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Abstract. We show that any finite-term recurrence relation for pla-
nar orthogonal polynomials in a domain imply that the domain must
be an ellipse. Our proof relies on Schwarz function techniques and on
elementary properties of functions in Sobolev spaces.

1. Introduction

Let Ω be a bounded simply-connected domain in the complex plane, and
let {pn}∞n=0 denote the sequence of Bergman orthogonal polynomials of Ω.
These are defined as the sequence

pn(z) = γnz
n + γn−1z

n−1 + · · · , γn > 0, n = 0, 1, 2, . . . ,

of polynomials which are orthonormal with respect to the inner product

〈f, g〉 :=
∫

Ω
f(z)g(z)dA(z),

where dA stands for the area measure. The associated L2-norm is defined,
as usual, by

‖f‖L2(Ω) := 〈f, f〉 1
2 =

{∫

Ω
|f(z)|2dA(z)

} 1
2

.

Let Ω′ := C \Ω denote the complement (in C) of Ω and let Φ denote the
conformal map Ω′ → D′ := {w : |w| > 1}, normalized so that, near infinity,

Φ(z) = γz + γ0 +
γ1

z
+
γ2

z2
+ · · · , γ > 0. (1.1)

Note that the constant 1/γ gives the (logarithmic) capacity cap(Γ) of the
boundary Γ of Ω (see e.g. [19], [20]). The inverse conformal map Ψ := Φ−1 :
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D′ → Ω′ has a Laurent series expansion of the form

Ψ(w) = bw + b0 +
b1
w

+
b2
w2

+ · · · , (1.2)

valid for |w| > 1, where b = 1/γ = cap(Γ).
It is well-known that orthogonal polynomials with respect to any measure

µ on the real line do satisfy a three-term recurrence relation, see e.g. [20].
By contrast, polynomials orthogonal with respect to the area measure, or
the arc-length measure, in the complex plane C, do not favor recurrence re-
lations. To this end, Lempert [12] has produced examples of several, rather
special domains, where the associated orthogonal polynomials do not sat-
isfy ANY finite-term recurrence relation. M. Putinar and the second author
have noted in [14] that the fact that “the Bergman polynomials of Ω satisfy
a finite-term recurrence relation” is, actually, equivalent to the fact that
“any Dirichlet problem in Ω, with polynomial data, possesses a polynomial
solution”. The latter is the hypothesis of the so-called Khavinson-Shapiro
conjecture [11], which states that only ellipses (or, ellipsoids in higher di-
mensions) have this property. This conjecture has attracted some attention
and the reader is referred to [2], [15], [8], [10] and references therein, for re-
sults reporting on the recent progress in that direction. In [14] the authors
showed that if the Bergman polynomials of a simply-connected domain Ω
satisfy any finite-term recurrence relation and, in addition, the (necessarily
algebraic) boundary of Ω, ∂Ω ⊆ {P (x, y) = 0, P is a polynomial} satisfies
the condition:

(B) the set {P = 0} is bounded in C,
then Ω is an ellipse and the recurrence relation must be a three-term relation.

The main point of this note is to remove the assumption (B). We do this,
however, by assuming a finite-term recurrence of constant width, rather than
one of variable width, as was the case in [14]. More precisely, we show that if
the Bergman orthogonal polynomials of Ω satisfy a (N + 1)-term recurrence
relation, with N a positive integer, then Ω is an ellipse and N = 2. Yet,
in order for our argument to work, it is not enough to assume that Ω is
merely simply-connected, though a C2-smooth Jordan boundary curve is
sufficient. It remains an open question whether our results hold for any
simply-connected domain. We strongly believe so, but we haven’t been able
to extend our proof to that case.

2. Main results

Let Ω be a bounded simply-connected planar domain and consider the
Bergman space L2

a(Ω) associated with Ω. This is the Hilbert space of func-
tions analytic and square integrable in Ω. In this note we assume that the
boundary Γ of Ω is a Jordan curve. Under this assumption the Bergman
polynomials {pn}∞n=0 of Ω form a complete orthonormal system in L2

a(Ω)
(see, e.g., [9] for weaker assumptions on Γ regarding completeness in L2

a(Ω)).
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The standard way to construct the Bergman polynomials is by means of
the Gram-Schmidt process. This is a linear algorithm that computes the
sequence of the orthonormal polynomials recursively, by using as data the
entrances of the complex moments matrix H := [µm,n]∞m,n=0 of Ω:

µm,n :=
∫

Ω
zmzndA(z). (2.3)

It turns out that the complex moments matrix H alone suffices to determine
the (unique) sequence of Bergman polynomials of Ω, and this determination
is done, for each pn, in a finite number of steps and by using a finite section
of the moments matrix. (For more details regarding the general question of
uniqueness properties of complex moments see [5].)

Clearly for all n = 0, 1, 2, . . ., we have

zpn(z) =
n+1∑

k=0

ak,npk(z), n = 0, 1, . . . , (2.4)

where the Fourier coefficients ak,n are given by ak,n = 〈zpn, pk〉. Then,

n+1∑

k=0

|ak,n|2 <∞, n = 0, 1, . . . .

The coefficients ak,n constitute the entrances of an infinite lower Hessenberg
matrix M . This matrix is closely related to the multiplication operator by
z (the Bergman shift operator) Tz : L2

a(Ω)→ L2
a(Ω), defined by (Tzf)(z) =

zf(z), in the sense that Tz can be represented with respect to the basis
{pn}∞n=0 by M . Note that Tz is linear and bounded on L2

a(Ω).

Definition 2.1. We say that the Bergman polynomials {pn}∞n=0 satisfy a
(N + 1)-term recurrence relation for some fixed positive integer N , if for
any n ≥ N − 1,

zpn(z) = an+1,npn+1(z) + an,npn(z) + . . .+ an−N+1,npn−N+1(z). (2.5)

If the Bergman polynomials satisfy a (N + 1)-term recurrence relation
then one easily sees (cf. [14]) that the adjoint operator T ∗z of the Bergman
shift, and its multiples, increase the degree of a polynomial p(z) subject to
the constrain:

deg[(T ∗z )mp] ≤ m(N − 1) + deg p, m ∈ N. (2.6)

This follows easily, from the fact that T ∗z can be represented with respect to
the basis {pn}∞n=0 by the adjoint matrix M∗ of M which, in this case, has
an upper Hessenberg and banded form of constant width N + 1.

The next result confirms the Khavinson-Shapiro conjecture (cf. [11], [2]
and [15]) under an additional assumption on the degree of the polynomial
solution to the Dirichlet problem.
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Theorem 2.1. Let Ω be a bounded simply-connected domain in C with a C2-
smooth Jordan boundary Γ, and assume that there exists a positive integer
N := N(Ω) with the property that the Dirichlet problem

{
∆u = 0 in Ω,
u = zmzn on Γ,

(2.7)

has a polynomial solution of analytic degree ≤ m(N − 1) + n (in z) and of
conjugate analytic degree ≤ n(N − 1) +m (in z) for all positive integers m
and n. Then Ω is an ellipse and N = 2.

Remark 2.1. By considering the polynomial p(x, y) = zz(= x2 +y2) in (2.7),
it is easy to see that under the assumptions of Theorem 2.1, the boundary
curve Γ must be a part of the zero set of an algebraic polynomial and, hence,
a piecewise analytic curve.

It is well-known that the Bergman polynomials of an ellipse satisfy a
three-term recurrence relation. In fact, it is easy to check that they are
suitably normalized Chebyshev polynomials of the 2nd kind. The associated
Hessenberg matrix in this case is triangular and goes by the name of Jacobi
matrix. The following theorem states that this is the only possible case for
an (N+1)-recurrence to occur.

Theorem 2.2. With Ω and Γ as in Theorem 2.1, assume that the Bergman
orthogonal polynomials for Ω satisfy a (N+1)-term recurrence relation, with
some N ≥ 2. Then Ω is an ellipse and, hence, N = 2.

We note that the conclusion of Theorem 2.2, for polynomials orthogonal
with respect to the arc-length measure that satisfy a three-term recurrence
relation (i.e. under the assumption N = 2) goes back to P. Duren [7]. A
similar result, as that of [7], but for polynomials orthogonal with respect to
the harmonic measure on Γ, have been established in [6].

Theorem 2.1 becomes an easy consequence of Theorem 2.2, after we es-
tablish the equivalence between the assumptions of the two theorems. This
latter task was essentially done in [14, Thm 1], under a more general defi-
nition for recurrences and, thus, without specific reference to the degree of
the polynomial solution of (2.7). For our purposes here, however, we require
the following explicit version of Theorem 1 of [14]:

Proposition 2.1. Let Ω be a bounded simply-connected domain in C with
a C2-smooth Jordan boundary Γ. Then, there exists a positive integer N :=
N(Ω), such that for all positive integers m and n the Dirichlet problem (2.7)
with polynomial data zmzn has a polynomial solution of degree ≤ m(N −
1) +n in z, and ≤ n(N −1) +m in z, if and only if the Bergman orthogonal
polynomials for Ω satisfy a (N + 1)-term recurrence relation.

The following result, which gives the ratio asymptotics for the Bergman
polynomials, is needed in establishing Theorem 2.2. Its proof is a simple
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consequence of the strong asymptotics for Bergman polynomials over do-
mains with smooth boundaries, established by P.K. Suetin in [19, Thm. 1.2]
and, thus, we shall omit it.

Lemma 2.1. Assume that Ω is a bounded simply-connected domain in C
with a C2-smooth Jordan boundary Γ and let {pn}∞n=0 denote the sequence
of Bergman polynomials of Ω. Then,

lim
n→∞

pn+1(z)
pn(z)

= Φ(z), z ∈ Ω′. (2.8)

We note, in passing, that strong asymptotics for Bergman polynomials
were first derived by T. Carleman in [3], under the assumtion that Γ is
analytic.

Remark 2.2. For Ω simply-connected and bounded, a well-known result by
Fejér asserts that the zeros of pn(z) (n ∈ N) are contained in Co(Ω), where
Co(Ω) denotes the convex hull of Ω. Under the additional assumption for
Γ in Lemma 2.1, it follows from [19, Thm 1.2] that there exists a positive
integer n0 such that the sequence {pn}∞n=n0

has no zeros in Ω′.

Remark 2.3. Lemma 2.1 is precisely the reason we need to assume C2-
smoothness of Γ in Theorem 2.1. Although we haven’t been able to extend
the ratio asymptotics to more general sets, we believe that (2.8) holds for
arbitrary domains Ω, such that Γ = ∂Ω = ∂Ω′ is a continuum.

3. Proofs

Proof of Proposition 2.1. Fix two positive integers m,n and assume that the
Bergman orthogonal polynomials for Ω satisfy a (N + 1)-term recurrence
relation. Then, in view of (2.6), (T ∗z )mzn−1 = q(z), where q is a polynomial
of degree ≤ m(N − 1) + n− 1. Therefore,

zmzn−1 = q(z) + h(z), z ∈ Ω,

where h ∈ L2(Ω) 	 L2
a(Ω). Let Q(z) be a polynomial satisfying Q′ = q.

According to the so-called Khavin’s lemma (see e.g. [18, p. 26]) h = ∂g,
with g in the Sobolev space W 1,2

0 (Ω). Integrating against ∂ we find,

zmzn = Q(z) + g(z) + f(z), z ∈ Ω, (3.9)

where f ∈ L2
a(Ω). Since Γ is smooth, it follows that g = 0, a.e. on Γ = ∂Ω,

and thus,
zmzn = Q(z) + f(z), a. e. z ∈ Γ,

Moreover, from (3.9), Poincare’s inequality and the smoothness of Γ, we
infer easily (see, e.g., [1]) that f , in fact, belongs to the Hardy space H2(Ω).
(For the most up to date theory of Sobolev spaces we refer the reader to
[13].) Similarly we have,

znzm = G(z) + f1(z), a. e. z ∈ Γ,
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where G is a polynomial of degree ≤ n(N−1)+m, and f1 ∈ L2
a(Ω)∩H2(Ω).

Hence,

Q(z) + f(z) = G(z) + f1(z), z ∈ Ω,

and since Ω is simply-connected, we infer that

Q(z) = f1(z) + c and G(z) = f(z) + c, z ∈ Ω,

for some constant c. Hence, the Dirichlet problem in Ω with data zmzn has
a polynomial solution whose analytic degree (in z) is ≤ m(N − 1) + n, and
its anti-analytic degree (in z) is ≤ n(N − 1) +m.

For the converse assume that Dirichlet’s problem for Ω with data zmzn

has a polynomial solution u(z) = Q(z) +G(z), where Q and G are complex
polynomials, with deg(Q) ≤ m(N − 1) + n.

Let h(z) be an bounded analytic function in Ω. Then, by Stokes’ and
Cauchy’s theorems we obtain for n ≥ 1:

〈(T ∗z )mzn−1, h〉 = 〈zmzn−1, h〉 =
∫

Ω
zmzn−1h(z) dA(z)

= − 1
2ni

∫

Γ
ζmζnh(ζ) dζ =

1
n

∫

Ω
Q′(z)h(z) dA(z)

= 〈q, h〉,
where q(z) := Q′(z)/n. This implies that

(T ∗z )mzn−1 = q(z),

where deg(q) ≤ m(N − 1) + n − 1 and, hence, the finite-term recurrence
relation for the Bergman polynomials. �

Proof of Theorem 2.2. Assume that the Bergman polynomials of Ω satisfy
the recurrence relation (2.5) for some N ≥ 2. Then, from Proposition 2.1
and Remark 2.1, we see that Γ must be piecewise analytic.

Now we argue as in [7, p. 314]: For the moment, we assume that each of
the N + 1 sequences of the Fourier coefficients

α(1)
n := an+1,n, α(2)

n := an,n, . . . , α(N+1)
n := an−N+1,n, n ∈ N, (3.10)

is bounded, and then proceed as follows:

(i) divide both sides of (2.5) by pn(z) (for z ∈ C \ Co(Ω));
(ii) take the limit as n→∞, n ∈ Λ, on both sides of the resulting

equation, where Λ is an appropriate subsequence of N, chosen so
that each sequence in (3.10) tends to a finite limit;

(iii) note that
pn−k
pn

=
pn−1

pn

pn−2

pn−1
· · · pn−k

pn−k+1
, k ≤ N − 1;

(iv) apply Lemma 2.1.
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The above steps yield that the inverse exterior conformal map Ψ : D′ → Ω′
has a finite Laurent expansion of the form

Ψ(w) = bw + b0 +
b1
w

+
b2
w2

+ · · ·+ bN−1

wN−1
, |w| > 1. (3.11)

To verify that all the sequences in (3.10) are bounded, one simply has to
apply the Cauchy-Schwarz inequality, for j = 1, 2, . . . , N +1 and n ≥ N −1:

|α(j)
n | = |an+2−j,n| =

∣∣∣∣
∫

Ω
zpn+2−j(z)pn(z)dA(z)

∣∣∣∣
≤ ‖z‖∞ ‖pn+2−j‖L2(Ω) ‖pn‖L2(Ω) = ‖z‖∞,

where ‖ · ‖∞ stands for the sup-norm on Ω.
From (3.11), it follows that Ψ is a rational function. This implies that Ω′

is an unbounded quadrature domain, hence the associated Schwarz function
S(z), with S(z) = z on Γ := ∂Ω = ∂Ω′, has a meromorphic extension to Ω′,
i.e.,

S(z) = r(z) +
M∑

j=1

kj∑

l=1

cj,l
(z − zj)l + f(z), (3.12)

where zj ∈ Ω′, kj ∈ N, r(z) is a polynomial of degree d, and f(z) is analytic
and bounded in Ω′, see e.g. [17].

We show first that all the constants cj,l, j = 1, . . . ,M , l = 1, . . . , kj , in
(3.12) vanish.

Let P (z) :=
∏M
j=1(z− zj)kj and consider the Dirichlet problem (2.7) with

data zP (z). Our hypothesis and Proposition 2.1 imply that there exist
analytic polynomials h(z) and g(z) such that

zP (z) = g(z) + h(z), z ∈ Γ. (3.13)

(Note that deg(h) ≥ 1, otherwise on Γ, z = S(z) equals to a rational function
and Γ = ∂Ω is a circle, according to a well-known theorem of P. Davis, see
[4, p. 104].) Let R(z) = S(z) be the anti-conformal reflection about Γ.
Obviously, by (3.12), R(z) extends to Ω′ and has poles at ∞ and {zj}Mj=1.
From (3.12) and (3.13) we see that on Γ,

g(z) + h(R(z)) = r(z)P (z) + F (z), (3.14)

where F(z) is analytic in Ω′ \ {∞} and it may have a pole of order at most∑M
j=1 kj at ∞. Since both sides of (3.14) are analytic functions of z, (3.14)

holds on any path originating on Γ along which S(z) continues analytically.
Now, let γ be any path in Ω′ \ {∞} joining Γ to a given pole zj and

avoiding all other poles. Then the right hand side of (3.14) stays bounded
on γ and so does g(z), while h(R(z)) → ∞ at zj , because |R(z)| → ∞ at
zj and h(z) is a (non-constant) polynomial . This is a contradiction and,
therefore, S(z) can have no finite poles in Ω′. That is,

S(z) = r(z) + f(z), z ∈ Ω′ (3.15)
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where f(z) is analytic in Ω′ (including ∞).
Consider now the Dirichlet problem (2.7) with data zz = |z|2. In view of

our hypothesis and Proposition 2.1, we can find a polynomial g(z) of degree
k ≥ 2 (since if k ≤ 1, then Γ is obviously a circle and N = 1), such that, for
z ∈ Γ,

2Re{g(z)} = g(z) + g(z) = |z|2 = zS(z), (3.16)

or, using R(z) and (3.15),

g(z) + g(R(z)) = z r(z) + zf(z), z ∈ Γ. (3.17)

Consider a path γ in Ω′ joining Γ to ∞. Since both sides of (3.17) are
analytic in Ω′, (3.17) holds along γ. Yet, near ∞ we have |g(z)| ∼ |z|k,
|g(R(z))| ∼ |z|dk, and the right hand side of (3.17) behaves as O(|z|d+1),
This can only be possible if dk = d + 1, i.e. since k ≥ 2, only if d = 1 and
k = 2. From this it already, of course, follows that Ω is an ellipse and N = 2.
However, it may be worthwhile to point out the following observation as well.
Thus,

S(z) = c z + f(z), z ∈ Ω′, (3.18)

with f analytic in Ω′.
But this implies right away that Ω′ is a null-quadrature domain - cf. [17]

and [18]. Indeed, using Green’s and Cauchy’s theorems we have for any
number m ≥ 3:∫

Ω′

1
zm

dA(z) = − 1
2i

∫

Γ

1
zm

zdz = − 1
2i

∫

Γ

1
zm

S(z)dz

= − 1
2i

∫

|z|=R

1
zm
{c z + f(z)}dz = 0,

for large enough R, since f is analytic in Ω′ (including ∞). From this, in
view of a theorem of Sakai [16, Thm 1], we infer that Ω′ must be the exterior
of an ellipse. Hence Ω is an ellipse and, thus, N = 2. �

4. Concuding remarks

We finish with a number of remarks.
(i) As we have pointed out above, the main place where the C2-regularity

of the boundary Γ = ∂Ω is needed was the application of the strong asymp-
totics for Bergman polynomials of Suetin [19], that yield Lemma 2.1. More-
over, it is clear from the proof of Theorem 2.2 that we only need (2.8) to
hold on a continuum subset of Ω′, in a neighborhood of ∞. It looks quite
plausible that, in this weaker form, (2.8) holds for arbitrary, bounded Jordan
domains. Yet, we haven’t been able to derive it for such general domains
or, find a pertinent result in the literature.

(ii) For a most updated account on the status of the Khavinson-Shapiro
conjecture in its full generality, mostly due to the work of H. Render [15],
we refer the reader to the recent survey [10].
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(iii) For a quite different approach, regarding singularities of solutions of
the Dirichlet problem in R2, we refer the reader to [2], also cf. [8].

(iv) Finiteness of only the first row of the adjoint matrix M∗ associated
with T ∗z , is not sufficient to yield Theorems 2.1–2.2, or Proposition 2.1 (un-
less, of course, a0,n = 0, n ≥ 2, cf. [14, Prop. 1]). For example, take Γ
to be the bounded component of {x2 + y2 − 1 + ε(x3 − 3xy2) = 0}, where
ε > 0 is small enough so that Γ is a perturbation of the unit circle. Then,
the quadratic data zz are matched on Γ by a cubic harmonic polynomial,
despite the fact that Γ is not an ellipse.

(v) The assumption that Ω is simply-connected is not really necessary. As
is seen from the arguments in [2], the hypothesis in the Khavinson-Shapiro
conjecture implies that Ω is simply-connected.

(vi) The condition that a finite-term recurrence relation (of some constant
width N + 1), satisfied by the Bergman polynomials of Ω, is stronger than
the hypothesis of the Khavinson-Shapiro conjecture for Ω. This is so because
the Khavinson-Shapiro conjecture does not involve any assumption on the
degree of the polynomial solution. Thus a full proof of the conjecture is still
amiss.

(vii) If the hypothesis of the Khavinson-Shapiro conjecture is satisfied
then, clearly, Γ = ∂Ω is algebraic and, hence, piecewise analytic. Yet, in
order to be able to use the ratio asymptotics for the Bergman polynomials, as
they have been obtained by Suetin in [19], we must eliminate the possibility
that Γ has cusps. Perhaps, whenever the hypothesis of the Khavinson-
Shapiro conjecture holds (see Proposition 2.1) the cusps cannot occur a
priori. We haven’t been able to prove this either. We note however that it
is possible to have cusped curves on which a quadratic matches a harmonic
polynomial, e.g., y2 = x3 − 3y2x.
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