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Abstract

A power series that converges on the unit disc D is called univer-
sal if its partial sums approximate arbitrary polynomials on arbitrary
compacta in C\D that have connected complement. This paper shows
that such power series grow strongly and possess a Picard-type prop-
erty near every boundary point.

1 Introduction

Let D(z,7) denote the open disc of centre z and radius r in the complex
plane C, let D = D(0,1) and T = 9D. A power series »_ a,2" with radius
of convergence 1 is said to belong to the class U if, for every compact set
K c C\D with connected complement and every continuous function g :
K — C that is holomorphic on K°, there is a subsequence (Ny) of N such
that Eév ¥ a,z" — g uniformly on K. Members of U are called universal
Taylor series. Nestoridis [18] has shown that such universal behaviour is
a generic property of holomorphic functions on the unit disc; that is, U is
a dense G subset of the space of all holomorphic functions on ) endowed
with the topology of local uniform convergence.

A significant avenue of investigation concerns the boundary behaviour of
functions in U: see [19], [16], [8], [14], [15], [7], [17], [2], [4], [6], [10], [11]. In
this paper we will improve several known results by showing that universal
Taylor series have very strong growth properties at every boundary point.

Theorem 1 Let 1) :[0,1) — (0,00) be an increasing function such that

/ "og* log* (8)dt < oo, (1)
0

If f(2) =Y anz"™ and |f(2)| < ¢¥(|z]) on D(w,r)ND for some w € T and
r >0, then f ¢ U.
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The special case of Theorem 1 where the inequality |f(z)| < ¥(|z]) is
required to hold on all of I is due to Melas (Theorem 3 of [14]), who also
showed that condition (1) is close to being sharp (see Theorem 8 of [14]).

We can deduce the following analogue of Picard’s theorem for the bound-
ary behaviour of universal Taylor series.

Corollary 2 Let f € U. Then, for every w € T and r > 0, the function

f assumes every complex value, with at most one exception, infinitely often
on D(w,r) N D.

This answers a question of Costakis (private communication). Costakis
and Melas [8] had previously proved that f assumes every complex value,
with at most one exception, infinitely often on I; their argument shows that
there is at least one point w € T with the stated Picard-type property. The
exceptional value can actually arise: it was shown in Theorem 1.3 of [8] that
there exist zero-free members of U. Corollary 2 also improves a particular
case of Theorem 1 in [10], where it was established that C\ f(D(w,r) N D)
must be a polar set. Following its proof in Section 2 we will indicate two
respects in which it can be generalized.

We can further show that any function f in &/ must assume all but one
complex value in any angle at “most” boundary points. We denote angular
approach regions at a point w € T by

Mw)={z:|z—wl <al—|z|) <at} (a>1,0<t<1),

and recall that a set E C T is called residual if T\E is a countable union
of nowhere dense subsets of T (that is, T\ F is of first Baire category with
respect to T). The following result complements Theorem 2 of [11], which

says that f(T%(e"?)) = C almost everywhere (df).
Corollary 3 Let f € U. Then there is a residual set E C T such that
C\f (T4 (w)) contains at most one point (w € E,a>1,0 <t < 1).

Finally, we observe that membership of U/ is incompatible with any local
Bergman-type integrability condition.

Corollary 4 Let f € U. Then, for every w € T and r > 0, and every
a>—1,
[ gt i@l (1= ) dae) = .
D(w,r)ND

In particular, f does not belong to any Bergman or Bergman-Nevanlinna
class on .

Proofs of the above results may be found in the next section. Sub-
sequently we indicate an analogue of Theorem 1 for universal polynomial
expansions of harmonic functions in terms of homogeneous polynomials.



2 Proofs of results

Proof of Theorem 1. Let ¢, f,w,r be as in the statement of Theorem
1. We may assume that » < 1. Let rp = /3 and

Ay ={tz:z€ D(w,mo)NT} (t>0). (2)

Clearly
D(¢,r0) C D(w,r)ND (¢ € Ai—ry)- (3)

The growth hypothesis on f shows that, when 0 < p < rg and ¢ € A1_,,,

we have
/27r
0

o0

D

n=0

o2 df
£+ o) S < = o+ ),

and so
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Writing

(
SN(£O(E) =D =5 (2-()" (NEN(eD,z€0),

n=0

N

v+ 2 = 3

it follows that
2
/0 2m o
< (v —ro+p)}* (p € (0,70),¢ € A1)
Let z € A1_., where ¢ € (0,79). Putting ( = (1 —r9)z/|2| € Ai—r, and

p = 19 —€/2, we can now use the subharmonicity of |Sx(f,¢)|* and the
Poisson integral formula for the disc D((, p) to see that

n!

) (A |2
! (4)' o

2 2 ro — 2 )
SN(£, Q)P < /0 ,:_ (g(fp;e))ﬁ S, Q€+ )| O

0 1~ o4 )} (N eN),

<
£

by (4). Hence

ISn(f,{)(2)] <2 %07#(1 —¢/2) (z€ A1_c,e € (0,19), N € N). (5)

We now suppose, for the sake of contradiction, that f € U/. Then we can
choose a subsequence (NNg) of N such that

Sn,(f,0) = 0 uniformly on {tz:1<¢<2,2€ A} (6)



In fact, according to Section 9 of Melas and Nestoridis [15], we can simulta-
neously arrange that

SN, (f,0)(2)=SnN,(f,0)(2) — 0 locally uniformly with respect to (¢, z) € DxC.
Let ¢ : (1 —7,2) — (0,00) be given by

(20 -tV (1 41)/2) Q-ro<t<])
W)_{ 1 (1§0t<2)

Then (5) and (6) together show that, for all sufficiently large k,
ISn, (f,0)(2)] < o(]z]) on {tz:ze A, 1—rg<t<2}

Since
/ log" log* 6(12])dA(2) < o,
{tz:1—ro<t<1,z€l}
by (1), we can now apply a well known “log log” result (see, for example,
Section 3 of Domar [9]) to see that (Sn,(f,0)) is a normal family on {tz :
z€ Ai1,1—rg <t <2}. In view of (6) and the local uniform convergence of
(Sn,.(f,0)) to f on D, this leads to the absurd conclusion that f = 0. Hence

féeU. m

Proof of Corollary 2. Let w € T and r € (0,1), and suppose that
f is a holomorphic function on I that omits two values, say 0 and 1, on
D(w,r)ND. Let 7o = r/3 and A; be as defined in (2), let z € A;_., where
0<e<rg,andlet ( = (1—r79)z/|2| € A1_y,. Then Schottky’s theorem, as
refined by Ahlfors (see Theorem B in [1]), can be applied to f on the disc
D(¢, o) to see that

2’!”0

log | f(2)] < — (7+log™ |f(O)]),

£
in view of (3). Hence

2ro

log ()] < 71

(7+sup {log" [f({)|: ¢ € A1y }) (2 € D(w,70)ND).

It now follows from Theorem 1 that f €U. m

Remark 5 We can give a quantitative version of Corollary 2, which im-
proves Theorem 2 of [14], as follows. Let f € U. Then, for any w € T
any r,k > 0, and all but at most one complex number a, the distinct zeros
(zj(a)) of f —a in D(w,r) N D satisfy

Y (1= lz@)) = co. (7)
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To prove this, suppose that the above series converges for two distinct choices
of a. Then log|f(2)| < C(1 — |z|)™*! on D(w,r/2) N'D, by Proposition
2 of [14] (which relies on Nevanlinna value distribution theory), combined
with a suitable conformal mapping from D(w,r) N D to D. Theorem 1 can
now be invoked to obtain a contradiction. In fact, (7) can be even further
strengthened, along the lines of Theorem 4 of [14]. We are grateful to Vassili
Nestoridis for raising the question of whether such a result might hold.

Remark 6 There is a natural extension, U(2, (), of the collection U to
general simply connected domains 2 C C, where ( € 0 denotes the centre
of expansion of the Taylor series (see [19]). It was shown recently [10] that,
for any f € U(, (), w € I and r > 0, the set C\ f(D(w,r) N Q) is polar.
The stronger conclusion we obtained in Corollary 2 readily extends, by a
similar argument, to simply connected domains 0 which satisfy the following
geometric condition: for any w € Q) and r > 0, there exists wy € 02 and
ro > 0, and a family of discs {D(zq, py)} in D(w, )N such that inf, p, > 0
and D(wo,r0) N Q C UaD(2a, py)-

Proof of Corollary 3. Let f be a holomorphic function on . For each
j,k,1 € N we define the set

Ejpi = {w € T : there exist ay, by, € D(0,0)\f (Fjlfrkl(w)) satisfying |aq,
Clearly Ej; increases with each of j, £ and [. Suppose now that the
conclusion of the corollary fails to hold. Then there exist jg, ko, log € N such
that the set F, where F = Ejq ko lo» has non-empty interior I with respect
to T. For each w in F' we choose distinct points

;b € D(0, o)\ f (rl/’“’ (w)) such that |ay — by| > 15"

Jo+1
and define i)
Z) —
w(z) = ——4 D),
fule) = 5222 ey

so that f, omits the values 0 and 1 on F%ffi(w) Next, there exist p, 7 €

(0,1/2), depending only on j, ko, such that

D((1—tyw,2pt) C T}/ (w)  (we F0<t<7)
If w € F, then Schottky’s theorem can be applied on D ((1 — 7)w, 2p7) to
see that

log | fu((1 = t)yw)| < 3 (7 +1log" [fu((l = T)w)|)  (L-pT<t<7).
Repeated application of this inequality shows that

7+1og" | fw((1 —t)w)| < 4™ (7 +1og™ | fu((1 — T)w)))

— by > 1—1}.



whenever (1 — p)"7 <t < (1—p)"~!7 and n € N. Hence there is a constant
a > 1, depending only on p and 7, such that

log | fu((1 —t)w)| <t7* (T +log" | fu((1 = T)w)|) (0<t<7).

Since f is bounded on {(1 — 7)w : w € F}, and ay, by, € D(0,ly), where
|law — bu| > 1y *, there exists C' > 0 such that

log|f(1—tw) <Ct™™ (weF,0<t<T).
Continuity now yields
log|f(2)| <CA—|z))™" (zef{tw:wel,0<t<T}),
and Theorem 1 shows that f €. m

Proof of Corollary 4. Let w € T, r € (0,1) and o > —1, and suppose
that f is a holomorphic function on D such that J < oo, where

J= /D I (1 12P)" aA(z).

By the subharmonicity of log™ | f| we deduce that

4
og" 1£Q)] £ e | log™* |£(2)] dA(2)
(1 =16 S, a-ley/2)
C(a)

< -\

T (=gt

where C'(«) is a positive constant depending only on . It now follows again
from Theorem 1 that f¢U. m

J (¢ € D(w,r/2)ND),

3 Universal polynomial expansions of harmonic func-
tions

Let B(z,7) denote the open ball of Euclidean space R? (d > 2), let B =
B(0,1) and S = 0B. Any harmonic function h on B has a unique expansion
of the form

h(z) = ho(z) (z€B), (8)
0

where h, belongs to the space of homogeneous harmonic polynomials of
degree n in R%. We say that h belongs to the collection Uy, of harmonic
functions on B with universal homogeneous polynomial expansions, if, for
any compact set K C RY\B with connected complement and any harmonic
function u on a neighbourhood of K, there is a subsequence (Nj) of N such
that Zév ¥ hyp, — w uniformly on K. Such universal harmonic functions have
been studied in [5], [12] and [13]. We can now give the following analogue of
Theorem 1.



Theorem 7 Let ¢ :[0,1) — (0,00) be an increasing function such that

1
/ log™ 9 (t)dt < . 9)
0

If (8) holds and |h(x)| < ¥(|z|) on B(w,r) NB for some w € S and r > 0,
then f ¢ Up.

The proof is directly analogous to the argument given in Section 2. The
reason why only one “log” appears in (9), in contrast to (1), is that we apply
Domar’s result to subharmonic functions of the form |h| rather than log|f|.
The required versions for harmonic functions of the results we used from
[15] were recently established by Manolaki [13] (we can use a combination
of Theorems 3 and 4 of that paper).
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