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Abstract

A power series that converges on the unit disc D is called univer-
sal if its partial sums approximate arbitrary polynomials on arbitrary
compacta in CnD that have connected complement. This paper shows
that such power series grow strongly and possess a Picard-type prop-
erty near every boundary point.

1 Introduction

Let D(z; r) denote the open disc of centre z and radius r in the complex
plane C, let D = D(0; 1) and T = @D. A power series

P
anz

n with radius
of convergence 1 is said to belong to the class U if, for every compact set
K � CnD with connected complement and every continuous function g :
K ! C that is holomorphic on K�, there is a subsequence (Nk) of N such
that

PNk
0 anz

n ! g uniformly on K. Members of U are called universal
Taylor series. Nestoridis [18] has shown that such universal behaviour is
a generic property of holomorphic functions on the unit disc; that is, U is
a dense G� subset of the space of all holomorphic functions on D endowed
with the topology of local uniform convergence.

A signi�cant avenue of investigation concerns the boundary behaviour of
functions in U : see [19], [16], [8], [14], [15], [7], [17], [2], [4], [6], [10], [11]. In
this paper we will improve several known results by showing that universal
Taylor series have very strong growth properties at every boundary point.

Theorem 1 Let  : [0; 1)! (0;1) be an increasing function such thatZ 1

0
log+ log+  (t)dt <1: (1)

If f(z) =
P
anz

n and jf(z)j �  (jzj) on D(w; r) \ D for some w 2 T and
r > 0, then f =2 U .
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The special case of Theorem 1 where the inequality jf(z)j �  (jzj) is
required to hold on all of D is due to Melas (Theorem 3 of [14]), who also
showed that condition (1) is close to being sharp (see Theorem 8 of [14]).

We can deduce the following analogue of Picard�s theorem for the bound-
ary behaviour of universal Taylor series.

Corollary 2 Let f 2 U . Then, for every w 2 T and r > 0, the function
f assumes every complex value, with at most one exception, in�nitely often
on D(w; r) \ D.

This answers a question of Costakis (private communication). Costakis
and Melas [8] had previously proved that f assumes every complex value,
with at most one exception, in�nitely often on D; their argument shows that
there is at least one point w 2 T with the stated Picard-type property. The
exceptional value can actually arise: it was shown in Theorem 1.3 of [8] that
there exist zero-free members of U . Corollary 2 also improves a particular
case of Theorem 1 in [10], where it was established that Cnf(D(w; r) \ D)
must be a polar set. Following its proof in Section 2 we will indicate two
respects in which it can be generalized.

We can further show that any function f in U must assume all but one
complex value in any angle at �most�boundary points. We denote angular
approach regions at a point w 2 T by

�t�(w) = fz : jz � wj < �(1� jzj) < �tg (� > 1; 0 < t � 1);

and recall that a set E � T is called residual if TnE is a countable union
of nowhere dense subsets of T (that is, TnE is of �rst Baire category with
respect to T). The following result complements Theorem 2 of [11], which
says that f(�t�(ei�)) = C almost everywhere (d�).

Corollary 3 Let f 2 U . Then there is a residual set E � T such that

Cnf
�
�t�(w)

�
contains at most one point (w 2 E;� > 1; 0 < t � 1):

Finally, we observe that membership of U is incompatible with any local
Bergman-type integrability condition.

Corollary 4 Let f 2 U . Then, for every w 2 T and r > 0, and every
� > �1, Z

D(w;r)\D
log+ jf(z)j

�
1� jzj2

��
dA(z) =1:

In particular, f does not belong to any Bergman or Bergman-Nevanlinna
class on D.

Proofs of the above results may be found in the next section. Sub-
sequently we indicate an analogue of Theorem 1 for universal polynomial
expansions of harmonic functions in terms of homogeneous polynomials.
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2 Proofs of results

Proof of Theorem 1. Let  ; f; w; r be as in the statement of Theorem
1. We may assume that r < 1. Let r0 = r=3 and

At = ftz : z 2 D(w; r0) \ Tg (t > 0): (2)

Clearly
D(�; r0) � D(w; r) \ D (� 2 A1�r0): (3)

The growth hypothesis on f shows that, when 0 < � < r0 and � 2 A1�r0 ,
we have Z 2�

0

���f(� + �ei�)���2 d�
2�
� f (1� r0 + �)g2;

and so
1X
n=0

�����f (n)(�)n!

�����
2

�2n � f (1� r0 + �)g2:

Writing

SN (f; �)(z) =
NX
n=0

f (n)(�)

n!
(z � �)n (N 2 N; � 2 D; z 2 C);

it follows thatZ 2�

0

���SN (f; �)(� + �ei�)���2 d�
2�

=

NX
n=0

�����f (n)(�)n!

�����
2

�2n

� f (1� r0 + �)g2 (� 2 (0; r0); � 2 A1�r0):(4)

Let z 2 A1�", where " 2 (0; r0). Putting � = (1 � r0)z= jzj 2 A1�r0 and
� = r0 � "=2, we can now use the subharmonicity of jSN (f; �)j2 and the
Poisson integral formula for the disc D(�; �) to see that

jSN (f; �)(z)j2 �
Z 2�

0

�2 � (r0 � ")2

jz � (� + �ei�)j2
���SN (f; �)(� + �ei�)���2 d�

2�

� 4r0
"
f (1� r0 + �)g2 (N 2 N);

by (4). Hence

jSN (f; �)(z)j � 2
r
r0
"
 (1� "=2) (z 2 A1�"; " 2 (0; r0); N 2 N): (5)

We now suppose, for the sake of contradiction, that f 2 U . Then we can
choose a subsequence (Nk) of N such that

SNk(f; 0)! 0 uniformly on ftz : 1 � t � 2; z 2 A1g: (6)
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In fact, according to Section 9 of Melas and Nestoridis [15], we can simulta-
neously arrange that

SNk(f; �)(z)�SNk(f; 0)(z)! 0 locally uniformly with respect to (�; z) 2 D�C:

Let � : (1� r0; 2)! (0;1) be given by

�(t) =

�
2(1� t)�1=2 ((1 + t)=2) (1� r0 < t < 1)

1 (1 � t < 2)
:

Then (5) and (6) together show that, for all su¢ ciently large k,

jSNk(f; 0)(z)j � �(jzj) on ftz : z 2 A1; 1� r0 < t < 2g:

Since Z
ftz:1�r0<t<1;z2Ig

log+ log+ �(jzj)dA(z) <1;

by (1), we can now apply a well known �log log� result (see, for example,
Section 3 of Domar [9]) to see that (SNk(f; 0)) is a normal family on ftz :
z 2 A1; 1� r0 < t < 2g. In view of (6) and the local uniform convergence of
(SNk(f; 0)) to f on D, this leads to the absurd conclusion that f � 0. Hence
f =2 U :

Proof of Corollary 2. Let w 2 T and r 2 (0; 1), and suppose that
f is a holomorphic function on D that omits two values, say 0 and 1, on
D(w; r) \ D. Let r0 = r=3 and At be as de�ned in (2), let z 2 A1�", where
0 < " < r0, and let � = (1� r0)z= jzj 2 A1�r0 . Then Schottky�s theorem, as
re�ned by Ahlfors (see Theorem B in [1]), can be applied to f on the disc
D(�; r0) to see that

log jf(z)j � 2r0
"

�
7 + log+ jf(�)j

�
;

in view of (3). Hence

log jf(z)j � 2r0
1� jzj

�
7 + sup

�
log+ jf(�)j : � 2 A1�r0

	�
(z 2 D(w; r0)\D):

It now follows from Theorem 1 that f 62 U .

Remark 5 We can give a quantitative version of Corollary 2, which im-
proves Theorem 2 of [14], as follows. Let f 2 U . Then, for any w 2 T
any r; � > 0, and all but at most one complex number a, the distinct zeros
(zj(a)) of f � a in D(w; r) \ D satisfyX

(1� jzj(a)j)� =1: (7)
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To prove this, suppose that the above series converges for two distinct choices
of a. Then log jf(z)j � C(1 � jzj)���1 on D(w; r=2) \ D, by Proposition
2 of [14] (which relies on Nevanlinna value distribution theory), combined
with a suitable conformal mapping from D(w; r) \ D to D. Theorem 1 can
now be invoked to obtain a contradiction. In fact, (7) can be even further
strengthened, along the lines of Theorem 4 of [14]. We are grateful to Vassili
Nestoridis for raising the question of whether such a result might hold.

Remark 6 There is a natural extension, U(
; �), of the collection U to
general simply connected domains 
 � C, where � 2 
 denotes the centre
of expansion of the Taylor series (see [19]). It was shown recently [10] that,
for any f 2 U(
; �), w 2 @
 and r > 0, the set Cnf(D(w; r) \ 
) is polar.
The stronger conclusion we obtained in Corollary 2 readily extends, by a
similar argument, to simply connected domains 
 which satisfy the following
geometric condition: for any w 2 @
 and r > 0, there exists w0 2 @
 and
r0 > 0, and a family of discs fD(z�; ��)g in D(w; r)\
 such that inf� �� > 0
and D(w0; r0) \ 
 � [�D(z�; ��).

Proof of Corollary 3. Let f be a holomorphic function on D. For each
j; k; l 2 N we de�ne the set

Ej;k;l =
n
w 2 T : there exist aw; bw 2 D(0; l)nf

�
�
1=k
j+1(w)

�
satisfying jaw � bwj � l�1

o
:

Clearly Ej;k;l increases with each of j, k and l. Suppose now that the
conclusion of the corollary fails to hold. Then there exist j0; k0; l0 2 N such
that the set F , where F = Ej0;k0;l0 , has non-empty interior I with respect
to T. For each w in F we choose distinct points

aw; bw 2 D(0; l0)nf
�
�
1=k0
j0+1

(w)
�
such that jaw � bwj � l�10

and de�ne

fw(z) =
f(z)� aw
bw � aw

(z 2 D);

so that fw omits the values 0 and 1 on �
1=k0
j0+1

(w). Next, there exist �; � 2
(0; 1=2), depending only on j0; k0, such that

D ((1� t)w; 2�t) � �1=k0j0+1
(w) (w 2 F; 0 < t � �):

If w 2 F , then Schottky�s theorem can be applied on D ((1� �)w; 2��) to
see that

log jfw((1� t)w)j � 3
�
7 + log+ jfw((1� �)w)j

�
((1� �)� � t � �):

Repeated application of this inequality shows that

7 + log+ jfw((1� t)w)j � 4n
�
7 + log+ jfw((1� �)w)j

�
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whenever (1� �)n� � t � (1� �)n�1� and n 2 N. Hence there is a constant
� � 1, depending only on � and � , such that

log jfw((1� t)w)j � t��
�
7 + log+ jfw((1� �)w)j

�
(0 < t � �):

Since f is bounded on f(1 � �)w : w 2 Fg, and aw; bw 2 D(0; l0), where
jaw � bwj � l�10 , there exists C > 0 such that

log jf((1� t)w)j � Ct�� (w 2 F; 0 < t � �):

Continuity now yields

log jf(z)j � C(1� jzj)�� (z 2 ftw : w 2 I; 0 < t � �g);

and Theorem 1 shows that f 62 U .

Proof of Corollary 4. Let w 2 T, r 2 (0; 1) and � > �1, and suppose
that f is a holomorphic function on D such that J <1, where

J =

Z
D(w;r)\D

log+ jf(z)j
�
1� jzj2

��
dA(z):

By the subharmonicity of log+ jf j we deduce that

log+ jf(�)j � 4

�(1� j�j)2
Z
D(�;(1�j�j)=2)

log+ jf(z)j dA(z)

� C(�)

(1� j�j)�+2J (� 2 D(w; r=2) \ D);

where C(�) is a positive constant depending only on �. It now follows again
from Theorem 1 that f 62 U .

3 Universal polynomial expansions of harmonic func-
tions

Let B(x; r) denote the open ball of Euclidean space Rd (d � 2), let B =
B(0; 1) and S = @B. Any harmonic function h on B has a unique expansion
of the form

h(x) =
1X
0

hn(x) (x 2 B); (8)

where hn belongs to the space of homogeneous harmonic polynomials of
degree n in Rd. We say that h belongs to the collection UH , of harmonic
functions on B with universal homogeneous polynomial expansions, if, for
any compact set K � RdnB with connected complement and any harmonic
function u on a neighbourhood of K, there is a subsequence (Nk) of N such
that

PNk
0 hn ! u uniformly on K. Such universal harmonic functions have

been studied in [5], [12] and [13]. We can now give the following analogue of
Theorem 1.
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Theorem 7 Let  : [0; 1)! (0;1) be an increasing function such thatZ 1

0
log+  (t)dt <1: (9)

If (8) holds and jh(x)j �  (jxj) on B(w; r) \ B for some w 2 S and r > 0,
then f =2 UH .

The proof is directly analogous to the argument given in Section 2. The
reason why only one �log�appears in (9), in contrast to (1), is that we apply
Domar�s result to subharmonic functions of the form jhj rather than log jf j.
The required versions for harmonic functions of the results we used from
[15] were recently established by Manolaki [13] (we can use a combination
of Theorems 3 and 4 of that paper).
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