2, π) from θ2`+1−π
to θ2` using the notations in the above Remark “a critical point on the critical lemniscate”; the
angle can vary according to the order k ≥ 2 of the critical point. As a consequence, Φ is
a continuous function with only discontinuities being the jump(s) by angles in [π/2, π] at the
critical points of the lemniscate.

For a cusp to occur at θ, the condition in Lemma 6 gives that

(11)
⋂
ε>0

(Ψ(θ − ε),Ψ(θ + ε)) contains lπ for some integer l.

Let us look at the three terms in Ψ individually. The last term is linear in θ with the slope
1/2 by (8) and, therefore, ∆ arg

√
f = kπ. (Here and below ∆ stands for the increment over



14 DMITRY KHAVINSON, SEUNG-YEOP LEE, ANDRES SAEZ

0

+1

+2

+1

Figure 6. Cusp in caustic (left). Dotted line shows a “cusp after smoothing”.
Relative winding numbers in a region around an intersection point (right).

∂D.) The second term, arg q′m, is a continuous function and ∆ arg q′m = 0 because q′m does not
vanish in the closure of D. Lastly, the first term, arg v, is a piecewise continuous function with
∆ arg v = 2π where the only discontinuities are at the critical points of the lemniscate (i.e., where
f ′(η(θ)) = 0). Summing up, the total increment of Ψ over [0, 2kπ) is (2 + k)π and, therefore,
there are at least k + 2 points (and exactly k + 2 if Ψ is monotone) where the condition (11)
holds.

Suppose now that Ψ is not monotone. For any point θ that satisfies the condition (11) there
are two possibilities: as ε→ +0,

(A): Ψ(θ − ε) < lπ and Ψ(θ + ε) > lπ or (B): Ψ(θ − ε) > lπ and Ψ(θ + ε) < lπ.

Since the total increment of Ψ is (k+2)π, the number of points satisfying the condition (A) must
be larger than those satisfying (B) by exactly k + 2. Therefore the number of points satisfying
either (A) or (B) can be bigger than k + 2 by an even number. As a consequence, the number
of cusps is always odd (respectively even) when k is odd (respectively even). �

Lemma 8. Let D be a component of Ω with a single zero of f . If h(∂D) has only three cusps,
then it is a Jordan curve. There are more than three cusps in h(∂D) (hence five or more according
to Lemma 7) if and only if there exists a point with the winding number of h(∂D) bigger than
one, i.e., there exists p ∈ C such that ∆∂D arg(h(·)− p) ≥ 2π.

Proof. To prove the first statement of the lemma, it suffices to show that the three smooth
(open) arcs between the three cusps do not intersect each other. Choosing any two arcs, there
exists a cusp where the two arcs meet. Since the tangent vector rotates at most by π over a
smooth part of the curve (cf. Lemma 5), the two arcs can only get farther from each other as
one moves along the arcs starting from the common cusp. (Note however that, if the constant
curvature is bigger than 1/2, h(∂D) can self-intersect.)

To prove the second statement, assume h(∂D) has five or more cusps. Let Γ be a smooth curve
that is obtained by slightly “smoothing” all the cusps of h(∂D), see the left picture in Figure
6. Considering infinitessimally small smoothing, such deformation indicates that the tangent
vector of Γ rotates by

1

2
· 2π −#{cusps}π ≤ π − 5π = −4π

over the whole curve. Therefore Γ cannot be a (smooth) Jordan curve and h(∂D) must have a
self-intersection (that cannot be removed by a small perturbation, such as the one in the right
picture of Figure 6).

Let us define the orientation on h(∂D) by the orientation inherited from ∂D. For each point
p /∈ h(∂D), one can consider the winding number of h(∂D) around p. The winding number of
h(∂D) on the left side (with respect to the orientation) is bigger than the one on the right side
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by +1. Then, in a neighborhood of a self-intersection, there must be a pair of regions where the
winding numbers differ by 2, see the right picture in Figure 6. �

Now we prove Theorem 4.
To have more than three cusps, the function Ψ that is defined in the proof of Lemma 7 must

be non-monotonic, i.e., there must be a point where the slope of the graph of Ψ is negative, i.e.

(12)
dΨ(θ)

dθ
=
d arg v(η(θ))

dθ
+
d arg q′m(η(θ))

dθ
+

1

2
< 0.

Note that the first two terms in the left hand side give the curvature of qm(∂D) with respect
to the parametrization by θ or, equivalently, κ/|f ′| where κ is the curvature with respect to the
arclength on ∂D (cf. (5)):∣∣∣∣dη(θ)

dθ

∣∣∣∣κ =
d

dθ
arg

dqm(η(θ))

dθ
=
d arg v(η(θ))

dθ
+
d arg q′m(η(θ))

dθ
.

So the inequality (12) is exactly the one that appears in i) of Theorem 4.
Once the graph of Ψ is non-monotonic, one can create more roots of Ψ ≡ 0 mod π by

vertically shifting this graph. This is done by the following transformation, which preserves the
lemniscate {z : |p′n(z)/q′m(z)| = 1}:

pn → eiϕpn, ϕ ∈ R.
Under this transformation,

arg(v q′m
√
f)→ arg(v q′m

√
f) + ϕ/2

because of the term
√
f . This means that, for some ϕ, h(∂D) can have more than five cusps.

By Lemma 8, there exists a point, say p ∈ C, where ∆∂D(h(·)− p) > 2π. This means that

p̃n(z) = eiϕpn(z)− p

satisfies ∆∂Dh̃ > 2π where h̃ = p̃n + qm and, therefore, h̃ has at least two roots inside D. This
ends the proof of Theorem 4.

4. Construction of non-convex lemniscate

Here we explain how we found the example in Figure 1.

Theorem 5. Let f be a rational function and Ω = {z : |f(z)| < 1}. Let z0 ∈ ∂Ω, f ′(z0) = 0
and (log f)′′(z0) 6= 0. In a neighborhood of z0, ∂Ω is a union of two smooth arcs that intersect
perpendicularly at z0. Moreover, the point z0 is not an inflection point (i.e. the curvature is
strictly positive or negative at z0) for either of the arcs if and only if

Re

(
e±iπ/4

(log f)′′′(z0)

(log f)′′(z0)3/2

)
6= 0.

Corollary 2. If z0 ∈ ∂Ω satisfies the assumptions in Theorem 5 and, furthermore, is not an
inflection point of ∂Ω, then there is a connected component of Ω whose curvature of the boundary
(with respect to the counterclockwise orientation) converges to a negative value at z0.

Proof. According to Theorem 5 there exists an open neighborhood U of z0 such that Ω ∩ U is
the disjoint union of two domains, see Figure 7 for an illustration (Ω ∩ U is the shaded region).
When the “no inflection” condition in Theorem 5 is satisfied, the local configuration of Ω has
two possibilities: Ω∩U is the disjoint union of a convex and a non-convex domain (left in Figure
7) or, Ω ∩ U is the disjoint union of two non-convex domains (right in Figure 7). In either case,
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Figure 7. Lemniscate near z0, see text below Theorem 5.

there exists a connected component of Ω ∩ U whose boundary has a negative curvature in a
neighborhood of z0. �

Remark. To relate Theorem 5 to our harmonic polynomials, we take f(z) = p′n(z)/q′m(z). For
m = 1, as z approaches z0 along the “concave” arc, κ(z) < 0 by Corollary 2 and |f ′(z)| → 0.
Therefore, one obtains that κ(z)/|f ′(z)| → −∞ as z approaches z0 along the “concave” arc.
Hence we obtain the “non-convex” domain D as is needed to satisfy the condition κ/|f ′| < −1/2
in Theorem 4.

In the rest of this section, we prove Theorem 5.
Let f be a meromorphic function. Let γ : R→ C be the parametrization of a curve in C such

that γ(0) = z0 and f ′(z0) = 0. Taking the derivatives of log|f(γ(t))| at t = 0 we obtain:

d

dt
log|f(γ(t))|

∣∣∣∣
t=0

= 0,

d2

dt2
log|f(γ(t))|

∣∣∣∣
t=0

= Re
(
γ̇(0)2(log f)′′(z0)

)
,

d3

dt3
log|f(γ(t))|

∣∣∣∣
t=0

= Re
(

3γ̇(0)γ̈(0)(log f)′′(z0) + γ̇(0)3(log f)′′′(z0)
)
.

Above, γ̇ and γ̈ denote, respectively, the derivative and the second derivative of γ with respect
to t. Consider the Taylor expansion of log |f(γ(t))| around t = 0. We have

log |f(γ(t))| = Re
(
γ̇(0)2(log f)′′(z0)

) t2
2

+ Re
(

3γ̇(0)γ̈(0)(log f)′′(z0) + γ̇(0)3(log f)′′′(z0)
) t3

6
+O(t4).

If γ parmametrizes the lemniscate ∂Ω passing through z0, where Ω is as in (1), then we have
log |f(γ(t))| = 0 identically for all t, and all the coefficients in the above Taylor series must
vanish. The first coefficient vanishes when

(13) γ̇(0)2 = ic1(log f)′′(z0), c1 ∈ R.

We may assume that γ is the arclength parametrization, i.e., |γ̇| ≡ 1. Then γ̈γ̇ is purely
imaginary and

(14) γ̈(0) = ic2 γ̇(0)
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for some real constant c2. The second coefficient in the Taylor series gets simplified as

Re
(

3γ̇(0)γ̈(0)(log f)′′(z0) + γ̇(0)3(log f)′′′(z0)
)

= −3c1c2|(log f)′′(z0)|2 − c1Im
(
γ̇(0)(log f)′′(z0)(log f)′′′(z0)

)
,

using (13) and (14). The above expression vanishing implies that

c2 = −1

3
Im

(
γ̇(0)

(log f)′′′(z0)

(log f)′′(z0)

)
.

Summarizing, we obtain

γ(t) = z0 + γ̇(0)t− i γ̇(0)

6
Im

(
γ̇(0)

(log f)′′′(z0)

(log f)′′(z0)

)
t2 +O(t3),

where, using (13),

γ̇(0) = ±e±iπ/4i
√

(log f)′′(z0)

|
√

(log f)′′(z0)|
= ±e±iπ/4i

|
√

(log f)′′(z0)|√
(log f)′′(z0)

.

The two signs can be chosen arbitrarily and independently. This proves that there are two
different arcs orthogonal at z0. The curve ∂Ω does not have an inflection point at z0 when the
quadratic term in the Taylor expansion of γ(t) is non-zero, i.e.,

Re

(
e±iπ/4

(log f)′′′(z0)

(log f)′′(z0)3/2

)
6= 0.

The proof is now complete.
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