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1. Classical Integral Operators

Let’s start with a very simple operator, the Cauchy integral operator.
Let Ω ⊂ R2 be a bounded domain, Γ = ∂Ω is assumed to be sufficiently smooth.

L2(Ω) =

{
f : Ω→ C, ‖f‖22 =

∫
Ω

|f |2dA(ξ) <∞, dA = area measure

}
.

(Cf)(z) =

[
− 1

π

∫
Ω

f(ξ)

ξ − z
dA(ξ)

]
.

An easy exercise shows that C is bounded, even compact, yet not Hilbert–
Schmidt.

Remark 1.1. Note that the Cauchy integral operator on curves is well-known
but it is not compact. The above Cauchy operator is compact and reproduces all
C∞0 functions

ϕ(z) = − 1

π

∫
Ω

∂ϕ

∂ξ̄

1

ξ − z
dA(ξ).

Question. What is the norm of C, for say domains that are simple, say a disk?
What can be said about spectral asymptotics of C?

The inverse questions one plentiful: from the information about the spectrum,
can one derive some information regarding geometry of Ω? Can one characterize
disks among the domains of the same area based on the spectral information of the
operator? Can we “hear the shape” of a drum, i.e., are there two different domains
with the same spectrum, and so on?
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Two other operators L, N naturally come to mind:

(Lf)(z) =
1

2π

∫
Ω

log
1

|z − ξ|
dA(ξ);

(Nf)(x) =
1

(n− 2)ωn

∫
Ω

1

|x− y|n−2
f(y) dV (y).

(Here, ωn denotes the area of the unit sphere. dV is the Lebesgue measure in
Rn.) All of the above questions can legitimately be asked for L, N . Also, one can
certainly consider comparison (in, say, norm) of C, L, N . In 1989 Anderson and
Hinkkanen [1] showed that

‖C‖L2(D) =
2

j0
,

where j0 ≡ 2.408 . . . , is the smallest positive zero of the zero Bessel function

J0(x) =

∞∑
k=0

(−1)k

(k!)2

(x
2

)2k

;

(D) = {z : |z| < 1} is the unit disk in C.

The proof was a rather ingenious computation and application of an inequality of
Hardy type and an ODE result due to P. Boyd (1969).

However, if one notices ([3]) that j2
0 = λ1 is the smallest eigenvalue for the

Dirichlet Laplacian in D, i.e., the smallest positive λ > 0 such that

∆ϕ+ λϕ = 0 in Ω, ϕ = 0 on ∂Ω,

the problem immediately connects to mathematical physics. Furthermore, let

g(x, y) =


1

(n− 2)wn−1

1

|x− y|n−2
+ ux(y), x, y ∈ Ω n ≥ 3

1

2π
log

1

|x− y|
+ ux(y), x, y ∈ Ω

0, elsewhere

be Green’s function [13] of Ω, ux(y) is harmonic in Ω and, g(x, y) |y∈∂Ω= 0, and
consider the operator

(Gf)(x) =

∫
Ω

g(x, y)f(y) dV (y).

Then, G−1 = −∆ on the Sobolev space W 1,2
0 . The eigenvalues of G are reciprocals

of those of ∆. Hence, the Anderson–Hinkkanen results can be read as∥∥∥∥1

4
C∗C

∥∥∥∥
D

=
1

j2
0

=
1

λ1
= µ1 := ‖G‖D

It turns out that not all of these are coincidences.

Theorem 1.2 ([2, 6]).∥∥∥∥1

4
C∗C

∥∥∥∥
Ω

=

(
1

2
‖C‖

)2

Ω

= ‖G‖Ω =
1

λ1
= µ1.

Moreover, in view of the Raleyigh–Faber–Krahn theorem [4], we have
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Corollary 1.3. Among the domains of equal area, the norm for C (and G) is
maximized over a disk, i.e.

‖C‖ ≤ 2

j0

√
Area Ω

π

Moreover, combining the results from [2], [3] and [5], we have the following
results on spectral asymptotics:

(i) The operator C, or, rather, C
∗C
4 : The singular numbers sn, i.e., the eigenval-

ues of the self-adjoint operator
(
C∗C

4

)1/2

behave asymptotically as O
(

1√
n

)
.

All the eigenvalues are of double multiplicities so, C ∈ S2,∞, in partic-
ular, C ∈ Sp, p > 2 but C is not Hilbert–Schmidt (Sp, S2 stand for the
corresponding Schatten classes — cf. [3]).

Remarkably, if we restrict C to the Bergman space of square-integrable
analytic functions, the singular numbers of CP , where P denotes the orthog-
onal projection onto the Bergman space, become O

(
1
n

)
, hence CP ∈ S1,∞,

i.e., “2 times better than C”.
(ii) The operator L. The spectra of L and 1

4 C
∗C are quite similar (and coincide

for the disk) although in the disk L has the whole series of triple eigenval-
ues. The singular numbers are O

(
1
n

)
and L ∈ S1,∞. Again the operator

PLP is “twice as nice” (∈ S1/2,∞), the eigenfunctions in the disk are simply
monomials.

In 2007, M. Dostanić [7] established further refinement on asymptotics of C
and L.

sn(C) =

√
Area(Ω)

π

1

n
+O

(
1

n

)
;

λn(L) =
Area(Ω)

4π
· 1

n
+O

(
1

n3/2

)
.

Thus, as in the case of the Dirichlet Laplacian, the spectral behavior of C, L
allow us to determine the area of Ω. Note that L is “two times better” than C.
As noted above, the norms of C, L allow us to determine when the domain is a
disk (or, not — more often) in view of the Faher–Krahn theorem. The following
questions certainly pose themselves:

(i) Are there domains with identical spectra for both operators CΩ and LΩ ?
(Most likely “yes”, but virtually nothing has been done.)

(ii) The eigenfunctions for disks, balls for the operators C, L, N are prod-
ucts of Bessel functions and spherical harmonics. Thus entire functions
of exponential type. Does this property characterize balls? Probably not,
since some of these statements hold for ellipsoids as well. Hence, it is
true that the growth of the eigenfunctions characterize ellipsoids. For
the operator G, or equivalently, for the Dirichlet Laplacian the eigenfunc-
tions for ellipsoids are also entire functions of exponential type (Bessel
functions combined with spherical harmonics for balls). It is tempting
to suggest that that property does characterize ellipsoids, in other words
for all other domains some eigenfunctions develop singularities somewhere
outside the domains. At present, there is virtually no progress on the prob-
lem. A closely-related problem is associated with the so-called Khavinson–
Shapiro conjecture — cf. [10, 11]. The conjecture asserts that ellipsoids are
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the only domains for which all solutions of the Dirichlet problem ∆u = 0
in Ω, u |Γ:=∂Ω= f , with entire data f are themselves entire functions.

The problem where do the singularities of solutions of the Dirichlet
problem with a “nice”, entire or polynomial, data appear from is deep,
difficult and, mostly, widely open. Some recent progress has been achieved
mostly by H. Render, and , also, by S. Bell–P. Ebenfelt–D. Khavinson–H.
S. Shapiro and D. Khavinson–E. Lundberg – cf. [10, 11] and references
therein. In two dimensions the problem leads very quickly to some in-
triguing and non-standard algebraic geometry: complex “lightning bolts”
on Riemann surfaces, etc. – cf. [10].

(iii) Do the spectra of C, L, N transmit the information about the geometry
of the base domain Ω? For example, can we detect corners, or cusps on
Γ = ∂Ω from the spectral properties of those operators. Since the crude

asymptotics (O
(

1√
n

)
for C and O

(
1
n

)
for L) are the same for all bounded

domains, the problem appears quite delicate. It appears as a worthy task
to investigate in detail the situation for C in cardioids since the conformal
map from the disk onto cardioids is just a quadratic polynomial. Hence,
via a simple change of variables, the problem could be moved back to
the disk. Similarly, the example of a square should be possible to handle
directly for the operator L.

2. Single-Layer Potentials

Set Γ = ∂Ω, Ω is as above. Let

u(x) =

∫
Γ

En(x− y)f(y) dS(y),

where

En(x) =


− 1

2π
log |x|, n = 2;

1

(n− 2)ωn
|x|2−n, n > 2,

where as above ωn is the area of the unit sphere Sn−1 in Rn. dS is Lebesgue
measure on Γ. Obviously, u is harmonic in Rn \ Γ and is continuous in Rn. The
operator S : f 7→ u|Γ is self-adjoint on L2(Γ) and it is not difficult to see that S
is compact, even Hilbert–Schmidt. S is injective in Rn, n ≥ 3, and has at most
1 dimensional kernel in R2. It is not difficult to calculate the spectrum of S in
D, n = 2 or B := {|x| < 1} in Rn, n ≥ 3. The eigenfunctions are spherical
harmonics, the multiplicity of every eigenvalue λn in R2 is 2 while for n ≥ 3 it is

A(n,m) − A(n,m − 2), A(n,m) = n(n+1)···(n+m−1)
m! , the dimension of the space of

spherical homogeneous harmonics of degree m. The eigenvalues are 1
2m for n = 2

and 1
2m+n−2 for n > 2. This observation provides us with crude asymptotics of the

spectra for all bounded domains in Rn.
Note that the constant functions are eigenfunctions for S in all dimensions on

the ball.

Question. Does this properly characterize balls?

The answer is ”Yes” ([9]), provided that Γ satisfies certain mild smoothness
assumptions. (For example, for n = 2, Ωe = C \ Ω is assumed to be a Smirnov
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domain.) The result is proved in two dimensions by function theory via the Riemann
mapping.

2.1. Quadrature identity. One can show that S has 1 as an eigenfunction
if and only if the domain Ω′ obtained from Rn \ Ω by inversion has the following
quadrature property

u(0) = c

∫
Γ′:=∂Ω′

|x|−nu(x) dS, for all harmonic u in Ω.

Then it is indeed true that such domain must be a ball (W. Reichel, S. Shahgholian
∼ ‘97 – cf. references in [9]) but it is only known for C2α boundaries in Rn, n ≥ 3.

Perhaps, one wonders, even a more ambitious conjecture is true: If for α ∈ R

(∗) u(0) = c

∫
Γ

|x|αu(x) dS(x)

for all u harmonic in Ω, then Ω is a ball. (∗) of course, means that the harmonic
measure ω at 0 is represented as ω(0,Ω,Γ) = c|x|α dS(x).

Theorem 2.1 ([9]).

(i) For n = 2 and α = −2, (∗) holds for ALL disks containing the origin.
(ii) For n = 2, α = −3,−4,−5, . . .∃ solutions (domains) Ω which are NOT

disks (!)
(iii) For all other α, Ω is a disk centered at the origin.

(For (ii), Ω is obtained from D via conformal maps ϕ(w) = w

(A+Bwk)1/k
, k = 2, 3, . . .

with appropriate A, B.)

Questions.

(i) How can the above theorem be extended to n ≥ 3?
(ii) Can one extend the results of Reichel, Shahgholian, etc., to less-smooth

boundaries?
(iii) All the questions from the previous section I, e.g., isospectrality, infor-

mation about the boundary, e.g., cusps, corners, etc., make sense for the
single-layer operator S as well.

(iv) We have shown that under some mild restrictions only balls have constants
as eigenfunctions for S. What about higher-degree harmonic polynomials?

S. Zoalroshd [14] showed that if in R2 a harmonic polynomial h = Rep(z) is an
eigenfunction for S and all but one zeros of p are inside Ω, then Γ = ∂Ω is a circle.
It is natural to conjecture that the latter hypothesis is not necessary. Is it true? Is
his result true in Rn, n ≥ 3?

3. Double-Layer Potentials

Let as above E(x, y) := En(x, y) = cn

{
|x|2−n, n ≥ 3

log |x| n = 2
be the usual kernel in

potential theory.
Let K : L2(Γ)→ L2(Γ) be defined

(Kf)(x) = 2

∫
Γ

∂

∂ny
E(x− y)f(y) dσ(y),
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K is called the Neumann–Poincaré operator. If we let x ∈ Ω, we have a harmonic
function whose boundary values equal f − Kf = (I − K)f on Γ. Thus, proving
that the operator (I±K) is surjective allowed Fredholm to solve the Dirichlet prob-
lem (Fredholm’s alternative) in terms of double layer potentials in rather general
domains provided that I ±K is injective.

Unfortunately, K is never self-adjoint unless Ω is a ball, cf. [12]. However,
using the so-called symmetrization procedure one can show that K indeed has
a real spectrum and its eigenfunctions do span the L2− space on the boundary.
Poincaré has conjectured (by analogy with the sphere) that the spectrum of K is
always nonnegative in Rn, n ≥ 3. This is now proven to be false ([12]). There is
enormous literature on eigenvalues and eigenfunctions for K — cf. the references
in [12]. Let me just touch on the most fundamental property of K:

Question. Is K injective, i.e., does kerK = {0}?
Obviously, it is true for Γ = Sn−1, n ≥ 3, where the operator K, as is easily

verified, is a scalar multiple of S, which is obviously injective. So, is it true for
other smooth surfaces Γ in Rn, n ≥ 3? The answer is probably “no”, but it is still
unknown. In 2 dimensions the situation is even more intriguing. On T := ∂D,

Kf =
1

π

∫ 2π

0

f
(
eiθ
)
ds

has rank 1. So kerK = L2(T) 	 C is virtually almost everything. In the 1980’s,
D. Khavinson and H. S. Shapiro showed (unpublished) that kerK cannot be finite
dimensional.

In [8] it was proven that not only if kerK 6= {0}, then dimK =∞, but moreover
it is an algebra! Namely, F ∈ kerK ⇔ ∃f, g analytic in Ω,Ωe respectively, g(∞) = 0
and such that

(∗∗) f = ḡ on Γ.

Example 3.1.

(i) Ω = D, f = zn, n ≥ 1.
(ii) Yet, the “matching problem” (∗∗) has other solutions!

Rational lemniscates ([8]) are defined as Jordan curves Γ such that

Γ = {|R(z)| = c, c > 0},
where R is a rational function, R has no zeros in Ωe, and no poles in Ω. The pair
R, C

R obviously solves (∗∗).
Conjecture 3.2. Rational lemniscates are the only curves on which the Neumann-

Poincaré is not injective .

Remark 3.3. It is truly important to identify the kerK since these are pre-
cisely the densities whose double layer potentials give directly explicit solutions of
the Dirichlet problem.

Again, all the questions in Section 1 apply to K as well.
Another open venue for research is to study in depth the relationships between

the spectra of C, L, N and well-known problems in mathematical physics. Even in
D (or, B = {|x| < 1}, n ≥ 3) those spectra are close, but not identical. So under-
standing precisely, in geometric terms, the “corrections” between the eigenvalues is
already a worthy project.



SPECTRAL PROPERTIES OF CLASSICAL INTEGRAL OPERATORS 7

References

1. James M. Anderson and Aimo Hinkkanen, The Cauchy transform on bounded domains, Proc.
Amer. Math. Soc. 107 (1989), no. 1, 179–185.

2. James M. Anderson, Dmitry Khavinson, and Victor Lomonosov, Spectral properties of some

integral operators arising in potential theory, Quart. J. Math. Oxford Ser. (2) 43 (1992),
no. 172, 387–407.

3. Jonathan Arazy and Dmitry Khavinson, Spectral estimates of Cauchy’s transform in L2(Ω),

Integral Equations Operator Theory 15 (1992), no. 6, 901–919.
4. Catherine Bandle, Isoperimetric Inequalities and Applications, Monographs and Studies in

Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.
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