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1. Introduction.

Electrostatics is an ancient subject, as far as most mathematicians and physicists
are concerned. After several centuries of meticulous study by people like Gauss,
Faraday, and Maxwell (to name a few), one wonders if it is still possible to find
surprising or new results in the field. Throughout this text, we address several
seemingly classical electrostatics problems that have not been fully addressed in
the literature, to the best of our knowledge. Let us begin by establishing some
notations.

For vectors x, y ∈ Rd, d ≥ 3, we define the function Kd(x, y) by the formula

(1.1) Kd(x, y) =
1

(2− d)ωd−1

1

|x− y|d−2
.

Here, ωd−1 is the surface area of the unit sphere in Rd. Kd is the fundamental
solution for the Laplace operator in Rd (i.e., ∆yKd(x, y) = δx).

Furthermore, given a locally finite (signed) Borel measure µ with support Σ,
we define the Newtonian (or Coulomb) potential of µ with respect to the kernel
Kd(x, y) by

(1.2) (UµΣ) (x) =

∫
Σ

Kd(x, y)dµ(y).

If the support of the measure µ is either clear from context or, otherwise, irrelevant
to the problem, we drop the subscript Σ, and write Uµ(x).

We define the Newtonian (or Coulomb) energy of a measure µ with respect to
the kernel Kd(x, y) by

(1.3) WΣ[µ] =

∫
Σ

(UµΣ) (x)dµ(x).
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We also refer to this functional as the electrostatic energy, and sometimes use the
simpler notation WΣ[µ] = W [µ] - cf. [9, 13] for the basics of Potential Theory.

Definition 1. We say a charge distribution (measure) µ is in constrained equilib-
rium, when its electrostatic potential

(1.4) UµΣ(x) =

∫
Σ

Kd(x, y)dµ(y),

is constant (possibly taking different values) on each connected component Σj of the
support of µ, subject to the constraints

(1.5) µj = µ(Σj) = Qj , j = 1, 2, 3, . . . ,m,

m∑
j=1

Qj = Q.

In the case when Σj consists only of one point, i.e. Σj = {xj}, the condition
that the potential UµΣ be constant is replaced by the gradient condition

(1.6)
(
∇UµΣ\Σj

)
(xj) = 0.

Now, we are ready to state the first problem discussed in this paper.

Problem 1. Given a total charge Q ∈ R and a locally finite Borel measure µ, such
that µ(Rn) = Q, is there a collection of disjoint compact sets {Σj}mj=1, such that

µ(Σj) = Qj,
∑m
j=1Qj = Q, and µ has a constrained equilibrium configuration on

Σ := ∪jΣj?

It should be noted that, while the associated energy

(1.7) WΣ[µ] ≡
∫

Σ

UµΣ(x)dµ(x)

does solve a variational problem over the set M of measures constrained by (1.5),
it is by no means automatically also the solution to the free optimization problem

(1.8) W [µ] = inf
σ∈M

W [σ].

In other words, a solution for Problem (1) merely gives an equilibrium charge
configuration, which need not be also a stable equilibrium, i.e. a local minimum of
the energy functional, as opposed to a saddle point. The (stronger) stable equilib-
rium problem may not have a solution, for a generic choice of the support Σ and
set of constraints (1.5).

Remark 1. It should also be noted that the choice of total charge Q is not impor-
tant, except to distinguish between neutral configurations (Q = 0) and non-neutral
(Q 6= 0). This is due to the fact that, under a simple rescaling

Q = λq, Qj = λqj , λ ∈ R \ {0},

the potential scales by a factor of λ, and the energy by a factor of λ2, leaving
the variational problems (and their solutions) unchanged. Therefore, the only two
distinct cases that need to be considered are Q = 0 and Q = 1.

The second (classical) problem we discuss is the characterization of critical mani-
folds C (specifically, curves) on which the gradient of the potential of a given charge
configuration vanishes. More precisely, the problem in R2 is:
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Problem 2. Let µ be a locally finite charge distribution with planar support Σ ⊂ R2.
Can the critical manifold C ⊂ R3 of µ, defined by

(1.9) C = {x ∈ R3 : ∇UµΣ(x) = 0}

contain a curve in R2?

This problem has numerous applications, some of which are discussed in this
paper. One of its most obvious implications is that a collection of charges, placed
in the plane supporting the distribution µ, cannot have a curve in the same plane
as an equilibrium configuration.

Problem 2 has a distinguished history, and can be regarded as a special case
of Maxwell’s Problem (cf. [6] for further references). In short, Maxwell asserted
(without proof) that if n point charges {xj}nj=1 are placed in R3, then there are at

most (n− 1)2 points in R3 at which the electrostatic field vanishes. More precisely,
if each xj has charge qj ∈ R, then

(1.10) #

{
x : ∇

( n∑
j=1

qj
|x− xj |

)
= 0

}
≤ (n− 1)2,

or is, otherwise, infinite (e.g. contains a curve, the ‘degenerate case’). Thompson,
while preparing Maxwell’s works for publication, couldn’t prove it, and the problem
has since become known as Maxwell’s conjecture - cf. [6] for more details. So far,
the only real progress on this problem has been achieved in [6], where it was verified
that the cardinality of the set of isolated points in equilibrium in (1.10) is finite. But
even in the case of n = 3, the best known estimate is 12, not 4! No counterexamples
to the conjecture have been found.

The first examples of curves of degeneracy where (1.10) holds go back to [7].
Futher, partial results, for a particular case when the charges are coplanar can be
found in [12, 16]. Killian, in particular, conjectured that in the latter case the
degeneracy curves are all transversal to the plane of the charges. This is proven in
§4. Finally, note that in the plane, if we use the logarithmic potential, the estimate
improves to (n − 1) and is an obvious corollary of the Fundamental Theorem of
Algebra.

This paper is organized as follows: in §2, we discuss Problem 1, first in its classical
form (for the Newtonian potential in R3), and the proof of F. Dyson and A. Lenard
for an inequality first discovered by L. Onsager [15], along with extensions of the
same energy inequality to the case of potentials in Rn.

In §3 we focus on necessary conditions for the existence of an equilibrium con-
figuration, in particular for the case of Coulomb potentials (in R3). A necessary
condition independent of the support, and which can be expressed as a constraint
on the measure density moments, is also discussed in §3 (Intersection Theorem).

Section §4 is dedicated to the precise formulation and solution of degeneracy
in Maxwell’s problem, for charge configurations constrained to two-dimensional
subspaces of R3. In section §5 we pose a fascinating question, originating in ap-
proximation theory, that we frivolously label ‘Faraday’s problem’, believing that
Sir Michael Faraday would have never hesitated to answer it based on empirical
evidence.
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2. Variations on Onsager’s Inequality.

The Onsager inequality was originally discussed by Lars Onsager 1 in a relatively
little known paper [15]. Onsager himself did not provide a proof of this inequality,
and it was not until 30 years later that a full proof was given by Freeman Dyson and
Andrew Lenard [4]. Here, we shall present their original proof of the inequality,
and consider subsequent generalizations to Rn. We remark that this inequality
was brought to the attention of the authors by Eero Saksman et. al., who found
far-reaching extensions of it in a probablistic context [8].

2.1. F. Dyson and A. Lenard’s Original Proof. Let {xj}nj=1 be a collection

of point charges in R3, with charges {qj}nj=1, each of which takes one of the values
±1. The electrostatic energy due to this collection of point charges is given by

(2.1) − 1

4π

∑
j<k

qjqk
|xj − xk|

.

Furthermore, for each xj , denote the shortest distance to the next point charge by
δj :

(2.2) δj := min
k 6=j
|xj − xk|.

The Onsager inequality states that the electrostatic energy of the point charges is
bounded by the sum of inverses of δj ’s:

Proposition 2.1. Let {xj}nj=1, {qj}nj=1, and {δj}nj=1 be defined as above. Then

(2.3)
1

4π

∑
j<k

− qjqk
|xj − xk|

<
1

4π

n∑
j=1

1

δj
.

We remark that the inequality agrees with the intuition that spreading the
charges out over a larger distance will decrease their electrostatic energy.

Proof. We now replicate Dyson and Lenard’s original proof of the inequality. It
is based on the intuition that replacing point charges with uniform distributions
on spheres of the same total charge will not change the electrostatic energy of
the configuration, along with the fact that the total energy is always positive.
Consider a distribution of charges µ supported on spheres of radii {ρj}nj=1 centered
at {xj}nj=1, each carrying the total charge {qj}nj=1. In other words, the sphere Bj

centered at xj with radius ρj carries uniform surface charge density
dµj
dA =

qj
4πρ2j

(here, dA denotes the surface area measure). At any point x outside of these
spheres, this distribution of charge generates the potential

U(x) =

n∑
j=1

qj
4π|x− xj |

.

1Lars Onsager was a theoretical physicist and chemist. He was best known for his work in

statistical mechanics, in particular his eponymous relations, which won him the Nobel Prize in
Chemistry in 1968, and for his exact solution of the 2D Ising model. For further details about the

life and work of Onsager, see [14].



ENERGY EQUILIBRIA FOR POINT CHARGE DISTRIBUTIONS 5

The desired inequality will follow from the positivity of the total energy W of this
distribution of charge:

W =

∫
U(x)dµ(x) =

∫
R3

|∇U(x)|2dx ≥ 0.

The latter calculation is well known in potential theory (see [13], for example), and
is a straighforward corollary of Green’s formula. We can decompose the total energy
into two parts, the self-energy of the spheres and the mutual pairwise energy:

W =

n∑
j=1

∫
Bj

U{qj}dµj+

n∑
k 6=j,k=1

n∑
j=1

qjU{qk}(xj) =

n∑
j=1

q2
j

4πρj
+2

∑
1≤j<k≤n

qjqk
4π|xj − xk|

.

Therefore, the positivity of the total energy can be rewritten as

(2.4)

n∑
j=1

q2
j

4πρj
> 2

∑
1≤j<k≤n

− qjqk
4π|xj − xk|

.

Notice that the right hand side is just the expression for the electrostatic energy of
the n point charges. We have some freedom in the above inequality in picking the
radii of the spheres; one particularly good choice will be to pick the radii to be as
large as possible without having any of the spheres intersect; thus, we choose

(2.5) ρj =
1

2
min
k 6=j
|xj − xk| =

1

2
δj

Then the inequality (2.4) becomes

(2.6)

n∑
j=1

q2
j

δj
>

∑
1≤j<k≤n

− qjqk
|xj − xk|

.

Finally, in the case where qj ∈ {±1}, we obtain the original Onsager’s inequality:

(2.7)

n∑
j=1

1

δj
>

∑
1≤j<k≤n

− qjqk
|xj − xk|

.

�

Remark 2. The reader may have noticed that the inequality relies on redistribution
of the point charges over spheres, and the object of interest is really the self-energy
of the spheres (i.e. the expression on the left hand side of equation (2.4)). One may
wonder if this inequality can be improved by redistributing the total charge of each
point charge differently, for example by replacing the point charge with a uniform
volume distribution over the ball of radius ρ (of equal total charge). In fact, the
uniform surface distribution yields the optimal estimate from this perspective, since
this distribution of charge yields the smallest self-energy. This follows readily from
the fact that the equilibrium measure of the ball in R3 is the uniform distribution
on its surface.

2.2. Generalizations of the Onsager Inequality. We can easily generalize the
Onsager inequality to Rd, by considering the appropriate electrostatic (or, Coulomb)
potential in Rd:
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Proposition 2.2. For d > 2, and with all notations adopted from Section 1, the
Onsager inequality becomes

(2.8) 2d−3
n∑
j=1

q2
j

δd−2
j

> −
∑

1≤j<k≤n

qjqk
|xj − xk|d−2

.

The proof is virtually identical to the one in R3; we provide a sketch here.
Consider a distribution of charges µ supported on spheres of radii {ρj}nj=1 centered
at {xj}nj=1, each carrying total charge {qj}nj=1. In other words, the sphere centered

at xj with radius ρj carries uniform surface charge density
qj

ωd−1ρ
d−1
j

. (Here, as in

§1, ωd−1 denotes the surface area of the unit sphere in Rd.) Again, the pivotal fact
is the positivity of the total energy:

(2.9) W =
n∑
j=1

q2
j

ωd−1ρ
d−2
j

+ 2
∑

1≤j<k≤n

qjqk
ωd−1|xj − xk|d−2

> 0.

As before, a sharper upper bound is provided by letting each sphere become tangent
to its nearest neighbor, i.e., by choosing:

(2.10) ρj =
1

2
min
k 6=j
|xj − xk| =

1

2
δj .

Thus, we obtain that

(2.11) 2d−3
n∑
j=1

q2
j

δd−2
j

>
∑

1≤j<k≤n

− qjqk
|xj − xk|d−2

.

Finally, letting qj = ±1 yields an inequality equivalent to (2.3):

(2.12) 2d−3
n∑
j=1

1

δd−2
j

>
∑

1≤j<k≤n

− qjqk
|xj − xk|d−2

.

Remark 3. We remark that (2.12) can hold for any number of point charges; both
sides of the inequality can be made arbitrarily small by choosing a configuration
of charges with the nearest distance δ = minj δj to be sufficiently large. Thus,
Onsager’s inequality is strict, and only becomes an equality when the charges are
moved away to infinity.

In d = 2 dimensions, the Coulomb interaction is no longer a power law; moreover,
the total energy of a distribution of charge is no longer necessarily positive. The
positivity of the total energy is indispensible in the proof above; thus no version
of the Onsager inequality as general as the one for Rd (d > 2) exists. However, if
we impose additional conditions 2 to guarantee the energy postivity constraint, an
Onsager-like inequality can be written down. However, the result is rather artificial,
since it is only valid for very specific charge configurations; thus, we omit it.

2For example, one could consider only charge configurations with total charge
∑
j qj = 0;

such configurations are guaranteed to have positive energy. Alternatively, if one imposes that the
charges are all confined to the unit disc, positivity of total energy is again ensured. The proof of

these facts can be found in [13].
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3. Intersection Theorem.

As we have already seen, two-dimensional electrostatics is rather special; the
following theorem is no exception to this rule. The theorem may have been known
earlier, and the authors would be interested to see if one could find the earliest
instance of it in the literature. We remark that it is a theorem about point charges
in unstable equilibrium, in comparison to the celebrated Earnshaw’s theorem, which
ensures that unstable equilibria are the only nontrivial equilibrium configurations.
In other words, the potential of an electrostatic field cannot have local minima (or
maxima) in space free of charges, only saddle points (the proof, of course, is obvious,
since the electrostatic potential is a harmonic function away from the support of
the charges – cf. [5]).

3.1. Intersection Theorem: A Necessary Condition for Equilibrium. Let
{zi}ni=1 be point charges in the complex plane, with corresponding charges {qi}ni=1.
Assume that the charges are in equilibrium, i.e. the electrostatic force acting on
each charge is zero:

(3.1)
∑
j 6=i

qj
zi − zj

= 0,

for each i = 1, ..., n (The field intensity is − 1
πz , as a consequence of the fact that

the Coulomb kernel is 1
2π log 1

|z| ). The Intersection Theorem provides necessary

conditions for these charges to be in equilibrium:

Proposition 3.1. Let {zi}ni=1 be point charges (with corresponding charges {qi}ni=1)
in equilibrium in the complex plane. Then, necessarily,

(3.2)

n∑
i=1

q2
i =

( n∑
i=1

qi

)2

.

Furthermore, for each k ≥ 0, we must also have that

(3.3) (k + 1)

n∑
i=1

q2
i z
k
i =

k∑
`=0

( n∑
i=1

qiz
`
i

)( n∑
j=1

qjz
k−`
j

)
.

Remark 4. The name chosen for this result follows from a geometric interpretation
of Eq. (3.2): consider the point in Rn, with coordinates {qk}nk=1. Then a simple
way of interpreting (3.2) is to say that it describes the intersection between the
hyperplanes

∑
k qk = ±|Q| and the sphere of radius |Q|, centered at the origin. For

example, this shows that for n = 2 the only solution is trivial, i.e. only one charge
can be non-zero.

Remark 5. For n > 1, (3.3) implies that the charges {qj}nj=1, if we think of
them as vectors in Cn with real coordinates, must satisfy infinitely many quadratic
equations (i.e., lie in the intersection of infinitely many quadrics (3.3) in Cn, with
coefficients depending on the positions zj ∈ C where the charges sit. The special
case (3.2) implies that, if

∑
qj = Q = 0, equilibrium never occurs.

Obviously, the configurations that are in equilibrium (and hence satisfy the in-
finitely many equations (3.3)) are very special. But they do exist! For example,
if we equidistribute n − 1 equal charges q at the vertices of a regular (n − 1)-gon

on the unit circle {|z| = 1}, and then place a charge qn := − q(n−2)
2 at the center
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of the circle, the total force acting on each charge will be zero. Hence, for this
configuration, (3.3) (and also (3.2)) hold.

Proof. Define functions g(z) =
∏n
i=1(z− zi)qi , and G(z) = (∂z log g(z))2 (G(z) can

be interpreted as the square of the complex electric field). Consider the expansion
of G(z) near ∞ in two different ways: first, write

G(z) =

n∑
i=1

q2
i

(z − zi)2
+
∑
i6=j

qiqj
zi − zj

(
1

z − zi
− 1

z − zj

)
(3.4)

=

n∑
i=1

q2
i

(z − zi)2
,

using the equilibrium condition (3.1) by first summing over i to get rid of the second
term in (3.4). Expanding G(z) at infinity, we find that

G(z) =

∞∑
k=0

1

zk+2

(
(k + 1)

n∑
i=1

q2
i z
k
i

)
.

Now, expand G(z) without taking into account the condition for equilibrium:

G(z) =

∞∑
k=0

1

zk+2

{ k∑
`=0

( n∑
i=1

qiz
`
i

)( n∑
j=1

qjz
k−`
j

)}
.

Since these expansions must be the same, we can equate their coefficients termwise
and obtain

(3.5) (k + 1)

n∑
i=1

q2
i z
k
i =

k∑
`=0

( n∑
i=1

qiz
`
i

)( n∑
j=1

qjz
k−`
j

)
,

for each k ≥ 0. �

Every one of the above conditions must necessarily hold for the charges to be in
equilibrium.

3.2. Generalization to Compactly Supported Charge Distributions. The
Intersection Theorem may be generalized to compactly supported charge distribu-
tions, as well.

Proposition 3.2. Let ρ(z) be a continuous density of charge compactly supported
on a bounded domain Ω ⊂ C. Suppose again the charges are in equilibrium. Then,
necessarily,

(3.6) (k+1)

∫
Ω

ρ2(ζ)ζkdA(ζ) =

k∑
`=0

(∫
Ω

ρ(ζ)ζ`dA(ζ)

∫
Ω

ρ(ζ)ζk−`dA(ζ)

)
, ∀k ∈ N,

where dA denotes the Lebesgue area measure.

Proof. The analog of the function G(z) becomes:

(3.7) G̃(z) =

∫
Ω

∫
Ω

ρ(ζ)ρ(w)

(z − ζ)(z − w)
dA(ζ)dA(w).

Again, let us compute G̃(z) in two different ways: first, we rewrite G̃(z) as

G̃(z) =

∫ ∫
ζ 6=w

ρ(ζ)ρ(w)

(z − ζ)(z − w)
dA(ζ)dA(w) +

∫
Ω

ρ2(ζ)

(z − ζ)2
dA(ζ).
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The second integral is understood in the Cauchy Principal Value sense and is known
as the Hilbert transform, or Beurling transform 3 in 2D – cf. [1, 2].

The first integral can be rewritten as∫ ∫
ζ 6=w

ρ(ζ)ρ(w)

(z − ζ)(z − w)
dA(ζ)dA(w) =

∫ ∫
ζ 6=w

ρ(ζ)ρ(w)

ζ − w

(
1

z − ζ
− 1

z − w

)
dA(ζ)dA(w)

=

∫
Ω

ρ(ζ)

z − ζ

[ ∫
w 6=ζ

ρ(w)

ζ − w
dA(w)

]
dA(ζ)

−
∫

Ω

ρ(w)

z − w

[ ∫
ζ 6=w

ρ(ζ)

ζ − w
dA(ζ)

]
dA(w)

= 0,

as
∫
ζ 6=w

ρ(ζ)
ζ−wdA(ζ) = 0 is the condition for equilibrium. Therefore, we have that

G̃(z) =

∫
Ω

ρ2(ζ)

(z − ζ)2
dA(ζ).

Expanding this expression, we find that

G̃(z) =

∞∑
k=0

1

zk+2

(
(k + 1)

∫
Ω

ρ2(ζ)ζkdA(ζ)

)
.

On the other hand, expanding G̃(z) without taking into account the condition for
equilibrium, we obtain

G̃(z) =

∞∑
k=0

1

zk+2

k∑
`=0

(∫
Ω

ρ(ζ)ζ`dA(ζ)

∫
Ω

ρ(ζ)ζk−`dA(ζ)

)
.

Equating the coefficients, we find the following sequence of conditions for equilib-
rium:

(3.8) (k + 1)

∫
Ω

ρ2(ζ)ζkdA(ζ) =

k∑
`=0

(∫
Ω

ρ(ζ)ζ`dA(ζ)

∫
Ω

ρ(ζ)ζk−`dA(ζ)

)
.

�

In particular, for k = 0 we obtain the expected continuous analog of Intersection
Theorem (3.2):

(3.9)

∫
Ω

ρ2(ζ)dA(ζ) =

(∫
Ω

ρ(ζ)dA(ζ)

)2

.

Remark 6. It is interesting to note that the necessary condition for k = 0 does not
involve the actual configuration {zj}, but only the values of the charges {qj}. This
peculiar fact can be traced back to the different scaling behavior of equilibrium
configurations in R2 versus Rd, d 6= 2: upon scaling an equilibrium configuration
{xj} → {λxj}, λ > 0, the total energy scales as λ1−d for d 6= 2, but for d = 2 it

3The Beurling transform is the most studied example of the class of Calderón-Zygmund oper-
ators. In short, define

Tρ(z) :=

∫
Ω

ρ2(ζ)

(z − ζ)2
dA(ζ) = lim

ε→0

∫
Ω∩{|z−ζ|>ε}

ρ2(ζ)

(z − ζ)2
dA(ζ).

Then T is a bounded operator from L2 to L2 (with respect to the area measure) and preserves

smooth functions.
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only acquires an additive term proportional to the difference between the two sides
in (3.2):

W [{λzj}]−W [{zj}] =
1

2π


∑

j

qj

2

−
∑
j

q2
j

 lnλ

Therefore, for d = 2, the necessary condition (3.2) follows from the fact that, if
it were not satisfied, moving all the charges according to an infinitesimal dilation
would lead to a lower energy (λ < 1 if the right-hand side in (3.2) is larger than the
left, and λ > 1 otherwise), which would mean the initial configuration was not in
equilibrium. For all d 6= 2, this reasoning fails, and any necessary condition seems
to require the explicit dependence on the configuration itself (positions {xj}). It
would be interesting to pursue this theme further.

Furthermore, Propositions 3.1, 3.2 provide necessary conditions for equilibrium;
one wonders if, taken collectively, they are indeed also sufficient. We think it is
a compelling and possibly challenging problem to determine either (a.) if these
equations are sufficent for equilibrium, or, if they are not, (b.) find a corresponding
collection of sufficient conditions.

Remark 7. The above theorem admits an easy generalization to any number
of dimensions. Consider a pairwise interaction between a collection of particles
{xj}nj=1 ⊂ Rd. Assume that the energy of the interaction depends only on the
charges of the particles {qj} and the pairwise distances between them |xi−xj |; these
are natural assumptions. The total pairwise energy of the n-particle configuration
is then given by

(3.10) W :=
∑
i,j,i 6=j

qiqjΦ(|xi − xj |),

where Φ is some given function characterizing the interaction. Then, the force
acting on particle i is

(3.11) Fi = −∇xi
(∑
j 6=i

qiqjΦ(|xi − xj |)
)
,

and the equilibrium condition then is that Fi = 0, i = 1, ..., n, i.e.

(3.12)
∑
j 6=i

qiqj
xi − xj
|xi − xj |

Φ′(|xi − xj |) = 0,

i = 1, ..., n. We can rewrite (3.12) through the logarithmic derivative of Φ, as

(3.13)
∑
j 6=i

qiqj
xi − xj
|xi − xj |2

[rΦ′(r)]r=|xi−xj | = 0.

Denote

(3.14) Mij :=
qiqj

|xi − xj |2
[rΦ′(r)]r=|xi−xj | ,

then obviously Mij = Mji, i 6= j. Setting Mjj := 0, j = 1, 2, . . . , n, (3.12) becomes∑
j

Mij(xi − xj) = 0, ∀ i = 1, 2, . . . , n,
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so we can multiply each equation by xi and sum over i, to obtain (since Mij = Mji)∑
i,j

Mij(xi − xj) · xi = 0⇒
∑
i,j

Mij(xj − xi) · xj = 0

Adding these equations and using Mjj = 0 leads to the general form of (3.2)

(3.15)
∑
i 6=j

Mij |xi − xj |2 = 0⇒
∑
i 6=j

qiqj [rΦ′(r)]r=|xi−xj | = 0.

If Φ(r) = − log(r), then rΦ′ = −1, and (3.15) is equivalent to (3.2). If Φ(r) = r−k,
k > 0, then rΦ′ = −kΦ, so (3.15) becomes

(3.16) W =
∑
i,j,i 6=j

qiqjΦ(|xi − xj |) = 0,

or, equivalently, if the equilibrium exists, the total energy of the system is zero.

4. Degeneracy in Maxwell’s Problem with Planar Charge
Distributions.

We now address Problem 2, which stems from Maxwell’s conjecture. The fol-
lowing question was first discussed in [12], also cf. [16]:

Proposition 4.1. Consider a distribution of point charges µ with support contained
in a plane H ' R2 (without loss of generality, we take H to be the xy-plane). Then
the critical manifold C ⊂ R3 of µ, defined by

(4.1) C = {x ∈ R3 : ∇Uµ(x) = 0}

cannot contain a curve in H.

In other words, if C contains a curve on which ∇Uµ(x) = 0, then the latter is
necessarily transversal to the plane H.

Proof. To see this, let us assume C contains a curve in H. By a slight abuse of
notation, we shall still denote it by C. Since the support of µ is in the plane, we
have that ∂Uµ

∂z = 0 in H. Now, consider the analytic hypersurface Γµ := {(x, y) ∈
C2 : Uµ(x, y, 0) = const.} in C2. On the curve C = Γµ ∩H, we have that(

∂Uµ

∂x

)2

+

(
∂Uµ

∂y

)2

= 0,

since each term vanishes individually on C. This implies that u := Uµ(x, y, 0)
(considered as an analytic function defined in C2 \ suppµ) satisfies one of the two
equations

∂u

∂x
+ i

∂u

∂y
= 0, or,

∂u

∂x
− i∂u

∂y
= 0.

By analytic continuation, the same equation holds on Γµ. In other words, on

Γµ := {u = const}, we have ∂u
∂x/

∂u
∂y = ±i. Therefore, Γµ must be a complex line

(incidentally, a characteristic line for the two-dimensional Laplacian), i.e., Γµ =
{(x, y) ∈ C2 : x+ iy = const., or x− iy = const.}. In either case, the intersection
Γµ ∩ R2 is a point, not a curve C. This gives the desired contradiction. �
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4.0.1. Further observations.

• We remark that µ need not consist only of point charges. The argument
extends to arbitrary charge distributions µ as long as the curve C doesn’t
‘cut’ through the support of µ
• Extending this line of argument to R3, assume that C ⊂ R3 is a 1-dimensional

degenerate curve where ∇Uµ = 0, where µ is a point charge distribution in
R3. Then C ⊂ Γµ ⊂ C3, where Γµ is an analytic hypersurface. It is clear
that we cannot claim that ∇Uµ = 0 on Γµ, but we do have that (∇Uµ)2 =(
∂Uµ

∂x

)2
+
(
∂Uµ

∂y

)2
+
(
∂Uµ

∂z

)2
= 0 on Γµ, i.e., Γµ is characteristic with respect

to the Laplacian. Expanding the equation for Γµ in Taylor series, we find
that the lowest nonzero homogeneous terms v in the expansion still satisfy
the eikonal equation (∇v)2 = 0. As is shown on p. 178 of [10], due to the
homogeneity of v, we see that either v is linear (i.e., v(x, y, z) = αx+βy+γz,
with α2 + β2 + γ2 = 0), or the level set {v = const.} must be the isotropic
cone Γ0 := {(x, y, z) ∈ C3 : (x − x0)2 + (y − y0)2 + (z − z0)2 = 0}. The
intersection of {v = const.} with R3 then must be either a line, or a circle.
Thus, up to terms of order 3 or higher, the curve C must be either a circle
or a line. Note that all known examples of degeneracy support this state-
ment; see, for example, A.I. Janušauskas’ examples of a degenerate line
through the center of a square with alternating charges ±1 at the vertices,
or the circle of radius 1, centered at the origin, contained in the y−z plane,
perpendicular to the x-axis with charges q at x = ±1, and −q/

√
2 at the

origin- cf. [7].
• In general, the geometry of an equipotential surface in a neighborhood

of a degenerate point where the gradient vanishes is rather mysterious in
dimensions higher than 2. Maxwell, for one, conjectured that, similarly to
the plane, the equipotential surface splits, in the neighborhood of a critical
(degenerate) point, into several equidistributed hypersurfaces intersecting
each other at equal angles. This is well known to be false – cf. [9], the
footnote 1 on p. 276, end of Ch. X. Moreover, A. Szulkin, and later J.C.
Wood have constructed harmonic polynomials in R3 whose level set near a
critical point (where the gradient vanishes) is homeomorphic to a plane –
a shocking surprise, cf. the discussion in Sect. 2.5 of [3] (also, see [18] and
[19]).

5. Faraday’s Problem.

We conclude this exposition wtih the following question, which came up in con-
nection with the seemingly unrelated problem of uniqueness of the best uniform
approximation by harmonic functions from approximation theory [11]. However,
the problem is, in spirit, very close to the subject of this paper. Let B = {x ∈ Rd :
|x| < 1} be the unit ball in Rd, d > 2, and µ be a (signed) charge distribution sup-
ported on the closure of B which produces the same electrostatic potential outside
of B as the point charge δ0 centered at the origin. In other words,

(5.1) Uµ(x) =

∫
B

dµ(y)

|x− y|d−2
=

1

|x|
, |x| > 1.

In essence, this condition says that the effect of the signed charge density µ is the
same outside the ball as that of a positive point charge placed at the origin.
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Conjecture 1. There is a positive charge distribution m, absolutely continuous
with respect to |µ|, which produces the same potential Uµ as does µ outside B.

The requirement of absolute continuity here implies, in particular, that m cannot
contain any charge outside of the support of µ. On physical grounds, this conjecture
says that, since Uµ is the same as the potential of a postive charge δ0, one can expect
that it is possible to ‘clean out’ the support of µ, getting rid of all negative charges
and redistributing the positive charge in such a way that the new charge produces
the same effect outside of its support. Conjecture 1 is true in dimension 2, as shown
in [11]. Yet, the techniques applied there relied heavily on analytic functions and
are not available in higher dimensions. However, the result seems reasonable (on
physical grounds, at the very least) in all dimensions. Moreover, if this conjecture
holds, then (as explained in [11]) it has deep and important consequences for the
difficult problems of uniqueness of best harmonic approximation in the uniform
norm in dimensions larger than 2.
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